-
1
-
-
84927950593
-
-
The importance of pharmacovigilance - safety monitoring of medicinal products. World Health Organization, . .
-
The importance of pharmacovigilance - safety monitoring of medicinal products. World Health Organization, 2002. . http://apps.who.int/medicinedocs/en/d/Js4893e/1.html.
-
(2002)
-
-
-
2
-
-
84861346585
-
Novel data-mining methodologies for adverse drug event discovery and analysis
-
Harpaz R., DuMouchel W., Shah N.H., Madigan D., Ryan P., Friedman C. Novel data-mining methodologies for adverse drug event discovery and analysis. Clin Pharmacol Ther 2012, 91(3):1010-1021.
-
(2012)
Clin Pharmacol Ther
, vol.91
, Issue.3
, pp. 1010-1021
-
-
Harpaz, R.1
DuMouchel, W.2
Shah, N.H.3
Madigan, D.4
Ryan, P.5
Friedman, C.6
-
3
-
-
0032522873
-
Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies
-
Lazarou J., Pomeranz B.H., Corey P.N. Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA 1998, 279(15):1200-1205.
-
(1998)
JAMA
, vol.279
, Issue.15
, pp. 1200-1205
-
-
Lazarou, J.1
Pomeranz, B.H.2
Corey, P.N.3
-
4
-
-
0037238861
-
Adverse drug event monitoring at the food and drug administration - your report can make a difference
-
Ahmad S.R. Adverse drug event monitoring at the food and drug administration - your report can make a difference. J Internal Med 2003, 18(1):57-60.
-
(2003)
J Internal Med
, vol.18
, Issue.1
, pp. 57-60
-
-
Ahmad, S.R.1
-
5
-
-
84893172915
-
Large-scale combining signals from both biomedical literature and FDA adverse event reporting system (FAERS) to improve post-marketing drug safety signal detection
-
Xu R., Wang Q. Large-scale combining signals from both biomedical literature and FDA adverse event reporting system (FAERS) to improve post-marketing drug safety signal detection. BMC Bioinform 2014, 15(17).
-
(2014)
BMC Bioinform
, vol.15
, Issue.17
-
-
Xu, R.1
Wang, Q.2
-
7
-
-
84927943284
-
-
FDA Adverse Event Reporting System (FAERS). . http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/.
-
-
-
-
8
-
-
84927929749
-
-
MedWatch: the FDA safety information and adverse event reporting program. .
-
MedWatch: the FDA safety information and adverse event reporting program. . http://www.fda.gov/Safety/MedWatch/default.htm.
-
-
-
-
9
-
-
84856792845
-
A systematic review to evaluate the accuracy of electronic adverse drug event detection
-
Forster A.J., Jennings A., Chow C., Leeder C., van Walraven C. A systematic review to evaluate the accuracy of electronic adverse drug event detection. J Am Med Inform Assoc (JAMIA) 2011, 19:31-38.
-
(2011)
J Am Med Inform Assoc (JAMIA)
, vol.19
, pp. 31-38
-
-
Forster, A.J.1
Jennings, A.2
Chow, C.3
Leeder, C.4
van Walraven, C.5
-
10
-
-
84922136955
-
Challenges and future considerations for pharmacovigilance
-
Kumar V. Challenges and future considerations for pharmacovigilance. J Pharmacovigilance 2013, 1(1):1-3.
-
(2013)
J Pharmacovigilance
, vol.1
, Issue.1
, pp. 1-3
-
-
Kumar, V.1
-
11
-
-
74049147542
-
The social life of health information
-
The Pew Research Center. .
-
The social life of health information. The Pew Research Center. . http://www.pewinternet.org/2011/05/12/the-social-life-of-health-information-2011/.
-
-
-
-
12
-
-
73349104101
-
Social media use in the united states: implications for health communication
-
ying Sylvia Chou W., Hunt Y.M., Beckjord E.B., Moser R.P., Hesse B.W. Social media use in the united states: implications for health communication. J Med Internet Res 2009, 11(4):e48.
-
(2009)
J Med Internet Res
, vol.11
, Issue.4
, pp. e48
-
-
ying Sylvia Chou, W.1
Hunt, Y.M.2
Beckjord, E.B.3
Moser, R.P.4
Hesse, B.W.5
-
13
-
-
84927943283
-
-
Online Support Groups and Forums at DailyStrength. .
-
Online Support Groups and Forums at DailyStrength. . http://www.dailystrength.org.
-
-
-
-
14
-
-
84927942172
-
-
MedHelp Medical Support Communities. .
