메뉴 건너뛰기




Volumn 54, Issue , 2015, Pages 202-212

Utilizing social media data for pharmacovigilance: A review

Author keywords

Adverse drug reaction; Pharmacovigilance; Social media

Indexed keywords

MEDICAL INFORMATICS; SEARCH ENGINES; SOCIAL NETWORKING (ONLINE); SUPERVISED LEARNING;

EID: 84927917741     PISSN: 15320464     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jbi.2015.02.004     Document Type: Review
Times cited : (402)

References (69)
  • 1
    • 84927950593 scopus 로고    scopus 로고
    • The importance of pharmacovigilance - safety monitoring of medicinal products. World Health Organization, . .
    • The importance of pharmacovigilance - safety monitoring of medicinal products. World Health Organization, 2002. . http://apps.who.int/medicinedocs/en/d/Js4893e/1.html.
    • (2002)
  • 3
    • 0032522873 scopus 로고    scopus 로고
    • Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies
    • Lazarou J., Pomeranz B.H., Corey P.N. Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA 1998, 279(15):1200-1205.
    • (1998) JAMA , vol.279 , Issue.15 , pp. 1200-1205
    • Lazarou, J.1    Pomeranz, B.H.2    Corey, P.N.3
  • 4
    • 0037238861 scopus 로고    scopus 로고
    • Adverse drug event monitoring at the food and drug administration - your report can make a difference
    • Ahmad S.R. Adverse drug event monitoring at the food and drug administration - your report can make a difference. J Internal Med 2003, 18(1):57-60.
    • (2003) J Internal Med , vol.18 , Issue.1 , pp. 57-60
    • Ahmad, S.R.1
  • 5
    • 84893172915 scopus 로고    scopus 로고
    • Large-scale combining signals from both biomedical literature and FDA adverse event reporting system (FAERS) to improve post-marketing drug safety signal detection
    • Xu R., Wang Q. Large-scale combining signals from both biomedical literature and FDA adverse event reporting system (FAERS) to improve post-marketing drug safety signal detection. BMC Bioinform 2014, 15(17).
    • (2014) BMC Bioinform , vol.15 , Issue.17
    • Xu, R.1    Wang, Q.2
  • 7
    • 84927943284 scopus 로고    scopus 로고
    • FDA Adverse Event Reporting System (FAERS). . http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/.
  • 8
    • 84927929749 scopus 로고    scopus 로고
    • MedWatch: the FDA safety information and adverse event reporting program. .
    • MedWatch: the FDA safety information and adverse event reporting program. . http://www.fda.gov/Safety/MedWatch/default.htm.
  • 10
    • 84922136955 scopus 로고    scopus 로고
    • Challenges and future considerations for pharmacovigilance
    • Kumar V. Challenges and future considerations for pharmacovigilance. J Pharmacovigilance 2013, 1(1):1-3.
    • (2013) J Pharmacovigilance , vol.1 , Issue.1 , pp. 1-3
    • Kumar, V.1
  • 11
    • 74049147542 scopus 로고    scopus 로고
    • The social life of health information
    • The Pew Research Center. .
    • The social life of health information. The Pew Research Center. . http://www.pewinternet.org/2011/05/12/the-social-life-of-health-information-2011/.
  • 13
    • 84927943283 scopus 로고    scopus 로고
    • Online Support Groups and Forums at DailyStrength. .
    • Online Support Groups and Forums at DailyStrength. . http://www.dailystrength.org.
  • 14
    • 84927942172 scopus 로고    scopus 로고
    • MedHelp Medical Support Communities. .
    • MedHelp Medical Support Communities. . http://www.medhelp.org/forums/list.
  • 16
    • 84890101561 scopus 로고    scopus 로고
    • Social media in public health
    • Kass-Hout T., Alhinnawi H. Social media in public health. Br Med Bull 2013, 108(1):5-24.
    • (2013) Br Med Bull , vol.108 , Issue.1 , pp. 5-24
    • Kass-Hout, T.1    Alhinnawi, H.2
  • 18
    • 84906234695 scopus 로고    scopus 로고
    • The role of Facebook in crush the crave, a mobile- and social media-based smoking cessation intervention: qualitative framework analysis of posts
    • Struik L.L., Baskerville N.B. The role of Facebook in crush the crave, a mobile- and social media-based smoking cessation intervention: qualitative framework analysis of posts. J Med Internet Res 2014, 16(7).
    • (2014) J Med Internet Res , vol.16 , Issue.7
    • Struik, L.L.1    Baskerville, N.B.2
  • 19
    • 84887754330 scopus 로고    scopus 로고
    • An exploration of social circles and prescription drug abuse through Twitter
