-
1
-
-
3042723720
-
Adverse drug reactions as cause of admission to hospital: Prospective analysis of 18 820 patients
-
Pirmohamed M, James S, Meakin S, Green C, Scott AK, Walley TJ, Farrar K, Park BK, Breckenridge AM,. Adverse drug reactions as cause of admission to hospital: prospective analysis of 18 820 patients. BMJ 2004; 329: 15-9.
-
(2004)
BMJ
, vol.329
, pp. 15-19
-
-
Pirmohamed, M.1
James, S.2
Meakin, S.3
Green, C.4
Scott, A.K.5
Walley, T.J.6
Farrar, K.7
Park, B.K.8
Breckenridge, A.M.9
-
3
-
-
84878703361
-
-
Pew Research Center: Internet ST. Pew Research Center;. (last accessed 1 June 2015)
-
Pew Research Center: Internet ST. Health Online 2013 [Internet]. Pew Research Center; 2015. Available at http://www.pewinternet.org/2013/01/15/health-online-2013/ (last accessed 1 June 2015).
-
(2015)
Health Online 2013 [Internet]
-
-
-
6
-
-
84942555717
-
-
Twitter. Twitter (last accessed 1 June 2015)
-
Twitter. Welcome to Twitter [Internet]. Twitter; 2015. Available at https://twitter.com/ (last accessed 1 June 2015).
-
(2015)
Welcome to Twitter [Internet]
-
-
-
7
-
-
84942555718
-
-
Facebook. Facebook;. (last accessed 1 June 2015)
-
Facebook. Facebook [Internet]. Facebook; 2015. Available at https://www.facebook.com / (last accessed 1 June 2015).
-
(2015)
Facebook [Internet]
-
-
-
8
-
-
77954571408
-
Earthquake shakes Twitter users: Real-time event detection by social sensors
-
Raleigh, North Carolina, USA: ACM
-
Sakaki T, Okazaki M, Matsuo Y,. Earthquake shakes Twitter users: real-time event detection by social sensors. In: Proceedings of the 19th international conference on World wide web. Raleigh, North Carolina, USA: ACM, 2010; 851-60.
-
(2010)
Proceedings of the 19th International Conference on World Wide Web
, pp. 851-860
-
-
Sakaki, T.1
Okazaki, M.2
Matsuo, Y.3
-
9
-
-
84855664643
-
Social and news media enable estimation of epidemiological patterns early in the 2010 Haitian cholera outbreak
-
Chunara R, Andrews JR, Brownstein JS,. Social and news media enable estimation of epidemiological patterns early in the 2010 Haitian cholera outbreak. Am J Trop Med Hyg 2012; 86: 39-45.
-
(2012)
Am J Trop Med Hyg
, vol.86
, pp. 39-45
-
-
Chunara, R.1
Andrews, J.R.2
Brownstein, J.S.3
-
12
-
-
84870462946
-
Social media mining for drug safety signal detection
-
Yang CC, Yang H, Jiang L, Zhang M,. Social media mining for drug safety signal detection. In: Proceedings of the 2012 international workshop on Smart health and wellbeing: ACM, 2012: 33-40.
-
(2012)
Proceedings of the 2012 International Workshop on Smart Health and Wellbeing: ACM
, pp. 33-40
-
-
Yang, C.C.1
Yang, H.2
Jiang, L.3
Zhang, M.4
-
15
-
-
84924318817
-
Mining adverse drug reaction signals from social media: Going beyond extraction
-
Patki A, Sarker A, Pimpalkhute P, Nikfarjam A, Ginn R, O'Connor K, Smith K, Gonzalez G,. Mining adverse drug reaction signals from social media: going beyond extraction. Proceedings of BioLinkSig 2014; 2014: 1-8.
-
(2014)
Proceedings of BioLinkSig
, vol.2014
, pp. 1-8
-
-
Patki, A.1
Sarker, A.2
Pimpalkhute, P.3
Nikfarjam, A.4
Ginn, R.5
O'Connor, K.6
Smith, K.7
Gonzalez, G.8
-
16
-
-
84899048828
-
Postmarketing Drug Safety Surveillance Using Publicly Available Health-Consumer-Contributed Content in Social Media
-
Article 2
-
Yang CC, Yang H, Jiang L,. Postmarketing Drug Safety Surveillance Using Publicly Available Health-Consumer-Contributed Content in Social Media. ACM Trans Mgt Inf Sys 2014; 5: Article 2, 21 pages.
-
(2014)
ACM Trans Mgt Inf Sys
, vol.5
, pp. 21
-
-
Yang, C.C.1
Yang, H.2
Jiang, L.3
-
17
-
-
84928798747
-
Mining adverse drug reactions from online healthcare forums using hidden Markov model
-
1-18
-
Sampathkumar H, Chen XW, Luo B,. Mining adverse drug reactions from online healthcare forums using hidden Markov model. BMC Med Inform Decis Mak 2014; 14: 91. 1-18.
