메뉴 건너뛰기




Volumn 53, Issue , 2015, Pages 196-207

Portable automatic text classification for adverse drug reaction detection via multi-corpus training

Author keywords

Adverse drug reaction; Natural language processing; Pharmacovigilance; Social media monitoring; Text classification

Indexed keywords

INFORMATION FILTERING; LEARNING ALGORITHMS; MACHINE LEARNING; NATURAL LANGUAGE PROCESSING SYSTEMS; PHARMACODYNAMICS; SEMANTICS; SOCIAL NETWORKING (ONLINE); TEXT PROCESSING;

EID: 84924285421     PISSN: 15320464     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jbi.2014.11.002     Document Type: Article
Times cited : (311)

References (55)
  • 1
    • 0003514452 scopus 로고    scopus 로고
    • The importance of pharmacovigilance - safety monitoring of medicinal products. World Health Organization; 2002. http://apps.who.int/medicinedocs/en/d/Js4893e/1.html.
    • (2002) World Health Organization
  • 3
    • 0032522873 scopus 로고    scopus 로고
    • Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies
    • Lazarou J., Pomeranz B.H., Corey P.N. Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA 1998, 279(15):1200-1205.
    • (1998) JAMA , vol.279 , Issue.15 , pp. 1200-1205
    • Lazarou, J.1    Pomeranz, B.H.2    Corey, P.N.3
  • 4
    • 0037238861 scopus 로고    scopus 로고
    • Adverse drug event monitoring at the food and drug administration - your report can make a difference
    • Ahmad S.R. Adverse drug event monitoring at the food and drug administration - your report can make a difference. J Intern Med 2003, 18(1):57-60.
    • (2003) J Intern Med , vol.18 , Issue.1 , pp. 57-60
    • Ahmad, S.R.1
  • 5
    • 84893172915 scopus 로고    scopus 로고
    • Large-scale combining signals from both biomedical literature and FDA adverse event reporting system (FAERS) to improve post-marketing drug safety signal detection
    • Xu R., Wang Q. Large-scale combining signals from both biomedical literature and FDA adverse event reporting system (FAERS) to improve post-marketing drug safety signal detection. BMC Bioinformatics 2014, 15(17).
    • (2014) BMC Bioinformatics , vol.15 , Issue.17
    • Xu, R.1    Wang, Q.2
  • 10
    • 84942412129 scopus 로고    scopus 로고
    • Extraction of potential adverse drug event from medical case reports
    • Gurulingappa H., Mateen-Rajput A., Toldo L. Extraction of potential adverse drug event from medical case reports. J Biomed Semantics 2012, 3(15).
    • (2012) J Biomed Semantics , vol.3 , Issue.15
    • Gurulingappa, H.1    Mateen-Rajput, A.2    Toldo, L.3
  • 12
    • 18844441716 scopus 로고    scopus 로고
    • News feature: strong medicine
    • Wadman M. News feature: strong medicine. Nat Med 2005, 11:465-466.
    • (2005) Nat Med , vol.11 , pp. 465-466
    • Wadman, M.1
  • 13
    • 34247464176 scopus 로고    scopus 로고
    • Data mining for signals in spontaneous reporting databases: proceed with caution
    • Stephenson W.P., Hauben M. Data mining for signals in spontaneous reporting databases: proceed with caution. Pharmacoepidemiol Drug Saf 2007, 16(4):359-365.
    • (2007) Pharmacoepidemiol Drug Saf , vol.16 , Issue.4 , pp. 359-365
    • Stephenson, W.P.1    Hauben, M.2
  • 14
    • 68149124572 scopus 로고    scopus 로고
    • Quantitative signal detection using spontaneous ADR reporting
    • Bate A., Evans S.J. Quantitative signal detection using spontaneous ADR reporting. Pharmacoepidemiol Drug Saf 2009, 18(6):427-436.
    • (2009) Pharmacoepidemiol Drug Saf , vol.18 , Issue.6 , pp. 427-436
    • Bate, A.1    Evans, S.J.2
  • 15
    • 65349157361 scopus 로고    scopus 로고
    • Active computerized pharmacovigilance using natural language processing, statistics, and electronic health records: a feasibility study
    • Wang X., Hripcsak G., Markatou M., Friedman C. Active computerized pharmacovigilance using natural language processing, statistics, and electronic health records: a feasibility study. J Am Med Inform Assoc 2009, 16:328-337.
    • (2009) J Am Med Inform Assoc , vol.16 , pp. 328-337
    • Wang, X.1    Hripcsak, G.2    Markatou, M.3    Friedman, C.4
