메뉴 건너뛰기




Volumn 37, Issue 10, 2014, Pages 777-790

Text Mining for Adverse Drug Events: the Promise, Challenges, and State of the Art

Author keywords

[No Author keywords available]

Indexed keywords

ADVERSE DRUG REACTION; ARTICLE; BIOMEDICINE; DRUG SURVEILLANCE PROGRAM; INFORMATION PROCESSING; MACHINE LEARNING; NATURAL LANGUAGE PROCESSING; PACKAGING; PRIORITY JOURNAL; SOCIAL MEDIA; TEXT MINING; DATA MINING; DRUG LABELING; FACTUAL DATABASE; HUMAN; INTERNET; PROCEDURES; PUBLICATION;

EID: 84925709587     PISSN: 01145916     EISSN: 11791942     Source Type: Journal    
DOI: 10.1007/s40264-014-0218-z     Document Type: Article
Times cited : (181)

References (98)
  • 3
    • 0036300732 scopus 로고    scopus 로고
    • Use of screening algorithms and computer systems to efficiently signal higher-than-expected combinations of drugs and events in the US FDA’s spontaneous reports database
    • COI: 1:CAS:528:DC%2BD38XlslOitrY%3D, PID: 12071774
    • Szarfman A, Machado SG, O’Neill RT. Use of screening algorithms and computer systems to efficiently signal higher-than-expected combinations of drugs and events in the US FDA’s spontaneous reports database. Drug Saf. 2002;25(6):381–92.
    • (2002) Drug Saf , vol.25 , Issue.6 , pp. 381-392
    • Szarfman, A.1    Machado, S.G.2    O’Neill, R.T.3
  • 4
    • 84878260825 scopus 로고    scopus 로고
    • Performance of pharmacovigilance signal-detection algorithms for the FDA adverse event reporting system
    • COI: 1:STN:280:DC%2BC3srjslyitQ%3D%3D, PID: 23571771
    • Harpaz R, Dumouchel W, Lependu P, Bauer-Mehren A, Ryan P, Shah NH. Performance of pharmacovigilance signal-detection algorithms for the FDA adverse event reporting system. Clin Pharmacol Ther. 2013;93(6):539–46. doi:10.1038/clpt.2013.24.
    • (2013) Clin Pharmacol Ther , vol.93 , Issue.6 , pp. 539-546
    • Harpaz, R.1    Dumouchel, W.2    Lependu, P.3    Bauer-Mehren, A.4    Ryan, P.5    Shah, N.H.6
  • 5
    • 84871571398 scopus 로고    scopus 로고
    • Multivariate bayesian logistic regression for analysis of clinical study safety issues
    • DuMouchel W. Multivariate bayesian logistic regression for analysis of clinical study safety issues. Stat Sci. 2012;27(3):319–39. doi:10.1214/11-STS381.
    • (2012) Stat Sci , vol.27 , Issue.3 , pp. 319-339
    • DuMouchel, W.1
  • 6
    • 84878248963 scopus 로고    scopus 로고
    • Advancing the science of pharmacovigilance
    • COI: 1:STN:280:DC%2BC3snltlGlsw%3D%3D, PID: 23689213
    • Honig PK. Advancing the science of pharmacovigilance. Clin Pharmacol Ther. 2013;93(6):474–5. doi:10.1038/clpt.2013.60.
    • (2013) Clin Pharmacol Ther , vol.93 , Issue.6 , pp. 474-475
    • Honig, P.K.1
  • 7
    • 84861346585 scopus 로고    scopus 로고
    • Novel data-mining methodologies for adverse drug event discovery and analysis
    • COI: 1:CAS:528:DC%2BC38XnsFGns7g%3D, PID: 22549283
    • Harpaz R, DuMouchel W, Shah NH, Madigan D, Ryan P, Friedman C. Novel data-mining methodologies for adverse drug event discovery and analysis. Clin Pharmacol Ther. 2012;91(6):1010–21. doi:10.1038/clpt.2012.50.