-
(2014)
BMC Med Inform Decis Mak
, vol.14
, pp. 91
-
-
Sampathkumar, H.1
Chen, X.W.2
Luo, B.3
-
18
-
-
79952753182
-
Using Facebook to increase spontaneous reporting of adverse drug reactions
-
Knezevic MZ, Bivolarevic IC, Peric TS, Jankovic SM,. Using Facebook to increase spontaneous reporting of adverse drug reactions. Drug Saf 2011; 34: 351-2.
-
(2011)
Drug Saf
, vol.34
, pp. 351-352
-
-
Knezevic, M.Z.1
Bivolarevic, I.C.2
Peric, T.S.3
Jankovic, S.M.4
-
20
-
-
84893075973
-
Mining twitter data for potential drug effects
-
eds Motoda H. Wu Z. Cao L. Zaiane O. Yao M. Wang W. Berlin Heidelberg: Springer, 8346
-
Jiang K, Zheng Y,. Mining twitter data for potential drug effects. In: Advanced Data Mining and Applications, eds, Motoda H, Wu Z, Cao L, Zaiane O, Yao M, Wang W,. Berlin Heidelberg: Springer, 2013; 8346: 434-43.
-
(2013)
Advanced Data Mining and Applications
, pp. 434-443
-
-
Jiang, K.1
Zheng, Y.2
-
21
-
-
84901857191
-
Digital drug safety surveillance: Monitoring pharmaceutical products in twitter
-
Freifeld CC, Brownstein JS, Menone CM, Bao W, Filice R, Kass-Hout T, Dasgupta N,. Digital drug safety surveillance: monitoring pharmaceutical products in twitter. Drug Saf 2014; 37: 343-50.
-
(2014)
Drug Saf
, vol.37
, pp. 343-350
-
-
Freifeld, C.C.1
Brownstein, J.S.2
Menone, C.M.3
Bao, W.4
Filice, R.5
Kass-Hout, T.6
Dasgupta, N.7
-
22
-
-
84924318819
-
Mining Twitter for adverse drug reaction mentions: A corpus and classification benchmark
-
LREC BioTexM
-
Ginn R, Pimpalkhute P, Nikfarjam A, Patki A, O'Connor K, Sarker A, Gonzalez G,. Mining Twitter for adverse drug reaction mentions: a corpus and classification benchmark. LREC BioTexM. Proceedings of the fourth workshop on building and evaluating resources for health and biomedical text processing, 2014; 2: 1-8.
-
(2014)
Proceedings of the Fourth Workshop on Building and Evaluating Resources for Health and Biomedical Text Processing
, vol.2
, pp. 1-8
-
-
Ginn, R.1
Pimpalkhute, P.2
Nikfarjam, A.3
Patki, A.4
O'Connor, K.5
Sarker, A.6
Gonzalez, G.7
-
23
-
-
84964312897
-
Pharmacovigilance on Twitter? Mining Tweets for adverse drug reactions
-
O'Connor K, Pimpalkhute P, Nikfarjam A, Ginn R, Smith KL, Gonzalez G,. Pharmacovigilance on Twitter? Mining Tweets for adverse drug reactions. AMIA Annual Symposium Proceedings: American Medical Informatics Association, 2014: 924-933.
-
(2014)
AMIA Annual Symposium Proceedings: American Medical Informatics Association
, pp. 924-933
-
-
O'Connor, K.1
Pimpalkhute, P.2
Nikfarjam, A.3
Ginn, R.4
Smith, K.L.5
Gonzalez, G.6
-
24
-
-
84924285421
-
Portable automatic text classification for adverse drug reaction detection via multi-corpus training
-
Sarker A, Gonzalez G,. Portable automatic text classification for adverse drug reaction detection via multi-corpus training. J Biomed Inform 2015; 53: 196-207.
-
(2015)
J Biomed Inform
, vol.53
, pp. 196-207
-
-
Sarker, A.1
Gonzalez, G.2
-
25
-
-
84927943705
-
Pharmacovigilance from social media: Mining adverse drug reaction mentions using sequence labeling with word embedding cluster features
-
Nikfarjam A, Sarker A, O'Connor K, Ginn R, Gonzalez G,. Pharmacovigilance from social media: mining adverse drug reaction mentions using sequence labeling with word embedding cluster features. J Am Med Inform Assoc 2015; 22: 671-82.
-
(2015)
J Am Med Inform Assoc
, vol.22
, pp. 671-682
-
-
Nikfarjam, A.1
Sarker, A.2
O'Connor, K.3
Ginn, R.4
Gonzalez, G.5
-
26
-
-
84855919063
-
Identifying potential adverse effects using the web: A new approach to medical hypothesis generation
-
Benton A, Ungar L, Hill S, Hennessy S, Mao J, Chung A, Leonard CE, Holmes JH,. Identifying potential adverse effects using the web: A new approach to medical hypothesis generation. J Biomed Inform 2011; 44: 989-96.