-
MedHelp Medical Support Communities. . http://www.medhelp.org/forums/list.
-
-
-
-
15
-
-
79952200661
-
-
Springer, New York, p. 559-64 [chapter using Web and Social Media for Influenza Surveillance]
-
Corley C.D., Cook D.J., Mikler A.R., Singh K.P. Advances in computational biology 2010, Springer, New York, p. 559-64 [chapter using Web and Social Media for Influenza Surveillance].
-
(2010)
Advances in computational biology
-
-
Corley, C.D.1
Cook, D.J.2
Mikler, A.R.3
Singh, K.P.4
-
16
-
-
84890101561
-
Social media in public health
-
Kass-Hout T., Alhinnawi H. Social media in public health. Br Med Bull 2013, 108(1):5-24.
-
(2013)
Br Med Bull
, vol.108
, Issue.1
, pp. 5-24
-
-
Kass-Hout, T.1
Alhinnawi, H.2
-
17
-
-
84902548120
-
Towards internet-age pharmacovigilance: extracting adverse drug reactions from user posts to health-related social networks
-
Leaman R, Wojtulewicz L, Sullivan R, Skariah A, Yang J, Gonzalez G. Towards internet-age pharmacovigilance: extracting adverse drug reactions from user posts to health-related social networks. In: Proceedings of the 2010 workshop on biomedical natural language processing; 2010. p. 117-25.
-
(2010)
Proceedings of the 2010 workshop on biomedical natural language processing
, pp. 117-125
-
-
Leaman, R.1
Wojtulewicz, L.2
Sullivan, R.3
Skariah, A.4
Yang, J.5
Gonzalez, G.6
-
18
-
-
84906234695
-
The role of Facebook in crush the crave, a mobile- and social media-based smoking cessation intervention: qualitative framework analysis of posts
-
Struik L.L., Baskerville N.B. The role of Facebook in crush the crave, a mobile- and social media-based smoking cessation intervention: qualitative framework analysis of posts. J Med Internet Res 2014, 16(7).
-
(2014)
J Med Internet Res
, vol.16
, Issue.7
-
-
Struik, L.L.1
Baskerville, N.B.2
-
19
-
-
84887754330
-
An exploration of social circles and prescription drug abuse through Twitter
-
Hanson C.L., Cannon B., Burton S., Giraud-Carrier C. An exploration of social circles and prescription drug abuse through Twitter. J Med Internet Res 2013, 15(9).
-
(2013)
J Med Internet Res
, vol.15
, Issue.9
-
-
Hanson, C.L.1
Cannon, B.2
Burton, S.3
Giraud-Carrier, C.4
-
20
-
-
84875598638
-
Malpractice and malcontent: analysing medical complaints in Twitter
-
AAAI technical report. Information retrieval and knowledge discovery in biomedical text, Johns Hopkins University
-
Nakhasi A, Passarella RJ, Bell SG, Paul MJ, Dredze M, Provost PJ. Malpractice and malcontent: analysing medical complaints in Twitter. AAAI technical report. Information retrieval and knowledge discovery in biomedical text, Johns Hopkins University; 2012.
-
(2012)
-
-
Nakhasi, A.1
Passarella, R.J.2
Bell, S.G.3
Paul, M.J.4
Dredze, M.5
Provost, P.J.6
-
21
-
-
61349179219
-
The wisdom of patients: health care meets online social media
-
Sarasohn-Kahn J. The wisdom of patients: health care meets online social media; 2008. . http://www.chcf.org//media/MEDIA%20LIBRARY%20Files/%20PDF/H/PDF%20HealthCareSocialMedia.pdf.
-
(2008)
-
-
Sarasohn-Kahn, J.1
-
22
-
-
84895827710
-
Social media and internet-based data in global systems for public health surveillance: a systematic review
-
Velasco E., Agheneza T., Denecke K., Kirchner G., Eckmanns T. Social media and internet-based data in global systems for public health surveillance: a systematic review. Milbank Quart 2014, 92:7-33.
-
(2014)
Milbank Quart
, vol.92
, pp. 7-33
-
-
Velasco, E.1
Agheneza, T.2
Denecke, K.3
Kirchner, G.4
Eckmanns, T.5
-
23
-
-
84895810518
-
Using social media and internet data for public health surveillance: the importance of talking
-
Hartley D.M. Using social media and internet data for public health surveillance: the importance of talking. Milbank Quart 2014, 92:34-39.