    • (2012) Clin Pharmacol Ther , vol.91 , Issue.6 , pp. 1010-1021
    • Harpaz, R.1    DuMouchel, W.2    Shah, N.H.3    Madigan, D.4    Ryan, P.5    Friedman, C.6
  • 8
    • 85028141690 scopus 로고    scopus 로고
    • Prescription Drug User Fee Act (PDUFA V). Accessed Apr 2014
    • Prescription Drug User Fee Act (PDUFA V). http://www.fda.gov/ForIndustry/UserFees/PrescriptionDrugUserFee/ucm272170.htm. Accessed Apr 2014.
  • 9
    • 85028170180 scopus 로고    scopus 로고
    • Regulation (EU) No 1235/2010 of the European Parliament and of the Council of 15 December 2010. Accessed Apr 2014
    • Regulation (EU) No 1235/2010 of the European Parliament and of the Council of 15 December 2010. http://www.ema.europa.eu/ema/index.jsp?curl=pages/regulation/general/general_content_000492.jsp. Accessed Apr 2014.
  • 10
    • 85028156256 scopus 로고    scopus 로고
    • Food and Drug Administration Amendments Act (FDAAA) of 2007. Accessed Apr 2014
    • Food and Drug Administration Amendments Act (FDAAA) of 2007. http://www.fda.gov/regulatoryinformation/legislation/federalfooddrugandcosmeticactfdcact/significantamendmentstothefdcact/foodanddrugadministrationamendmentsactof2007/default.htm. Accessed Apr 2014.
  • 11
    • 68849085448 scopus 로고    scopus 로고
    • The new sentinel network: improving the evidence of medical-product safety
    • COI: 1:CAS:528:DC%2BD1MXpvFOjtrg%3D, PID: 19635947
    • Platt R, Wilson M, Chan KA, Benner JS, Marchibroda J, McClellan M. The new sentinel network: improving the evidence of medical-product safety. N Engl J Med. 2009;361(7):645–7.
    • (2009) N Engl J Med , vol.361 , Issue.7 , pp. 645-647
    • Platt, R.1    Wilson, M.2    Chan, K.A.3    Benner, J.S.4    Marchibroda, J.5    McClellan, M.6
  • 12
    • 78751688048 scopus 로고    scopus 로고
    • Advancing the science for active surveillance: rationale and design for the observational medical outcomes partnership
    • Stang PE, Ryan PB, Racoosin JA, Overhage JM, Hartzema AG, Reich C, et al. Advancing the science for active surveillance: rationale and design for the observational medical outcomes partnership. Annal Intern Med. 2010;153(9):600–6.
    • (2010) Annal Intern Med , vol.153 , Issue.9 , pp. 600-606
    • Stang, P.E.1    Ryan, P.B.2    Racoosin, J.A.3    Overhage, J.M.4    Hartzema, A.G.5    Reich, C.6
  • 13
    • 78650362198 scopus 로고    scopus 로고
    • Combining electronic healthcare databases in Europe to allow for large-scale drug safety monitoring: the EU-ADR Project
    • PID: 21182150
    • Coloma PM, Schuemie MJ, Trifiro G, Gini R, Herings R, Hippisley-Cox J, et al. Combining electronic healthcare databases in Europe to allow for large-scale drug safety monitoring: the EU-ADR Project. Pharmacoepidemiol Drug Saf. 2011;20(1):1–11.
    • (2011) Pharmacoepidemiol Drug Saf , vol.20 , Issue.1 , pp. 1-11
    • Coloma, P.M.1    Schuemie, M.J.2    Trifiro, G.3    Gini, R.4    Herings, R.5    Hippisley-Cox, J.6
  • 14
    • 80053254385 scopus 로고    scopus 로고
    • Using information mining of the medical literature to improve drug safety
    • PID: 21546507
    • Shetty KD, Dalal SR. Using information mining of the medical literature to improve drug safety. J Am Med Inform Assoc. 2011;18(5):668–74. doi:10.1136/amiajnl-2011-000096.