-
(2011)
J Biomed Inform
, vol.44
, pp. 989-996
-
-
Benton, A.1
Ungar, L.2
Hill, S.3
Hennessy, S.4
Mao, J.5
Chung, A.6
Leonard, C.E.7
Holmes, J.H.8
-
28
-
-
84875466594
-
ADRTrace: Detecting expected and unexpected adverse drug reactions from user reviews on social media sites
-
eds Serdyukov P. Braslavski P. Kuznetsov S. Kamps J. Rüger S. Agichtein E. Segalovich I. Yilmaz E. Berlin Heidelberg: Springer-Verlag, 7814
-
Yates A, Goharian N,. ADRTrace: detecting expected and unexpected adverse drug reactions from user reviews on social media sites. In: Advances in Information Retrieval, eds, Serdyukov P, Braslavski P, Kuznetsov S, Kamps J, Rüger S, Agichtein E, Segalovich I, Yilmaz E,. Berlin Heidelberg: Springer-Verlag, 2013; 7814: 816-19.
-
(2013)
Advances in Information Retrieval
, pp. 816-819
-
-
Yates, A.1
Goharian, N.2
-
29
-
-
84897634360
-
A pipeline to extract drug-adverse event pairs from multiple data sources
-
Yeleswarapu S, Rao A, Joseph T, Saipradeep VG, Srinivasan R,. A pipeline to extract drug-adverse event pairs from multiple data sources. BMC Med Inform Decis Mak, 2014; 14: 13.
-
(2014)
BMC Med Inform Decis Mak
, vol.14
, pp. 13
-
-
Yeleswarapu, S.1
Rao, A.2
Joseph, T.3
Saipradeep, V.G.4
Srinivasan, R.5
-
30
-
-
85051987559
-
Detecting drugs and adverse events from Spanish health social media streams
-
EACL, April
-
Segura-Bedmar I, Revert R, Martínez P,. Detecting drugs and adverse events from Spanish health social media streams. Proceedings of the 5th International Workshop on Health Text Mining and Information Analysis (Louhi), EACL, April 2014: 106-15.
-
(2014)
Proceedings of the 5th International Workshop on Health Text Mining and Information Analysis (Louhi)
, pp. 106-115
-
-
Segura-Bedmar, I.1
Revert, R.2
Martínez, P.3
-
31
-
-
84902548120
-
Towards internet-age pharmacovigilance: Extracting adverse drug reactions from user posts to health-related social networks
-
Uppsala, Sweden: Association for Computational Linguistics, 2010
-
Leaman R, Wojtulewicz L, Sullivan R, Skariah A, Yang J, Gonzalez G,. Towards internet-age pharmacovigilance: extracting adverse drug reactions from user posts to health-related social networks. Proceedings of the 2010 Workshop on Biomedical Natural Language Processing, Uppsala, Sweden: Association for Computational Linguistics, 2010: 117-25.
-
(2010)
Proceedings of the Workshop on Biomedical Natural Language Processing
, pp. 117-125
-
-
Leaman, R.1
Wojtulewicz, L.2
Sullivan, R.3
Skariah, A.4
Yang, J.5
Gonzalez, G.6
-
32
-
-
84942555721
-
-
Patientslikeme. Patientslikeme;. (last accessed 1 June 2015)
-
Patientslikeme. Patientslikeme [Internet]. Patientslikeme; 2015. Available at https://www.patientslikeme.com / (last accessed 1 June 2015).
-
(2015)
Patientslikeme [Internet]
-
-
-
33
-
-
84942555722
-
-
DailyStrength. DailyStrength;. (last accessed 1 June 2015)
-
DailyStrength. Online Support Groups and Forums at DailyStrength [Internet]. DailyStrength; 2015. Available at http://www.dailystrength.org (last accessed 1 June 2015).
-
(2015)
Online Support Groups and Forums at DailyStrength [Internet]
-
-
-
35
-
-
84927917741
-
Utilizing social media data for pharmacovigilance: A review
-
Sarker A, Ginn R, Nikfarjam A, O'Connor K, Smith K, Jayaraman S, Upadhaya T, Gonzalez G,. Utilizing social media data for pharmacovigilance: A review. J Biomed Inform 2015; 54: 202-12.
-
(2015)
J Biomed Inform
, vol.54
, pp. 202-212
-
-
Sarker, A.1
Ginn, R.2
Nikfarjam, A.3
O'Connor, K.4
Smith, K.5
Jayaraman, S.6
Upadhaya, T.7
Gonzalez, G.8
-
36
-
-
84925709587
-
Text mining for adverse drug events: The promise, challenges, and state of the art
-
Harpaz R, Callahan A, Tamang S, Low Y, Odgers D, Finlayson S, Jung K, LePendu P, Shah NH,. Text mining for adverse drug events: the promise, challenges, and state of the art. Drug Saf 2014; 37: 777-90.