  • 16
  • 18
    • 84876670577 scopus 로고    scopus 로고
    • Combing signals from spontaneous reports and electronic health records for detection of adverse drug reactions
    • Harpaz R., Vilar S., DuMouchel W., Salmasian H., Haerian K., Shah N.H., et al. Combing signals from spontaneous reports and electronic health records for detection of adverse drug reactions. J Am Med Inform Assoc 2012, 20(3):413-419.
    • (2012) J Am Med Inform Assoc , vol.20 , Issue.3 , pp. 413-419
    • Harpaz, R.1    Vilar, S.2    DuMouchel, W.3    Salmasian, H.4    Haerian, K.5    Shah, N.H.6
  • 19
    • 67349247530 scopus 로고    scopus 로고
    • Identification of structure-activity relationships for adverse effects of pharmaceuticals in humans: Part B. Use of (Q) SAR systems for early detection of drug-induced hepatobiliary and urinary tract toxicities
    • Matthews E.J., Kruhlak N.L., Benz D.R., Aragone D., Merchant C.A., Contrera J.F. Identification of structure-activity relationships for adverse effects of pharmaceuticals in humans: Part B. Use of (Q) SAR systems for early detection of drug-induced hepatobiliary and urinary tract toxicities. Regul Toxicol Pharmacol: RTP 2009, 54(1):23-42.
    • (2009) Regul Toxicol Pharmacol: RTP , vol.54 , Issue.1 , pp. 23-42
    • Matthews, E.J.1    Kruhlak, N.L.2    Benz, D.R.3    Aragone, D.4    Merchant, C.A.5    Contrera, J.F.6
  • 20
    • 80053254385 scopus 로고    scopus 로고
    • Using information mining of the medical literature to improve drug safety
    • Shetty K.D., Dalal S.R. Using information mining of the medical literature to improve drug safety. J Am Med Inform Assoc 2011, 18:668-674.
    • (2011) J Am Med Inform Assoc , vol.18 , pp. 668-674
    • Shetty, K.D.1    Dalal, S.R.2
  • 22
    • 84859213965 scopus 로고    scopus 로고
    • Facilitating adverse drug event detection in pharmacovigilance databases using molecular structure similarity: application to rhabdomyolysis
    • Vilar S., Harpaz R., Chase H.S., Costanzi S., Rabadan R., Friedman C. Facilitating adverse drug event detection in pharmacovigilance databases using molecular structure similarity: application to rhabdomyolysis. J Am Med Inform Assoc 2011, 18(Suppl 1):73-80.
    • (2011) J Am Med Inform Assoc , vol.18 , pp. 73-80
    • Vilar, S.1    Harpaz, R.2    Chase, H.S.3    Costanzi, S.4    Rabadan, R.5    Friedman, C.6
  • 23
    • 84902539789 scopus 로고    scopus 로고
    • An ensemble heterogeneous classification methodology for discovering health-related knowledge in social media messages
    • Tuarob S., Tucker C.S., Salathe M., Ram N. An ensemble heterogeneous classification methodology for discovering health-related knowledge in social media messages. J Biomed Inform 2014, 49:255-268.
    • (2014) J Biomed Inform , vol.49 , pp. 255-268
    • Tuarob, S.1    Tucker, C.S.2    Salathe, M.3    Ram, N.4
  • 24
    • 79952770759 scopus 로고    scopus 로고
    • Social media and networks in pharmacovigilance: boon or bane?
    • Edwards I.R., Lindquist M. Social media and networks in pharmacovigilance: boon or bane?. Drug Saf 2011, 34(4):267-271.
    • (2011) Drug Saf , vol.34 , Issue.4 , pp. 267-271
    • Edwards, I.R.1    Lindquist, M.2
  • 25
    • 0034133164 scopus 로고    scopus 로고
    • Who talks? The social psychology of illness support groups
    • Davidson K.P., Pennebaker J.W., Dickerson S.S. Who talks? The social psychology of illness support groups. Am Psychol Assoc 2000, 55(2):205-217.
    • (2000) Am Psychol Assoc , vol.55 , Issue.2 , pp. 205-217
    • Davidson, K.P.1    Pennebaker, J.W.2    Dickerson, S.S.3
  • 26
    • 84855919063 scopus 로고    scopus 로고
    • Identifying potential adverse effects using the web: a new approach to medical hypothesis generation
    • Benton A., Ungar L., Hill S., Hennessy S., Mao J., Chung A., et al. Identifying potential adverse effects using the web: a new approach to medical hypothesis generation. J Biomed Inform 2011, 44:989-996.
    • (2011) J Biomed Inform , vol.44 , pp. 989-996
    • Benton, A.1    Ungar, L.2    Hill, S.3    Hennessy, S.4    Mao, J.5    Chung, A.6