-
(2014)
Milbank Quart
, vol.92
, pp. 34-39
-
-
Hartley, D.M.1
-
24
-
-
3042806975
-
Detection, verification, and quantification of adverse drug reactions
-
Stricker B.H., Psaty B.M. Detection, verification, and quantification of adverse drug reactions. BMJ 2004, 329(7456):44-47.
-
(2004)
BMJ
, vol.329
, Issue.7456
, pp. 44-47
-
-
Stricker, B.H.1
Psaty, B.M.2
-
25
-
-
84927927664
-
-
Guidance notes on the management of adverse events and product complaints from digital media. .
-
Guidance notes on the management of adverse events and product complaints from digital media; 2013. . http://www.abpi.org.uk/our-work/library/guidelines/Pages/safety-data-websites.aspx.
-
(2013)
-
-
-
26
-
-
84927936862
-
-
Guidance for Industry. Fulfilling regulatory requirements for postmarketing submissions of interactive promotional media for prescription human and animal drugs and biologics . .
-
Guidance for Industry. Fulfilling regulatory requirements for postmarketing submissions of interactive promotional media for prescription human and animal drugs and biologics; 2014. . http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM381352.pdf.
-
(2014)
-
-
-
27
-
-
84927935927
-
-
Guidance for Industry. Internet/social media platforms with character space limitations - presenting risk and benefit information for prescription drugs and medical devices . .
-
Guidance for Industry. Internet/social media platforms with character space limitations - presenting risk and benefit information for prescription drugs and medical devices; 2014. . http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm401087.pdf.
-
(2014)
-
-
-
28
-
-
84927919764
-
Adverse event reporting and medication safety considerations: a view from CDER's office of surveillance and epidemiology
-
May . .
-
Pan GJD. Adverse event reporting and medication safety considerations: a view from CDER's office of surveillance and epidemiology; May 2013. . http://www.fda.gov/downloads/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/CDER/UCM352766.pdf.
-
(2013)
-
-
Pan, G.J.D.1
-
29
-
-
84927934426
-
-
White Paper: Social Media in the Pharmaceutical Industry. .
-
White Paper: Social Media in the Pharmaceutical Industry. . http://www.brandchannel.com/images/papers/522_2011-02_AZ_Social_Media.pdf.
-
-
-
-
30
-
-
79952770759
-
Social media and networks in pharmacovigilance: boon or bane
-
Edwards I.R., Lindquist M. Social media and networks in pharmacovigilance: boon or bane. Drug Saf 2011, 34(4):267-271.
-
(2011)
Drug Saf
, vol.34
, Issue.4
, pp. 267-271
-
-
Edwards, I.R.1
Lindquist, M.2
-
31
-
-
80051583646
-
Can social media benefit drug safety
-
Franzen W. Can social media benefit drug safety. Drug Saf 2012, 34(9):793.
-
(2012)
Drug Saf
, vol.34
, Issue.9
, pp. 793
-
-
Franzen, W.1
-
32
-
-
84925709587
-
Text mining for adverse drug events: the promise, challenges, and state of the art
-
Harpaz R, Callahan A, Tamang S, Low Y, Odgers D, Finlayson S, et al. Text mining for adverse drug events: the promise, challenges, and state of the art. Drug Saf.http://dx.doi.org/10.1007/s40264-014-0218-z. doi:10.1007/s40264-014-0218-z.
-
Drug Saf
-
-
Harpaz, R.1
Callahan, A.2
Tamang, S.3
Low, Y.4
Odgers, D.5
Finlayson, S.6
-
33
-
-
84903164792
-
Social media analytics for smart health
-
Abbasi A., Adjeroh D. Social media analytics for smart health. Intell Syst 2014, 60-80.
-
(2014)
Intell Syst
, pp. 60-80
-
-
Abbasi, A.1
Adjeroh, D.2
-
35
-
-
84927950889
-
Pharmacovigilance on Twitter? Mining tweets for adverse drug reactions
-
O'Connor K, Nikfarjam A, Ginn R, Pimpalkhute P, Sarker A, Smith K, et al. Pharmacovigilance on Twitter? Mining tweets for adverse drug reactions. In: Proceedings for the American medical informatics association (AMIA) annual symposium; 2014.
-
(2014)
Proceedings for the American medical informatics association (AMIA) annual symposium
-
-
O'Connor, K.1
Nikfarjam, A.2
Ginn, R.3
Pimpalkhute, P.4
Sarker, A.5
Smith, K.6
-
36
-
-
84902539789
-
An ensemble heterogeneous classification methodology for discovering health-related knowledge in social media messages
-
Tuarob S., Tucker C.S., Salathe M., Ram N. An ensemble heterogeneous classification methodology for discovering health-related knowledge in social media messages. J Biomed Inform 2014, 49:255-268.