-
(2014)
Drug Saf
, vol.37
, pp. 777-790
-
-
Harpaz, R.1
Callahan, A.2
Tamang, S.3
Low, Y.4
Odgers, D.5
Finlayson, S.6
Jung, K.7
LePendu, P.8
Shah, N.H.9
-
37
-
-
84942551298
-
Phonetic spelling filter for keyword selection in drug mention mining from social media
-
Pimpalkhute P, Patki A, Nikfarjam A, Gonzalez G,. Phonetic spelling filter for keyword selection in drug mention mining from social media. AMIA Summits Trans Sci Proc 2014; 2014: 90-95.
-
(2014)
AMIA Summits Trans Sci Proc
, vol.2014
, pp. 90-95
-
-
Pimpalkhute, P.1
Patki, A.2
Nikfarjam, A.3
Gonzalez, G.4
-
39
-
-
84872331521
-
-
Food and Drugs Administration. Food and Drugs Administration. (last accessed 1 June 2015)
-
Food and Drugs Administration. FDA Adverse Event Reporting System (FAERS) [Internet]. Food and Drugs Administration. Available at http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/default.htm (last accessed 1 June 2015).
-
FDA Adverse Event Reporting System (FAERS) [Internet]
-
-
-
42
-
-
84942555726
-
-
Medeffect Canada. Health Canada;. (last accessed 1 June 2015)
-
Medeffect Canada. MedEffect Canada [Internet]. Health Canada; 2015. Available at http://www.hc-sc.gc.ca/dhp-mps/medeff/index-eng.php (last accessed 1 June 2015).
-
(2015)
MedEffect Canada [Internet]
-
-
-
43
-
-
84942551597
-
-
UMLS. US National Library of Medicine;. (last accessed 1 June 2015)
-
UMLS. Unified Medical Language System® (UMLS®) [Internet]. US National Library of Medicine; 2015. Available at http://www.nlm.nih.gov/research/umls/ (last accessed 1 June 2015).
-
(2015)
Unified Medical Language System® (UMLS®) [Internet]
-
-
-
44
-
-
84942555727
-
-
MedDRA. MedDRA. (last accessed 1 June 2015)
-
MedDRA. Welcome to MedDRA [Internet]. MedDRA. Available at http://www.meddra.org (last accessed 1 June 2015).
-
Welcome to MedDRA [Internet]
-
-
-
45
-
-
84942550553
-
-
SIDER. SIDER (last accessed 1 June 2015)
-
SIDER. SIDER Side Effect Resource [Internet]. SIDER; 2012. Available at http://sideeffects.embl.de (last accessed 1 June 2015).
-
(2012)
SIDER Side Effect Resource [Internet]
-
-
-
46
-
-
84927962522
-
Filtering big data from social media - Building an early warning system for adverse drug reactions
-
Yang M, Kiang M, Shang W,. Filtering big data from social media-Building an early warning system for adverse drug reactions. J Biomed Inform 2015; 54: 230-40.
-
(2015)
J Biomed Inform
, vol.54
, pp. 230-240
-
-
Yang, M.1
Kiang, M.2
Shang, W.3
-
47
-
-
0036613407
-
An active learning framework for content-based information retrieval
-
Zhang C, Chen T,. An active learning framework for content-based information retrieval. IEEE Trans Multimedia 2002; 4: 260-68.
-
(2002)
IEEE Trans Multimedia
, vol.4
, pp. 260-268
-
-
Zhang, C.1
Chen, T.2
-
48
-
-
84934951791
-
A cross-lingual similarity measure for detecting biomedical term translations
-
e0126196. doi: 10.1371/journal.pone.0126196
-
Bollegala D, Kontonatsios G, Ananiadou S,. A cross-lingual similarity measure for detecting biomedical term translations. PLoS One 2015; 10 e0126196. doi: 10.1371/journal.pone.0126196.
-
(2015)
PLoS One
, vol.10
-
-
Bollegala, D.1
Kontonatsios, G.2
Ananiadou, S.3
-
49
-
-
0037221866
-
Quantitative methods in pharmacovigilance
-
Hauben M, Zhou X,. Quantitative methods in pharmacovigilance. Drug Saf 2003; 26: 159-86.
-
(2003)
Drug Saf
, vol.26
, pp. 159-186
-
-
Hauben, M.1
Zhou, X.2
-
50
-
-
33646744337
-
Under-reporting of adverse drug reactions: A systematic review
-
Hazell L, Shakir SA,. Under-reporting of adverse drug reactions: a systematic review. Drug Saf 2006; 29: 385-96.