    • (2011) J Am Med Inform Assoc , vol.18 , Issue.5 , pp. 668-674
    • Shetty, K.D.1    Dalal, S.R.2
  • 15
    • 84879988282 scopus 로고    scopus 로고
    • Design and validation of an automated method to detect known adverse drug reactions in MEDLINE: a contribution from the EU-ADR project
    • PID: 23195749
    • Avillach P, Dufour JC, Diallo G, Salvo F, Joubert M, Thiessard F, et al. Design and validation of an automated method to detect known adverse drug reactions in MEDLINE: a contribution from the EU-ADR project. J Am Med Inform Assoc. 2013;20(3):446–52. doi:10.1136/amiajnl-2012-001083.
    • (2013) J Am Med Inform Assoc , vol.20 , Issue.3 , pp. 446-452
    • Avillach, P.1    Dufour, J.C.2    Diallo, G.3    Salvo, F.4    Joubert, M.5    Thiessard, F.6
  • 16
    • 85028144525 scopus 로고    scopus 로고
    • Bridging islands of information to establish an integrated knowledge base of drugs and health outcomes of interest
    • Boyce RD, Ryan PB, Noren GN, et al. Bridging islands of information to establish an integrated knowledge base of drugs and health outcomes of interest. Drug Saf. 2014;2014(07/02):1–11.
    • (2014) Drug Saf , vol.2014 , Issue.7-2 , pp. 1-11
    • Boyce, R.D.1    Ryan, P.B.2    Noren, G.N.3
  • 17
    • 84964936658 scopus 로고    scopus 로고
    • ADESSA: a real-time decision support service for delivery of semantically coded adverse drug event data
    • PID: 21346964
    • Duke JD, Friedlin J. ADESSA: a real-time decision support service for delivery of semantically coded adverse drug event data. AMIA Annu Symp Proc. 2010;2010:177–81.
    • (2010) AMIA Annu Symp Proc , vol.2010 , pp. 177-181
    • Duke, J.D.1    Friedlin, J.2
  • 18
    • 85028161172 scopus 로고    scopus 로고
    • Innovative medicines initiative. 9th call for proposals 2013. Accessed Apr 2014
    • Innovative medicines initiative. 9th call for proposals 2013. http://www.imi.europa.eu/sites/default/files/uploads/documents/9th_Call/Calll_9_Text.pdf. Accessed Apr 2014.
  • 19
    • 85028132219 scopus 로고    scopus 로고
    • FDA Science Board Subcommittee. Review of the FDA/CDER Pharmacovigilance Program (Prepared for the FDA Science Board May 2011). Accessed Apr 2014
    • FDA Science Board Subcommittee. Review of the FDA/CDER Pharmacovigilance Program (Prepared for the FDA Science Board May 2011). http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/ScienceBoardtotheFoodandDrugAdministration/UCM276888.pdf. Accessed Apr 2014.
  • 20
    • 84957970012 scopus 로고    scopus 로고
    • Natural language processing in health care and biomedicine
    • Shortliffe EH, Cimino JJ, (eds), Springer, London:
    • Friedman C, Elhadad N. Natural language processing in health care and biomedicine. In: Shortliffe EH, Cimino JJ, editors. Biomedical informatics. London: Springer; 2014. p. 255–84.
    • (2014) Biomedical informatics , pp. 255-284
    • Friedman, C.1    Elhadad, N.2
  • 21
    • 80053254020 scopus 로고    scopus 로고
    • Natural language processing: an introduction
    • PID: 21846786
    • Nadkarni PM, Ohno-Machado L, Chapman WW. Natural language processing: an introduction. J Am Med Inform Assoc. 2011;18(5):544–51. doi:10.1136/amiajnl-2011-000464.