  • 29
    • 84893075973 scopus 로고    scopus 로고
    • Mining Twitter data for potential drug effects
    • Jiang K., Zheng Y. Mining Twitter data for potential drug effects. Adv Data Min Appl 2013, 8346:434-443.
    • (2013) Adv Data Min Appl , vol.8346 , pp. 434-443
    • Jiang, K.1    Zheng, Y.2
  • 30
    • 84881133007 scopus 로고    scopus 로고
    • AZDrugMiner: an information extraction system for mining patient-reported adverse drug events in online patient forums
    • Liu X, Chen H. AZDrugMiner: an information extraction system for mining patient-reported adverse drug events in online patient forums. In: Proceedings of the 2013 international conference on smart health; 2013. p. 134-50.
    • (2013) Proceedings of the 2013 international conference on smart health , pp. 134-150
    • Liu, X.1    Chen, H.2
  • 31
    • 84901857191 scopus 로고    scopus 로고
    • Digital drug safety surveillance: monitoring pharmaceutical products in Twitter
    • Freifeld C.C., Brownstein J.S., Menone C.M., Bao W., Felice R., Kass-Hout T., et al. Digital drug safety surveillance: monitoring pharmaceutical products in Twitter. Drug Saf 2014, 37(5):343-350.
    • (2014) Drug Saf , vol.37 , Issue.5 , pp. 343-350
    • Freifeld, C.C.1    Brownstein, J.S.2    Menone, C.M.3    Bao, W.4    Felice, R.5    Kass-Hout, T.6
  • 34
    • 84865989881 scopus 로고    scopus 로고
    • Development of a benchmark corpus to support the automatic extraction of drug-related adverse effects from medical case reports
    • Gurulingappa H., Rajput A.M., Roberts A., Fluck J., Hofmann-Apitius M., Toldo L. Development of a benchmark corpus to support the automatic extraction of drug-related adverse effects from medical case reports. J Biomed Inform 2012, 45:885-892.
    • (2012) J Biomed Inform , vol.45 , pp. 885-892
    • Gurulingappa, H.1    Rajput, A.M.2    Roberts, A.3    Fluck, J.4    Hofmann-Apitius, M.5    Toldo, L.6
  • 37
    • 84937275232 scopus 로고    scopus 로고
    • Assessing agreement on classification tasks: the kappa statistic
    • Carletta J. Assessing agreement on classification tasks: the kappa statistic. Comput Linguist 1996, 22(2):249-254.
    • (1996) Comput Linguist , vol.22 , Issue.2 , pp. 249-254
    • Carletta, J.1
  • 38
    • 18544372466 scopus 로고    scopus 로고
    • Understanding interobserver agreement: the kappa statistic
    • Viera A., Garrett J. Understanding interobserver agreement: the kappa statistic. Fam Med 2005, 37(5):36-363.
    • (2005) Fam Med , vol.37 , Issue.5 , pp. 36-363
    • Viera, A.1    Garrett, J.2
  • 39
    • 0003425660 scopus 로고    scopus 로고
    • Text categorization with support vector machines: learning with many relevant features
    • Tech rep, Universitat Dortmund, Informatik LS8, Baroper Str 301, 44221 Dortmund, Germany
    • Joachims T. Text categorization with support vector machines: learning with many relevant features. Tech rep, Universitat Dortmund, Informatik LS8, Baroper Str 301, 44221 Dortmund, Germany; 1997.
    • (1997)
    • Joachims, T.1
  • 40
    • 84948481845 scopus 로고
    • An algorithm for suffix stripping
    • Porter M.F. An algorithm for suffix stripping. Program 1980, 14(3):130-137.
    • (1980) Program , vol.14 , Issue.3 , pp. 130-137
    • Porter, M.F.1
  • 53
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: a library for support vector machines
    • Chang C.-C., Lin C.-J. LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2011, 2:27:1-27:27. Software.
    • (2011) ACM Trans Intell Syst Technol , vol.2 , pp. 1-27
    • Chang, C.-C.1    Lin, C.-J.2
  • 54
    • 0347606818 scopus 로고    scopus 로고
    • More accurate tests for the statistical significance of result differences
    • Yeh A. More accurate tests for the statistical significance of result differences. In: Proceedings of the 18th conference on computational linguistics, vol. 2; 2000. p. 947-53.
    • (2000) Proceedings of the 18th conference on computational linguistics , vol.2 , pp. 947-953
    • Yeh, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.