-
(2006)
Drug Saf
, vol.29
, pp. 385-396
-
-
Hazell, L.1
Shakir, S.A.2
-
51
-
-
85027934686
-
Notoriety bias in a database of spontaneous reports: The example of osteonecrosis of the jaw under bisphosphonate therapy in the French national pharmacovigilance database
-
de Boissieu P, Kanagaratnam L, Abou Taam M, Roux MP, Drame M, Trenque T,. Notoriety bias in a database of spontaneous reports: the example of osteonecrosis of the jaw under bisphosphonate therapy in the French national pharmacovigilance database. Pharmacoepidemiol Drug Saf 2014; 23: 989-92.
-
(2014)
Pharmacoepidemiol Drug Saf
, vol.23
, pp. 989-992
-
-
De Boissieu, P.1
Kanagaratnam, L.2
Abou Taam, M.3
Roux, M.P.4
Drame, M.5
Trenque, T.6
-
52
-
-
0037832552
-
Biases affecting the proportional reporting ratio (PPR) in spontaneous reports pharmacovigilance databases: The example of sertindole
-
Moore N, Hall G, Sturkenboom M, Mann R, Lagnaoui R, Begaud B,. Biases affecting the proportional reporting ratio (PPR) in spontaneous reports pharmacovigilance databases: the example of sertindole. Pharmacoepidemiol Drug Saf 2003; 12: 271-81.
-
(2003)
Pharmacoepidemiol Drug Saf
, vol.12
, pp. 271-281
-
-
Moore, N.1
Hall, G.2
Sturkenboom, M.3
Mann, R.4
Lagnaoui, R.5
Begaud, B.6
-
53
-
-
84900441932
-
How old do you think i am?" A study of language and age in Twitter
-
AAAI Press
-
Nguyen D, Gravel R, Trieschnigg D, Meder T,. " How old do you think I am?" A study of language and age in Twitter. Proceedings of the Seventh International AAAI Conference on Weblogs and Social Media: AAAI Press, 2013; 439-48.
-
(2013)
Proceedings of the Seventh International AAAI Conference on Weblogs and Social Media
, pp. 439-448
-
-
Nguyen, D.1
Gravel, R.2
Trieschnigg, D.3
Meder, T.4
-
54
-
-
85070357722
-
Understanding the demographics of Twitter Users
-
1-4
-
Mislove A, Lehmann S, Ahn Y-Y, Onnela J-P, Rosenquist JN,. Understanding the demographics of Twitter Users. ICWSM 2011; 11: 5. 1-4.
-
(2011)
ICWSM
, vol.11
, pp. 5
-
-
Mislove, A.1
Lehmann, S.2
Ahn, Y.-Y.3
Onnela, J.-P.4
Rosenquist, J.N.5
-
55
-
-
84864031047
-
Correcting sample selection bias by unlabeled data
-
Huang J, Gretton A, Borgwardt KM, Schölkopf B, Smola AJ,. Correcting sample selection bias by unlabeled data. Advances in neural information processing systems, 2006: 601-08.
-
(2006)
Advances in Neural Information Processing Systems
, pp. 601-608
-
-
Huang, J.1
Gretton, A.2
Borgwardt, K.M.3
Schölkopf, B.4
Smola, A.J.5
-
56
-
-
84872225973
-
Enrolling pregnant women: Issues in clinical research
-
Blehar MC, Spong C, Grady C, Goldkind SF, Sahin L, Clayton JA,. Enrolling pregnant women: issues in clinical research. Womens Health Issues 2013; 23: 39-45.
-
(2013)
Womens Health Issues
, vol.23
, pp. 39-45
-
-
Blehar, M.C.1
Spong, C.2
Grady, C.3
Goldkind, S.F.4
Sahin, L.5
Clayton, J.A.6
-
57
-
-
3042558817
-
-
Eds, Washington, DC: National Academies Press
-
Field M, Berman R,. Institute of Medicine (US). Committee on Clinical Research Involving Children. Ethical conduct of clinical research involving children. Eds, Field M, Berman R,. Washington, DC: National Academies Press, 2004.
-
(2004)
Institute of Medicine (US). Committee on Clinical Research Involving Children. Ethical Conduct of Clinical Research Involving Children
-
-
Field, M.1
Berman, R.2
Field, M.3
Berman, R.4
-
58
-
-
84930833192
-
-
Pew Research Center: Internet ST. [Internet]. Pew Research Center; (last accessed 1 June 2015)
-
Pew Research Center: Internet ST. Demographics of key social networking platforms. [Internet]. Pew Research Center; 2013. Available at http://www.pewinternet.org/2013/12/30/demographics-of-key-social-networking-platforms/ (last accessed 1 June 2015).
-
(2013)
Demographics of Key Social Networking Platforms
-
-
-
59
-
-
84887002848
-
Evidential reasoning rule for evidence combination
-
Yang J-B, Xu D-L,. Evidential reasoning rule for evidence combination. Artif Intell 2013; 205: 1-29.