    • Hanson C.L., Cannon B., Burton S., Giraud-Carrier C. An exploration of social circles and prescription drug abuse through Twitter. J Med Internet Res 2013, 15(9).
    • (2013) J Med Internet Res , vol.15 , Issue.9
    • Hanson, C.L.1    Cannon, B.2    Burton, S.3    Giraud-Carrier, C.4
  • 20
    • 84875598638 scopus 로고    scopus 로고
    • Malpractice and malcontent: analysing medical complaints in Twitter
    • AAAI technical report. Information retrieval and knowledge discovery in biomedical text, Johns Hopkins University
    • Nakhasi A, Passarella RJ, Bell SG, Paul MJ, Dredze M, Provost PJ. Malpractice and malcontent: analysing medical complaints in Twitter. AAAI technical report. Information retrieval and knowledge discovery in biomedical text, Johns Hopkins University; 2012.
    • (2012)
    • Nakhasi, A.1    Passarella, R.J.2    Bell, S.G.3    Paul, M.J.4    Dredze, M.5    Provost, P.J.6
  • 21
    • 61349179219 scopus 로고    scopus 로고
    • The wisdom of patients: health care meets online social media
    • Sarasohn-Kahn J. The wisdom of patients: health care meets online social media; 2008. . http://www.chcf.org//media/MEDIA%20LIBRARY%20Files/%20PDF/H/PDF%20HealthCareSocialMedia.pdf.
    • (2008)
    • Sarasohn-Kahn, J.1
  • 22
    • 84895827710 scopus 로고    scopus 로고
    • Social media and internet-based data in global systems for public health surveillance: a systematic review
    • Velasco E., Agheneza T., Denecke K., Kirchner G., Eckmanns T. Social media and internet-based data in global systems for public health surveillance: a systematic review. Milbank Quart 2014, 92:7-33.
    • (2014) Milbank Quart , vol.92 , pp. 7-33
    • Velasco, E.1    Agheneza, T.2    Denecke, K.3    Kirchner, G.4    Eckmanns, T.5
  • 23
    • 84895810518 scopus 로고    scopus 로고
    • Using social media and internet data for public health surveillance: the importance of talking
    • Hartley D.M. Using social media and internet data for public health surveillance: the importance of talking. Milbank Quart 2014, 92:34-39.
    • (2014) Milbank Quart , vol.92 , pp. 34-39
    • Hartley, D.M.1
  • 24
    • 3042806975 scopus 로고    scopus 로고
    • Detection, verification, and quantification of adverse drug reactions
    • Stricker B.H., Psaty B.M. Detection, verification, and quantification of adverse drug reactions. BMJ 2004, 329(7456):44-47.
    • (2004) BMJ , vol.329 , Issue.7456 , pp. 44-47
    • Stricker, B.H.1    Psaty, B.M.2
  • 25
    • 84927927664 scopus 로고    scopus 로고
    • Guidance notes on the management of adverse events and product complaints from digital media. .
    • Guidance notes on the management of adverse events and product complaints from digital media; 2013. . http://www.abpi.org.uk/our-work/library/guidelines/Pages/safety-data-websites.aspx.
    • (2013)
  • 26
    • 84927936862 scopus 로고    scopus 로고
    • Guidance for Industry. Fulfilling regulatory requirements for postmarketing submissions of interactive promotional media for prescription human and animal drugs and biologics . .
    • Guidance for Industry. Fulfilling regulatory requirements for postmarketing submissions of interactive promotional media for prescription human and animal drugs and biologics; 2014. . http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM381352.pdf.
    • (2014)
  • 27
    • 84927935927 scopus 로고    scopus 로고
    • Guidance for Industry. Internet/social media platforms with character space limitations - presenting risk and benefit information for prescription drugs and medical devices . .
    • Guidance for Industry. Internet/social media platforms with character space limitations - presenting risk and benefit information for prescription drugs and medical devices; 2014. . http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm401087.pdf.
    • (2014)
  • 28
    • 84927919764 scopus 로고    scopus 로고
    • Adverse event reporting and medication safety considerations: a view from CDER's office of surveillance and epidemiology
    • May . .
    • Pan GJD. Adverse event reporting and medication safety considerations: a view from CDER's office of surveillance and epidemiology; May 2013. . http://www.fda.gov/downloads/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/CDER/UCM352766.pdf.
    • (2013)
    • Pan, G.J.D.1
  • 29