    • (2011) J Am Med Inform Assoc , vol.18 , Issue.5 , pp. 544-551
    • Nadkarni, P.M.1    Ohno-Machado, L.2    Chapman, W.W.3
  • 22
    • 0027755702 scopus 로고
    • The unified medical language system
    • COI: 1:STN:280:DyaK2c%2FhvVOkug%3D%3D, PID: 8412823
    • Lindberg DA, Humphreys BL, McCray AT. The unified medical language system. Methods Inf Med. 1993;32(4):281–91.
    • (1993) Methods Inf Med , vol.32 , Issue.4 , pp. 281-291
    • Lindberg, D.A.1    Humphreys, B.L.2    McCray, A.T.3
  • 23
    • 67849128700 scopus 로고    scopus 로고
    • BioPortal: ontologies and integrated data resources at the click of a mouse
    • COI: 1:CAS:528:DC%2BD1MXosFSksbY%3D, PID: 19483092
    • Noy NF, Shah NH, Whetzel PL, Dai B, Dorf M, Griffith N, et al. BioPortal: ontologies and integrated data resources at the click of a mouse. Nucleic Acids Res. 2009;37(Web Server issue):W170–3. doi:10.1093/nar/gkp440.
    • (2009) Nucleic Acids Res , vol.37 , Issue.Web Server issue , pp. 170-173
    • Noy, N.F.1    Shah, N.H.2    Whetzel, P.L.3    Dai, B.4    Dorf, M.5    Griffith, N.6
  • 24
    • 80053292637 scopus 로고    scopus 로고
    • 2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text
    • PID: 21685143
    • Uzuner O, South BR, Shen S, DuVall SL. 2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text. J Am Med Inform Assoc. 2011;18(5):552–6. doi:10.1136/amiajnl-2011-000203.
    • (2011) J Am Med Inform Assoc , vol.18 , Issue.5 , pp. 552-556
    • Uzuner, O.1    South, B.R.2    Shen, S.3    DuVall, S.L.4
  • 26
    • 78650495544 scopus 로고    scopus 로고
    • Drug safety surveillance using de-identified EMR and claims data: issues and challenges
    • PID: 20962129
    • Nadkarni PM. Drug safety surveillance using de-identified EMR and claims data: issues and challenges. J Am Med Inform Assoc. 2010;17(6):671–4. doi:10.1136/jamia.2010.008607.
    • (2010) J Am Med Inform Assoc , vol.17 , Issue.6 , pp. 671-674
    • Nadkarni, P.M.1
  • 27
    • 84983035827 scopus 로고    scopus 로고
    • A comprehensive analysis of five million UMLS Metathesaurus terms using eighteen million MEDLINE citations
    • PID: 21347110
    • Xu R, Musen MA, Shah NH. A comprehensive analysis of five million UMLS Metathesaurus terms using eighteen million MEDLINE citations. AMIA Annu Symp Proc. 2010;2010:907–11.
    • (2010) AMIA Annu Symp Proc , vol.2010 , pp. 907-911
    • Xu, R.1    Musen, M.A.2    Shah, N.H.3
  • 28
    • 84863537188 scopus 로고    scopus 로고
    • Unified Medical Language System term occurrences in clinical notes: a large-scale corpus analysis
    • PID: 22493050
    • Wu ST, Liu H, Li D, Tao C, Musen MA, Chute CG, et al. Unified Medical Language System term occurrences in clinical notes: a large-scale corpus analysis. J Am Med Inform Assoc. 2012;19(e1):e149–56. doi:10.1136/amiajnl-2011-000744.