-
(2013)
Artif Intell
, vol.205
, pp. 1-29
-
-
Yang, J.-B.1
Xu, D.-L.2
-
60
-
-
84870067200
-
Trust, distrust and lack of confidence of users in online social media-sharing communities
-
Kim YA, Ahmad MA,. Trust, distrust and lack of confidence of users in online social media-sharing communities. Know-Based Syst 2013; 37: 438-50.
-
(2013)
Know-Based Syst
, vol.37
, pp. 438-450
-
-
Kim, Y.A.1
Ahmad, M.A.2
-
61
-
-
84876670577
-
Combing signals from spontaneous reports and electronic health records for detection of adverse drug reactions
-
Harpaz R, Vilar S, Dumouchel W, Salmasian H, Haerian K, Shah NH, Chase HS, Friedman C,. Combing signals from spontaneous reports and electronic health records for detection of adverse drug reactions. J Am Med Inform Assoc 2013; 20: 413-9.
-
(2013)
J Am Med Inform Assoc
, vol.20
, pp. 413-419
-
-
Harpaz, R.1
Vilar, S.2
Dumouchel, W.3
Salmasian, H.4
Haerian, K.5
Shah, N.H.6
Chase, H.S.7
Friedman, C.8
-
62
-
-
84970930355
-
Empirical bayes model to combine signals of adverse drug reactions
-
Chicago, Illinois, USA: ACM
-
Harpaz R, DuMouchel W, LePendu P, Shah NH,. Empirical bayes model to combine signals of adverse drug reactions. In: Proceedings of the 19th ACM SIGKDD international conference on knowledge discovery and data mining. Chicago, Illinois, USA: ACM, 2013; 1339-47.
-
(2013)
Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 1339-1347
-
-
Harpaz, R.1
Dumouchel, W.2
LePendu, P.3
Shah, N.H.4
-
63
-
-
84942555729
-
-
LinkedIn. LinkedIn;. (last accessed 1 June 2015)
-
LinkedIn. Join the world's largest professional network [Internet]. LinkedIn; 2015. Available at https://www.linkedin.com/nhome/ (last accessed 1 June 2015).
-
(2015)
Join the World's Largest Professional Network [Internet]
-
-
-
64
-
-
84942555730
-
-
YouTube. Google;. (last accessed 1 June 2015)
-
YouTube. YouTube GB [Internet]. Google; 2015. Available at https://www.youtube.com / (last accessed 1 June 2015).
-
(2015)
YouTube GB [Internet]
-
-
-
65
-
-
84942555731
-
-
Flipboard. Flipboard;. (last accessed 1 June 2015)
-
Flipboard. Flipboard is Your Personal Magazine [Internet]. Flipboard; 2015. Available at https://flipboard.com / (last accessed 1 June 2015).
-
(2015)
Flipboard Is Your Personal Magazine [Internet]
-
-
-
66
-
-
84942555732
-
-
Flickr. [Internet]. Yahoo;. (last accessed 1 June 2015)
-
Flickr. The home for all your photos. [Internet]. Yahoo; 2015. Available at https://www.flickr.com / (last accessed 1 June 2015).
-
(2015)
The Home for All Your Photos
-
-
-
67
-
-
84942555733
-
-
Pinterest. [Internet]. Pinterest;. (last accessed 1 June 2015)
-
Pinterest. What's Pinterest? [Internet]. Pinterest; 2015. Available at https://about.pinterest.com/en-gb (last accessed 1 June 2015).
-
(2015)
What's Pinterest?
-
-
-
69
-
-
84942555735
-
-
Twitter. Twitter. (last accessed 1 June 2015)
-
Twitter. Novartis (@Novartis) on Twitter [Internet]. Twitter. Available at https://twitter.com/novartis (last accessed 1 June 2015).
-
Novartis (@Novartis) on Twitter [Internet]
-
-
-
70
-
-
84942555736
-
-
Twitter. Twitter. (last accessed 1 June 2015)
-
Twitter. Pfizer Inc. (@pfizer) on Twitter [Internet]. Twitter. Available at https://twitter.com/pfizer (last accessed 1 June 2015).
-
Pfizer Inc. (@Pfizer) on Twitter [Internet]
-
-
-
71
-
-
84942555737
-
-
Twitter. Twitter. (last accessed 1 June 2015)
-
Twitter. Roche (@Roche) on Twitter [Internet]. Twitter. Available at https://twitter.com/roche (last accessed 1 June 2015).
-
Roche (@Roche) on Twitter [Internet]
-
-
-
72
-
-
84870757941
-
-
ICH Expert Working Group. Clinical safety data management: definitions and standards for expedited reporting E2A. European Medicines Agency. 27 October 1994. (last accessed 1 June 2015)
-
ICH Expert Working Group. ICH Harmonised Tripartite Guideline. Clinical safety data management: definitions and standards for expedited reporting E2A. European Medicines Agency. 27 October 1994. Available at http://www.ich.org/fileadmin/Public-Web-Site/ICH-Products/Guidelines/Efficacy/E2A/Step4/E2A-Guideline.pdf (last accessed 1 June 2015).
