메뉴 건너뛰기




Volumn 7814 LNCS, Issue , 2013, Pages 816-819

ADRTrace: Detecting expected and unexpected adverse drug reactions from user reviews on social media sites

Author keywords

[No Author keywords available]

Indexed keywords

ADVERSE DRUG REACTION (ADRS); ADVERSE DRUG REACTIONS; CONSUMER REVIEWS; EVALUATION RESULTS; MEDICAL TERMS; SOCIAL MEDIA; UNITED STATES FOOD AND DRUG ADMINISTRATIONS; USER REVIEWS;

EID: 84875466594     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-36973-5_92     Document Type: Conference Paper
Times cited : (75)

References (6)
  • 1
    • 0345863927 scopus 로고    scopus 로고
    • The Unified Medical Language System (UMLS): Integrating biomedical terminology
    • Bodenreider, O.: The Unified Medical Language System (UMLS): integrating biomedical terminology. J. Nucleic Acids Research 32, 267-270 (2004)
    • (2004) J. Nucleic Acids Research , vol.32 , pp. 267-270
    • Bodenreider, O.1
  • 2
    • 84875480169 scopus 로고    scopus 로고
    • System and Method for Performing Pharmacovigilance
    • Patent Pending
    • Federoff, H., Frieder, O.: System and Method for Performing Pharmacovigilance. Patent Pending (2012)
    • (2012)
    • Federoff, H.1    Frieder, O.2
  • 4
    • 80053238419 scopus 로고    scopus 로고
    • Towards internet-age pharmacovigilance: Extracting adverse drug reactions from user posts to health-related social networks
    • Leaman, R., et al.: Towards internet-age pharmacovigilance: extracting adverse drug reactions from user posts to health-related social networks. In: Proc. of BioNLP 2010 (2010)
    • (2010) Proc. of BioNLP 2010
    • Leaman, R.1
  • 6
    • 84860502098 scopus 로고    scopus 로고
    • Espresso: Leveraging generic patterns for automatically harvesting semantic relations
    • Pantel, P., Pennacchiotti, M.: Espresso: leveraging generic patterns for automatically harvesting semantic relations. In: Proc. of ACL (2006)
    • Proc. of ACL (2006)
    • Pantel, P.1    Pennacchiotti, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.