    • (2012) J Am Med Inform Assoc , vol.19 , Issue.e1 , pp. 149-156
    • Wu, S.T.1    Liu, H.2    Li, D.3    Tao, C.4    Musen, M.A.5    Chute, C.G.6
  • 29
    • 74549117176 scopus 로고    scopus 로고
    • Biomedical text mining and its applications
    • PID: 20041219
    • Rodriguez-Esteban R, Mining Text, Applications Its. Biomedical text mining and its applications. PLoS Comput Biol. 2009;5(12):e1000597. doi:10.1371/journal.pcbi.1000597.
    • (2009) PLoS Comput Biol , vol.5 , Issue.12 , pp. 1000597
    • Rodriguez-Esteban, R.1    Mining, T.2    Applications, I.3
  • 30
    • 38949105955 scopus 로고    scopus 로고
    • Getting started in text mining
    • PID: 18225946
    • Cohen KB, Hunter L. Getting started in text mining. PLoS Comput Biol. 2008;4(1):e20. doi:10.1371/journal.pcbi.0040020.
    • (2008) PLoS Comput Biol , vol.4 , Issue.1 , pp. 20
    • Cohen, K.B.1    Hunter, L.2
  • 31
    • 82755183234 scopus 로고    scopus 로고
    • Integration and publication of heterogeneous text-mined relationships on the Semantic Web
    • Coulet A, Garten Y, Dumontier M, Altman RB, Musen MA, Shah NH. Integration and publication of heterogeneous text-mined relationships on the Semantic Web. J Biomed Semant. 2011;2(Suppl 2):S10. doi:10.1186/2041-1480-2-S2-S10.
    • (2011) J Biomed Semant , vol.2 , pp. 10
    • Coulet, A.1    Garten, Y.2    Dumontier, M.3    Altman, R.B.4    Musen, M.A.5    Shah, N.H.6
  • 32
    • 84858300305 scopus 로고    scopus 로고
    • Discovery and explanation of drug–drug interactions via text mining
    • Percha B, Garten Y, Altman RB. Discovery and explanation of drug–drug interactions via text mining. Pac Symp Biocomput; 2012; 410–21.
    • (2012) Pac Symp Biocomput , pp. 410-421
    • Percha, B.1    Garten, Y.2    Altman, R.B.3
  • 33
    • 77955287813 scopus 로고    scopus 로고
    • An overview of MetaMap: historical perspective and recent advances
    • PID: 20442139
    • Aronson AR, Lang FM. An overview of MetaMap: historical perspective and recent advances. J Am Med Inform Assoc. 2010;17(3):229–36. doi:10.1136/jamia.2009.002733.
    • (2010) J Am Med Inform Assoc , vol.17 , Issue.3 , pp. 229-236
    • Aronson, A.R.1    Lang, F.M.2
  • 35
    • 0035741485 scopus 로고    scopus 로고
    • A simple algorithm for identifying negated findings and diseases in discharge summaries
    • COI: 1:STN:280:DC%2BD38znslGqsA%3D%3D, PID: 12123149
    • Chapman WW, Bridewell W, Hanbury P, Cooper GF, Buchanan BG. A simple algorithm for identifying negated findings and diseases in discharge summaries. J Biomed Inform. 2001;34(5):301–10. doi:10.1006/jbin.2001.1029.
    • (2001) J Biomed Inform , vol.34 , Issue.5 , pp. 301-310
    • Chapman, W.W.1    Bridewell, W.2    Hanbury, P.3    Cooper, G.F.4    Buchanan, B.G.5
  • 36
    • 70349470770 scopus 로고    scopus 로고
    • ConText: an algorithm for determining negation, experiencer, and temporal status from clinical reports
    • PID: 19435614
    • Harkema H, Dowling JN, Thornblade T, Chapman WW. ConText: an algorithm for determining negation, experiencer, and temporal status from clinical reports. J Biomed Inform. 2009;42(5):839–51. doi:10.1016/j.jbi.2009.05.002.