-
ICH Harmonised Tripartite Guideline
-
-
-
73
-
-
79952770759
-
Social media and networks in pharmacovigilance: Boon or bane?
-
Edwards IR, Lindquist M,. Social media and networks in pharmacovigilance: boon or bane? Drug Saf 2011; 34: 267-71.
-
(2011)
Drug Saf
, vol.34
, pp. 267-271
-
-
Edwards, I.R.1
Lindquist, M.2
-
74
-
-
84902598423
-
Commission Implementing Regulation 520/2012
-
European Commission.:. (last accessed 1 June 2015)
-
European Commission. Commission Implementing Regulation 520/2012. Off J Eur Union 2012; 55: 5-25. Available at http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2012:159:0005:0025:EN:PDF (last accessed 1 June 2015).
-
(2012)
Off J Eur Union
, vol.55
, pp. 5-25
-
-
-
75
-
-
0012111484
-
Directive 2001/83/EC of the European Parliament and of the Council
-
European Commission.:. (last accessed 1 June 2015)
-
European Commission. Directive 2001/83/EC of the European Parliament and of the Council. Official J Eur Comm 2001; 44: 67-128. Available at http://www.edctp.org/fileadmin/documents/ethics/DIRECTIVE-200183EC-OF-THE-EUROPEAN-PARLIAMENT.pdf (last accessed 1 June 2015).
-
(2001)
Official J Eur Comm
, vol.44
, pp. 67-128
-
-
-
76
-
-
84942549554
-
Regulation 726/2004
-
European Commission.:. (last accessed 1 June 2015)
-
European Commission. Regulation 726/2004. Off J Eur Union 2010; 47: 1-33. Available at http://ec.europa.eu/health/files/eudralex/vol-1/reg-2004-726/reg-2004-726-en.pdf (last accessed 1 June 2015).
-
(2010)
Off J Eur Union
, vol.47
, pp. 1-33
-
-
-
80
-
-
84862812683
-
-
Food and Drugs Administration. Zarbee's, Inc. [Internet]. Food and Drugs Administration;. (last accessed 1 June 2015)
-
Food and Drugs Administration. Inspections, Compliance, Enforcement, and Criminal Investigations. Zarbee's, Inc. [Internet]. Food and Drugs Administration; 2014. Available at http://www.fda.gov/ICECI/EnforcementActions/WarningLetters/2014/ucm403255.htm (last accessed 1 June 2015).
-
(2014)
Inspections, Compliance, Enforcement, and Criminal Investigations
-
-
-
81
-
-
84942553620
-
-
Food and Drugs Administration. (last accessed 1 June 2015)
-
Food and Drugs Administration. Tirosint letter [Internet]. Food and Drugs Administration; 2014. Available at http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/EnforcementActivitiesbyFDA/WarningLettersandNoticeofViolationLetterstoPharmaceuticalCompanies/UCM388800.pdf (last accessed 1 June 2015).
-
(2014)
Tirosint Letter [Internet]. Food and Drugs Administration
-
-
-
82
-
-
84865585160
-
-
Nielsen. How pharmaceutical manufacturers can leverage consumer-generated media. [Internet]. The Nielsen Company; August. (last accessed 1 June 2015)
-
Nielsen. Listening to consumers in a highly regulated environment. How pharmaceutical manufacturers can leverage consumer-generated media. [Internet]. The Nielsen Company; August 2008. Available at http://www.nielsen.com/content/dam/corporate/us/en/newswire/uploads/2009/11/Nielsen-Online-Healthcare-Practice-Social-Media-Adverse-Event-Reporting-nov09.pdf (last accessed 1 June 2015).
-
(2008)
Listening to Consumers in A Highly Regulated Environment
-
-
-
83
-
-
80053518706
-
UK news media discourses of surveillance
-
Barnard-Wills D,. UK news media discourses of surveillance. Sociol Quarterly 2011; 52: 548-67.
-
(2011)
Sociol Quarterly
, vol.52
, pp. 548-567
-
-
Barnard-Wills, D.1
-
84
-
-
84907242330
-
Using social media in research: New ethics for a new meme?
-
Swirsky ES, Hoop JG, Labott S,. Using social media in research: new ethics for a new meme? Am J Bioeth 2014; 14: 60-1.
-
(2014)
Am J Bioeth
, vol.14
, pp. 60-61
-
-
Swirsky, E.S.1
Hoop, J.G.2
Labott, S.3
-
85
-
-
84907242306
-
Ethical implications of social media in health care research
-
Taylor HA, Kuwana E, Wilfond BS,. Ethical implications of social media in health care research. Am J Bioeth 2014; 14: 58-9.