    • 84927934426 scopus 로고    scopus 로고
    • White Paper: Social Media in the Pharmaceutical Industry. .
    • White Paper: Social Media in the Pharmaceutical Industry. . http://www.brandchannel.com/images/papers/522_2011-02_AZ_Social_Media.pdf.
  • 30
    • 79952770759 scopus 로고    scopus 로고
    • Social media and networks in pharmacovigilance: boon or bane
    • Edwards I.R., Lindquist M. Social media and networks in pharmacovigilance: boon or bane. Drug Saf 2011, 34(4):267-271.
    • (2011) Drug Saf , vol.34 , Issue.4 , pp. 267-271
    • Edwards, I.R.1    Lindquist, M.2
  • 31
    • 80051583646 scopus 로고    scopus 로고
    • Can social media benefit drug safety
    • Franzen W. Can social media benefit drug safety. Drug Saf 2012, 34(9):793.
    • (2012) Drug Saf , vol.34 , Issue.9 , pp. 793
    • Franzen, W.1
  • 32
    • 84925709587 scopus 로고    scopus 로고
    • Text mining for adverse drug events: the promise, challenges, and state of the art
    • Harpaz R, Callahan A, Tamang S, Low Y, Odgers D, Finlayson S, et al. Text mining for adverse drug events: the promise, challenges, and state of the art. Drug Saf.http://dx.doi.org/10.1007/s40264-014-0218-z. doi:10.1007/s40264-014-0218-z.
    • Drug Saf
    • Harpaz, R.1    Callahan, A.2    Tamang, S.3    Low, Y.4    Odgers, D.5    Finlayson, S.6
  • 33
    • 84903164792 scopus 로고    scopus 로고
    • Social media analytics for smart health
    • Abbasi A., Adjeroh D. Social media analytics for smart health. Intell Syst 2014, 60-80.
    • (2014) Intell Syst , pp. 60-80
    • Abbasi, A.1    Adjeroh, D.2
  • 36
    • 84902539789 scopus 로고    scopus 로고
    • An ensemble heterogeneous classification methodology for discovering health-related knowledge in social media messages
    • Tuarob S., Tucker C.S., Salathe M., Ram N. An ensemble heterogeneous classification methodology for discovering health-related knowledge in social media messages. J Biomed Inform 2014, 49:255-268.
    • (2014) J Biomed Inform , vol.49 , pp. 255-268
    • Tuarob, S.1    Tucker, C.S.2    Salathe, M.3    Ram, N.4
  • 41
    • 84924285421 scopus 로고    scopus 로고
    • Portable automatic text classification for adverse drug reaction detection via multi-corpus training
    • Sarker A, Gonzalez G. Portable automatic text classification for adverse drug reaction detection via multi-corpus training, J Biomed Inform 2015;53:196-207.
    • (2015) J Biomed Inform , vol.53 , pp. 196-207
    • Sarker, A.1    Gonzalez, G.2
  • 42
    • 84855919063 scopus 로고    scopus 로고
    • Identifying potential adverse effects using the web: a new approach to medical hypothesis generation
    • Benton A., Ungar L., Hill S., Hennessy S., Mao J., Chung A., et al. Identifying potential adverse effects using the web: a new approach to medical hypothesis generation. J Biomed Inform 2011, 44:989-996.
    • (2011) J Biomed Inform , vol.44 , pp. 989-996
    • Benton, A.1    Ungar, L.2    Hill, S.3    Hennessy, S.4    Mao, J.5    Chung, A.6
  • 46
    • 84881133007 scopus 로고    scopus 로고
    • AZDrugMiner: an information extraction system for mining patient-reported adverse drug events in online patient forums
    • Liu X, Chen H. AZDrugMiner: an information extraction system for mining patient-reported adverse drug events in online patient forums. In: Proceedings of the 2013 international conference on smart health; 2013. p. 134-50.
    • (2013) Proceedings of the 2013 international conference on smart health , pp. 134-150
    • Liu, X.1    Chen, H.2
  • 47
    • 84927927426 scopus 로고    scopus 로고
    • American Diabetes Association Community. . http://community.diabetes.org.
  • 49
    • 84893075973 scopus 로고    scopus 로고
    • Mining twitter data for potential drug effects
    • Jiang K., Zheng Y. Mining twitter data for potential drug effects. Adv Data Min Appl 2013, 8346:434-443.
    • (2013) Adv Data Min Appl , vol.8346 , pp. 434-443
    • Jiang, K.1    Zheng, Y.2
  • 51
    • 84927918160 scopus 로고    scopus 로고
    • Ask a Patients. .
    • Ask a Patients. . http://www.askapatient.com.
  • 52
    • 84927914094 scopus 로고    scopus 로고
    • Drugs.com: know more. Be Sure. .
    • Drugs.com: know more. Be Sure. . http://www.drugs.com.
  • 53
    • 84927940137 scopus 로고    scopus 로고
    • DrugRatingz: find, rate and review drugs and medications. .