    • (2009) J Biomed Inform , vol.42 , Issue.5 , pp. 839-851
    • Harkema, H.1    Dowling, J.N.2    Thornblade, T.3    Chapman, W.W.4
  • 37
    • 85028171856 scopus 로고    scopus 로고
    • Online registry of biomedical informatics tools. Accessed Apr 2014
    • Online registry of biomedical informatics tools. http://orbit.nlm.nih.gov/. Accessed Apr 2014.
  • 38
    • 85028161186 scopus 로고    scopus 로고
    • iDASH Center. Accessed Apr 2014
    • iDASH Center. http://idash.ucsd.edu/nlp/natural-language-processing-nlp-ecosystem. Accessed Apr 2014.
  • 39
    • 84876548863 scopus 로고    scopus 로고
    • A reference standard for evaluation of methods for drug safety signal detection using electronic healthcare record databases
    • COI: 1:CAS:528:DC%2BC3sXhsl2ns7bI, PID: 23315292
    • Coloma PM, Avillach P, Salvo F, Schuemie MJ, Ferrajolo C, Pariente A, et al. A reference standard for evaluation of methods for drug safety signal detection using electronic healthcare record databases. Drug Saf. 2013;36(1):13–23. doi:10.1007/s40264-012-0002-x.
    • (2013) Drug Saf , vol.36 , Issue.1 , pp. 13-23
    • Coloma, P.M.1    Avillach, P.2    Salvo, F.3    Schuemie, M.J.4    Ferrajolo, C.5    Pariente, A.6
  • 40
    • 84886264484 scopus 로고    scopus 로고
    • Automatic detection of adverse events to predict drug label changes using text and data mining techniques
    • PID: 23935003
    • Gurulingappa H, Toldo L, Rajput AM, Kors JA, Taweel A, Tayrouz Y. Automatic detection of adverse events to predict drug label changes using text and data mining techniques. Pharmacoepidemiol Drug Saf. 2013;22(11):1189–94. doi:10.1002/pds.3493.
    • (2013) Pharmacoepidemiol Drug Saf , vol.22 , Issue.11 , pp. 1189-1194
    • Gurulingappa, H.1    Toldo, L.2    Rajput, A.M.3    Kors, J.A.4    Taweel, A.5    Tayrouz, Y.6
  • 41
    • 84865989881 scopus 로고    scopus 로고
    • Development of a benchmark corpus to support the automatic extraction of drug-related adverse effects from medical case reports
    • PID: 22554702
    • Gurulingappa H, Rajput AM, Roberts A, Fluck J, Hofmann-Apitius M, Toldo L. Development of a benchmark corpus to support the automatic extraction of drug-related adverse effects from medical case reports. J Biomed Inform. 2012;45(5):885–92. doi:10.1016/j.jbi.2012.04.008.
    • (2012) J Biomed Inform , vol.45 , Issue.5 , pp. 885-892
    • Gurulingappa, H.1    Rajput, A.M.2    Roberts, A.3    Fluck, J.4    Hofmann-Apitius, M.5    Toldo, L.6
  • 42
    • 84893172915 scopus 로고    scopus 로고
    • Large-scale combining signals from both biomedical literature and the FDA Adverse Event Reporting System (FAERS) to improve post-marketing drug safety signal detection
    • Xu R, Wang Q. Large-scale combining signals from both biomedical literature and the FDA Adverse Event Reporting System (FAERS) to improve post-marketing drug safety signal detection. BMC Bioinform. 2014;15(1):17. doi:10.1186/1471-2105-15-17.
    • (2014) BMC Bioinform , vol.15 , Issue.1 , pp. 17
    • Xu, R.1    Wang, Q.2
  • 43
    • 85028130432 scopus 로고    scopus 로고
    • The Stanford Parser. Accessed Apr 2014
    • The Stanford Parser. http://nlp.stanford.edu/software/lex-parser.shtml. Accessed Apr 2014.