-
(2014)
Am J Bioeth
, vol.14
, pp. 58-59
-
-
Taylor, H.A.1
Kuwana, E.2
Wilfond, B.S.3
-
86
-
-
84942551351
-
-
Financial Ombudsman Service. [Internet]. Financial Ombudsman Service; May/June. Issue 46. (last accessed 1 June 2015)
-
Financial Ombudsman Service. Ombudsman News. [Internet]. Financial Ombudsman Service; May/June 2005. Issue 46. Available at http://www.financial-ombudsman.org.uk/publications/ombudsman-news/46/46.pdf (last accessed 1 June 2015).
-
(2005)
Ombudsman News
-
-
-
87
-
-
84907251231
-
Connectivity and consent: Does posting imply participation?
-
Farnan JM,. Connectivity and consent: does posting imply participation? Am J Bioeth 2014; 14: 62-3.
-
(2014)
Am J Bioeth
, vol.14
, pp. 62-63
-
-
Farnan, J.M.1
-
88
-
-
84942555738
-
-
Department for Transport. UK Government; February. (last accessed 1 June 2015)
-
Department for Transport. Drug drive legislation: am I fit to drive? [Internet]. UK Government; February 2015. Available at https://www.gov.uk/government/news/drug-drive-legislation-am-i-fit-to-drive (last accessed 1 June 2015).
-
(2015)
Drug Drive Legislation: Am i Fit to Drive? [Internet]
-
-
-
89
-
-
14644431809
-
Opioid medication and driving ability
-
Kress HG, Kraft B,. Opioid medication and driving ability. Eur J Pain 2005; 9: 141-44.
-
(2005)
Eur J Pain
, vol.9
, pp. 141-144
-
-
Kress, H.G.1
Kraft, B.2
-
90
-
-
84923066507
-
Can social media help mental health practitioners prevent suicides? Anecdotal evidence suggests that analyzing Facebook posts can lead to earlier intervention
-
Kailasam VK, Samuels E,. Can social media help mental health practitioners prevent suicides? Anecdotal evidence suggests that analyzing Facebook posts can lead to earlier intervention. Curr Psych 2015; 14: 37-51.
-
(2015)
Curr Psych
, vol.14
, pp. 37-51
-
-
Kailasam, V.K.1
Samuels, E.2
-
91
-
-
42949157345
-
Smart Vest: Wearable multi-parameter remote physiological monitoring system
-
Pandian PS, Mohanavelu K, Safeer KP, Kotresh TM, Shakunthala DT, Gopal P, Padaki VC,. Smart Vest: wearable multi-parameter remote physiological monitoring system. Med Eng Phys 2008; 30: 466-77.
-
(2008)
Med Eng Phys
, vol.30
, pp. 466-477
-
-
Pandian, P.S.1
Mohanavelu, K.2
Safeer, K.P.3
Kotresh, T.M.4
Shakunthala, D.T.5
Gopal, P.6
Padaki, V.C.7
-
92
-
-
78650301962
-
Detecting vital signs with wearable wireless sensors
-
Yilmaz T, Foster R, Hao Y,. Detecting vital signs with wearable wireless sensors. Sensors 2010; 10: 10837-62.
-
(2010)
Sensors
, vol.10
, pp. 10837-10862
-
-
Yilmaz, T.1
Foster, R.2
Hao, Y.3
-
93
-
-
84903580004
-
Non-invasive wearable electrochemical sensors: A review
-
Bandodkar AJ, Wang J,. Non-invasive wearable electrochemical sensors: a review. Trends Biotechnol 2014; 32: 363-71.
-
(2014)
Trends Biotechnol
, vol.32
, pp. 363-371
-
-
Bandodkar, A.J.1
Wang, J.2
-
94
-
-
84923022419
-
Web search query volume as a measure of pharmaceutical utilization and changes in prescribing patterns
-
Simmering JE, Polgreen LA, Polgreen PM,. Web search query volume as a measure of pharmaceutical utilization and changes in prescribing patterns. Res Social Adm Pharm 2014; 10: 896-903.
-
(2014)
Res Social Adm Pharm
, vol.10
, pp. 896-903
-
-
Simmering, J.E.1
Polgreen, L.A.2
Polgreen, P.M.3
-
95
-
-
84942550416
-
-
WEB-RADR. [Internet]. WEB-RADR;. (last accessed 1 June 2015)
-
WEB-RADR. WEB-RADR: Recognising adverse drug reactions. [Internet]. WEB-RADR; 2015. Available at http://web-radr.eu / (last accessed 1 June 2015).
-
(2015)
WEB-RADR: Recognising Adverse Drug Reactions
-
-
-
96
-
-
84927748451
-
Searching social networks to detect adverse events
-
Sukkar E,. Searching social networks to detect adverse events. Pharmaceut J 2015; 294: 75-78.
-
(2015)
Pharmaceut J
, vol.294
, pp. 75-78
-
-
Sukkar, E.1
|