-
(2014)
J Biomed Inform
, vol.49
, pp. 255-268
-
-
Tuarob, S.1
Tucker, C.S.2
Salathe, M.3
Ram, N.4
-
37
-
-
84919651291
-
Improved part-of-speech tagging for online conversational text with word clusters
-
Owoputi O, O'Connor B, Dyer C, Gimpel K, Schneider N, Smith NA. Improved part-of-speech tagging for online conversational text with word clusters. In: Proceedings of the NAACL-HLT; 2013. p. 380-90.
-
(2013)
Proceedings of the NAACL-HLT
, pp. 380-390
-
-
Owoputi, O.1
O'Connor, B.2
Dyer, C.3
Gimpel, K.4
Schneider, N.5
Smith, N.A.6
-
38
-
-
84924318819
-
Mining Twitter for adverse drug reaction mentions: a corpus and classification benchmark
-
Ginn R, Pimpalkhute P, Nikfarjam A, Patki A, O'Connor K, Sarker A, et al. Mining Twitter for adverse drug reaction mentions: a corpus and classification benchmark. In: Proceedings of the fourth workshop on building and evaluating resources for health and biomedical text processing; 2014.
-
(2014)
Proceedings of the fourth workshop on building and evaluating resources for health and biomedical text processing
-
-
Ginn, R.1
Pimpalkhute, P.2
Nikfarjam, A.3
Patki, A.4
O'Connor, K.5
Sarker, A.6
-
39
-
-
84924318817
-
Mining adverse drug reaction signals from social media: going beyond extraction
-
Patki A, Sarker A, Pimpalkhute P, Nikfarjam A, Ginn R, O'Connor K, et al. Mining adverse drug reaction signals from social media: going beyond extraction. In: Proceedings of BioLinkSig 2014; 2014.
-
(2014)
Proceedings of BioLinkSig
, vol.2014
-
-
Patki, A.1
Sarker, A.2
Pimpalkhute, P.3
Nikfarjam, A.4
Ginn, R.5
O'Connor, K.6
-
41
-
-
84924285421
-
Portable automatic text classification for adverse drug reaction detection via multi-corpus training
-
Sarker A, Gonzalez G. Portable automatic text classification for adverse drug reaction detection via multi-corpus training, J Biomed Inform 2015;53:196-207.
-
(2015)
J Biomed Inform
, vol.53
, pp. 196-207
-
-
Sarker, A.1
Gonzalez, G.2
-
42
-
-
84855919063
-
Identifying potential adverse effects using the web: a new approach to medical hypothesis generation
-
Benton A., Ungar L., Hill S., Hennessy S., Mao J., Chung A., et al. Identifying potential adverse effects using the web: a new approach to medical hypothesis generation. J Biomed Inform 2011, 44:989-996.
-
(2011)
J Biomed Inform
, vol.44
, pp. 989-996
-
-
Benton, A.1
Ungar, L.2
Hill, S.3
Hennessy, S.4
Mao, J.5
Chung, A.6
-
46
-
-
84881133007
-
AZDrugMiner: an information extraction system for mining patient-reported adverse drug events in online patient forums
-
Liu X, Chen H. AZDrugMiner: an information extraction system for mining patient-reported adverse drug events in online patient forums. In: Proceedings of the 2013 international conference on smart health; 2013. p. 134-50.
-
(2013)
Proceedings of the 2013 international conference on smart health
, pp. 134-150
-
-
Liu, X.1
Chen, H.2
-
47
-
-
84927927426
-
-
American Diabetes Association Community. . http://community.diabetes.org.
-
-
-
-
49
-
-
84893075973
-
Mining twitter data for potential drug effects
-
Jiang K., Zheng Y. Mining twitter data for potential drug effects. Adv Data Min Appl 2013, 8346:434-443.
-
(2013)
Adv Data Min Appl
, vol.8346
, pp. 434-443
-
-
Jiang, K.1
Zheng, Y.2
-
51
-
-
84927918160
-
-
Ask a Patients. .
-
Ask a Patients. . http://www.askapatient.com.
-
-
-
-
52
-
-
84927914094
-
-
Drugs.com: know more. Be Sure. .
-
Drugs.com: know more. Be Sure. . http://www.drugs.com.
-
-
-
-
53
-
-
84927940137
-
-
DrugRatingz: find, rate and review drugs and medications. .
-
DrugRatingz: find, rate and review drugs and medications. . http://www.drugratingz.com.