  • 44
    • 76149120425 scopus 로고    scopus 로고
    • A side effect resource to capture phenotypic effects of drugs
    • PID: 20087340
    • Kuhn M, Campillos M, Letunic I, Jensen LJ, Bork P. A side effect resource to capture phenotypic effects of drugs. Mol Syst Biol. 2010;6:343. doi:10.1038/msb.2009.98.
    • (2010) Mol Syst Biol , vol.6 , pp. 343
    • Kuhn, M.1    Campillos, M.2    Letunic, I.3    Jensen, L.J.4    Bork, P.5
  • 45
    • 84866067701 scopus 로고    scopus 로고
    • Literature based drug interaction prediction with clinical assessment using electronic medical records: novel myopathy associated drug interactions
    • COI: 1:CAS:528:DC%2BC38Xht1Srs7fE, PID: 22912565
    • Duke JD, Han X, Wang Z, Subhadarshini A, Karnik SD, Li X, et al. Literature based drug interaction prediction with clinical assessment using electronic medical records: novel myopathy associated drug interactions. PLoS Comput Biol. 2012;8(8):e1002614. doi:10.1371/journal.pcbi.1002614.
    • (2012) PLoS Comput Biol , vol.8 , Issue.8 , pp. 1002614
    • Duke, J.D.1    Han, X.2    Wang, Z.3    Subhadarshini, A.4    Karnik, S.D.5    Li, X.6
  • 46
    • 84870452887 scopus 로고    scopus 로고
    • Haerian K, Salmasian H, Harpaz R, Chase HS, Friedman C. A drug-adverse event extraction algorithm to support pharmacovigilance knowledge mining from PubMed citations
    • Wang W, Haerian K, Salmasian H, Harpaz R, Chase HS, Friedman C. A drug-adverse event extraction algorithm to support pharmacovigilance knowledge mining from PubMed citations. AMIA Annu Symp Proc. 2011; 2011:1464–70.
    • (2011) AMIA Annu Symp Proc , vol.2011 , pp. 1464-1470
  • 47
    • 84879902091 scopus 로고    scopus 로고
    • Extracting drug indication information from structured product labels using natural language processing
    • PID: 23475786
    • Fung KW, Jao CS, Demner-Fushman D. Extracting drug indication information from structured product labels using natural language processing. J Am Med Inform Assoc. 2013;20(3):482–8. doi:10.1136/amiajnl-2012-001291.
    • (2013) J Am Med Inform Assoc , vol.20 , Issue.3 , pp. 482-488
    • Fung, K.W.1    Jao, C.S.2    Demner-Fushman, D.3
  • 48
    • 85028154161 scopus 로고    scopus 로고
    • DailyMed. Accessed Apr 2014
    • DailyMed. http://dailymed.nlm.nih.gov/. Accessed Apr 2014.
  • 49
    • 85028160707 scopus 로고    scopus 로고
    • Friedlin J, Duke J. Applying natural language processing to extract codify adverse drug reaction in medication labels. Accessed Apr 2014
    • Friedlin J, Duke J. Applying natural language processing to extract codify adverse drug reaction in medication labels. http://omop.fnih.org/OMOPWhitePapers2010. Accessed Apr 2014.
  • 50
    • 84892918936 scopus 로고    scopus 로고
    • Defining a reference set to support methodological research in drug safety
    • PID: 24166222
    • Ryan PB, Schuemie MJ, Welebob E, Duke J, Valentine S, Hartzema AG. Defining a reference set to support methodological research in drug safety. Drug Saf. 2013;36(Suppl 1):S33–47. doi:10.1007/s40264-013-0097-8.