    • DrugRatingz: find, rate and review drugs and medications. . http://www.drugratingz.com.
  • 55
    • 84927946156 scopus 로고    scopus 로고
    • PatientsLikeMe: live better, together. .
    • PatientsLikeMe: live better, together. . http://www.patientslikeme.com.
  • 56
    • 84927925329 scopus 로고    scopus 로고
    • Mediguard: medication monitoring made simple. .
    • Mediguard: medication monitoring made simple. . http://https://www.mediguard.org.
  • 57
    • 84901857191 scopus 로고    scopus 로고
    • Digital drug safety surveillance: monitoring pharmaceutical products in twitter
    • Freifeld C.C., Brownstein J.S., Menone C.M., Bao W., Felice R., Kass-Hout T., et al. Digital drug safety surveillance: monitoring pharmaceutical products in twitter. Drug Saf 2014, 37(5):343-350.
    • (2014) Drug Saf , vol.37 , Issue.5 , pp. 343-350
    • Freifeld, C.C.1    Brownstein, J.S.2    Menone, C.M.3    Bao, W.4    Felice, R.5    Kass-Hout, T.6
  • 59
    • 84927939347 scopus 로고    scopus 로고
    • Forumclinic: Programa interactivo para pacientes. .
    • Forumclinic: Programa interactivo para pacientes. . http://https://www.forumclinic.org.
  • 60
    • 84905217429 scopus 로고    scopus 로고
    • Identifying adverse drug events from health social media: a case study on heart disease discussion forums
    • Liu X, Liu J, Chen H. Identifying adverse drug events from health social media: a case study on heart disease discussion forums. In: Proceedings of the international conference on smart health (ICSH); 2014. p. 25-36.
    • (2014) Proceedings of the international conference on smart health (ICSH) , pp. 25-36
    • Liu, X.1    Liu, J.2    Chen, H.3
  • 61
    • 84899048828 scopus 로고    scopus 로고
    • Postmarketing drug safety surveillance using publicly available health-consumer-contributed content in social media
    • 2:1-2:21
    • Yang C.C., Yang H., Jiang L. Postmarketing drug safety surveillance using publicly available health-consumer-contributed content in social media. ACM Trans Manage Inform Syst 2014, 5(1):2:1-2:21. 10.1145/2576233.
    • (2014) ACM Trans Manage Inform Syst , vol.5 , Issue.1
    • Yang, C.C.1    Yang, H.2    Jiang, L.3
  • 62
    • 84928798747 scopus 로고    scopus 로고
    • Mining adverse drug reactions from online healthcare forums using hidden Markov model
    • Sampathkumar H., Wen Chen X., Luo B. Mining adverse drug reactions from online healthcare forums using hidden Markov model. BMC Med Inform Decis Making 2014, 14(91).
    • (2014) BMC Med Inform Decis Making , vol.14 , Issue.91
    • Sampathkumar, H.1    Wen Chen, X.2    Luo, B.3
  • 63
    • 84927941672 scopus 로고    scopus 로고
    • The premier community to talk about health. .
    • The premier community to talk about health. . http://www.medications.com/.
  • 64
    • 84927940110 scopus 로고    scopus 로고
    • SteadyHealth - ask, share, contribute. .
    • SteadyHealth - ask, share, contribute. . http://www.steadyhealth.com/.
  • 65
    • 84927943705 scopus 로고    scopus 로고
    • Pharmacovigilance from social media: mining adverse drug reaction mentions using sequence labeling with word embedding cluster features
    • Nikfarjam A., Sarker A., O'Connor K., Ginn R., Gonzalez G. Pharmacovigilance from social media: mining adverse drug reaction mentions using sequence labeling with word embedding cluster features. J Am Med Inform Assoc 2015, 22(2).
    • (2015) J Am Med Inform Assoc , vol.22 , Issue.2
    • Nikfarjam, A.1    Sarker, A.2    O'Connor, K.3    Ginn, R.4    Gonzalez, G.5
  • 66
    • 84942412129 scopus 로고    scopus 로고
    • Extraction of potential adverse drug event from medical case reports
    • Gurulingappa H., Mateen-Rajput A., Toldo L. Extraction of potential adverse drug event from medical case reports. J Biomed Semantics 2012, 3(15).
    • (2012) J Biomed Semantics , vol.3 , Issue.15
    • Gurulingappa, H.1    Mateen-Rajput, A.2    Toldo, L.3
  • 68
    • 0004021178 scopus 로고
    • AAAI/MIT Press, Cambridge, MA, [chapter Discovery, analysis, and presentation of strong rules]
    • Piatetsky-Shapiro G. Knowledge discovery in databases 1991, AAAI/MIT Press, Cambridge, MA, [chapter Discovery, analysis, and presentation of strong rules].
    • (1991) Knowledge discovery in databases
    • Piatetsky-Shapiro, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.