-
-
-
-
54
-
-
84897634360
-
A pipeline to extract drug-adverse event pairs from multiple data sources
-
Yeleswarapu S., Rao A., Joseph T., Saipradeep V.G., Srinivasan R. A pipeline to extract drug-adverse event pairs from multiple data sources. BMC Med Inform Decis Making 2014, 14(13).
-
(2014)
BMC Med Inform Decis Making
, vol.14
, Issue.13
-
-
Yeleswarapu, S.1
Rao, A.2
Joseph, T.3
Saipradeep, V.G.4
Srinivasan, R.5
-
55
-
-
84927946156
-
-
PatientsLikeMe: live better, together. .
-
PatientsLikeMe: live better, together. . http://www.patientslikeme.com.
-
-
-
-
56
-
-
84927925329
-
-
Mediguard: medication monitoring made simple. .
-
Mediguard: medication monitoring made simple. . http://https://www.mediguard.org.
-
-
-
-
57
-
-
84901857191
-
Digital drug safety surveillance: monitoring pharmaceutical products in twitter
-
Freifeld C.C., Brownstein J.S., Menone C.M., Bao W., Felice R., Kass-Hout T., et al. Digital drug safety surveillance: monitoring pharmaceutical products in twitter. Drug Saf 2014, 37(5):343-350.
-
(2014)
Drug Saf
, vol.37
, Issue.5
, pp. 343-350
-
-
Freifeld, C.C.1
Brownstein, J.S.2
Menone, C.M.3
Bao, W.4
Felice, R.5
Kass-Hout, T.6
-
59
-
-
84927939347
-
-
Forumclinic: Programa interactivo para pacientes. .
-
Forumclinic: Programa interactivo para pacientes. . http://https://www.forumclinic.org.
-
-
-
-
61
-
-
84899048828
-
Postmarketing drug safety surveillance using publicly available health-consumer-contributed content in social media
-
2:1-2:21
-
Yang C.C., Yang H., Jiang L. Postmarketing drug safety surveillance using publicly available health-consumer-contributed content in social media. ACM Trans Manage Inform Syst 2014, 5(1):2:1-2:21. 10.1145/2576233.
-
(2014)
ACM Trans Manage Inform Syst
, vol.5
, Issue.1
-
-
Yang, C.C.1
Yang, H.2
Jiang, L.3
-
62
-
-
84928798747
-
Mining adverse drug reactions from online healthcare forums using hidden Markov model
-
Sampathkumar H., Wen Chen X., Luo B. Mining adverse drug reactions from online healthcare forums using hidden Markov model. BMC Med Inform Decis Making 2014, 14(91).
-
(2014)
BMC Med Inform Decis Making
, vol.14
, Issue.91
-
-
Sampathkumar, H.1
Wen Chen, X.2
Luo, B.3
-
63
-
-
84927941672
-
-
The premier community to talk about health. .
-
The premier community to talk about health. . http://www.medications.com/.
-
-
-
-
64
-
-
84927940110
-
-
SteadyHealth - ask, share, contribute. .
-
SteadyHealth - ask, share, contribute. . http://www.steadyhealth.com/.
-
-
-
-
65
-
-
84927943705
-
Pharmacovigilance from social media: mining adverse drug reaction mentions using sequence labeling with word embedding cluster features
-
Nikfarjam A., Sarker A., O'Connor K., Ginn R., Gonzalez G. Pharmacovigilance from social media: mining adverse drug reaction mentions using sequence labeling with word embedding cluster features. J Am Med Inform Assoc 2015, 22(2).
-
(2015)
J Am Med Inform Assoc
, vol.22
, Issue.2
-
-
Nikfarjam, A.1
Sarker, A.2
O'Connor, K.3
Ginn, R.4
Gonzalez, G.5
-
66
-
-
84942412129
-
Extraction of potential adverse drug event from medical case reports
-
Gurulingappa H., Mateen-Rajput A., Toldo L. Extraction of potential adverse drug event from medical case reports. J Biomed Semantics 2012, 3(15).
-
(2012)
J Biomed Semantics
, vol.3
, Issue.15
-
-
Gurulingappa, H.1
Mateen-Rajput, A.2
Toldo, L.3
-
68
-
-
0004021178
-
-
AAAI/MIT Press, Cambridge, MA, [chapter Discovery, analysis, and presentation of strong rules]
-
Piatetsky-Shapiro G. Knowledge discovery in databases 1991, AAAI/MIT Press, Cambridge, MA, [chapter Discovery, analysis, and presentation of strong rules].
-
(1991)
Knowledge discovery in databases
-
-
Piatetsky-Shapiro, G.1
|