    • (2013) Drug Saf , vol.36 , pp. 33-47
    • Ryan, P.B.1    Schuemie, M.J.2    Welebob, E.3    Duke, J.4    Valentine, S.5    Hartzema, A.G.6
  • 51
    • 84874511186 scopus 로고    scopus 로고
    • Consistency in the safety labeling of bioequivalent medications
    • COI: 1:CAS:528:DC%2BC3sXjsVKmsb0%3D, PID: 23042584
    • Duke J, Friedlin J, Li X. Consistency in the safety labeling of bioequivalent medications. Pharmacoepidemiol Drug Saf. 2013;22(3):294–301. doi:10.1002/pds.3351.
    • (2013) Pharmacoepidemiol Drug Saf , vol.22 , Issue.3 , pp. 294-301
    • Duke, J.1    Friedlin, J.2    Li, X.3
  • 52
    • 84893076281 scopus 로고    scopus 로고
    • Lessons learned from developing a drug evidence base to support pharmacovigilance
    • COI: 1:STN:280:DC%2BC2czosleqsw%3D%3D, PID: 24454585
    • Smith JC, Denny JC, Chen Q, Nian H, Spickard III A, Rosenbloom ST, et al. Lessons learned from developing a drug evidence base to support pharmacovigilance. Appl Clin Inform. 2013;4(4):596–617. doi:10.4338/ACI-2013-08-RA-0062.
    • (2013) Appl Clin Inform , vol.4 , Issue.4 , pp. 596-617
    • Smith, J.C.1    Denny, J.C.2    Chen, Q.3    Nian, H.4    Spickard III, A.5    Rosenbloom, S.T.6
  • 53
    • 0038154028 scopus 로고    scopus 로고
    • Understanding” medical school curriculum content using KnowledgeMap
    • PID: 12668688
    • Denny JC, Smithers JD, Miller RA, Spickard A. “Understanding” medical school curriculum content using KnowledgeMap. J Am Med Inform Assoc. 2003;10(4):351–62. doi:10.1197/jamia.M1176.
    • (2003) J Am Med Inform Assoc , vol.10 , Issue.4 , pp. 351-362
    • Denny, J.C.1    Smithers, J.D.2    Miller, R.A.3    Spickard, A.4
  • 54
    • 79955618085 scopus 로고    scopus 로고
    • ‘Global Trigger Tool’ shows that adverse events in hospitals may be ten times greater than previously measured
    • Classen DC, Resar R, Griffin F, Federico F, Frankel T, Kimmel N, et al. ‘Global Trigger Tool’ shows that adverse events in hospitals may be ten times greater than previously measured. Health Aff. 2011;30(4):581–9. doi:10.1377/hlthaff.2011.0190.
    • (2011) Health Aff , vol.30 , Issue.4 , pp. 581-589
    • Classen, D.C.1    Resar, R.2    Griffin, F.3    Federico, F.4    Frankel, T.5    Kimmel, N.6
  • 55
    • 84890536260 scopus 로고    scopus 로고
    • Defining a comprehensive verotype using electronic health records for personalized medicine
    • PID: 24001516
    • Boland MR, Hripcsak G, Shen Y, Chung WK, Weng C. Defining a comprehensive verotype using electronic health records for personalized medicine. J Am Med Inform Assoc. 2013;20(e2):e232–8. doi:10.1136/amiajnl-2013-001932.
    • (2013) J Am Med Inform Assoc , vol.20 , Issue.e2 , pp. 232-238
    • Boland, M.R.1    Hripcsak, G.2    Shen, Y.3    Chung, W.K.4    Weng, C.5
  • 56
    • 4544280638 scopus 로고    scopus 로고
    • Automated encoding of clinical documents based on natural language processing
    • PID: 15187068
    • Friedman C, Shagina L, Lussier Y, Hripcsak G. Automated encoding of clinical documents based on natural language processing. J Am Med Inform Assoc. 2004;11(5):392–402. doi:10.1197/jamia.M1552.
    • (2004) J Am Med Inform Assoc , vol.11 , Issue.5 , pp. 392-402
    • Friedman, C.1    Shagina, L.2    Lussier, Y.3    Hripcsak, G.4
  • 57
    • 65349157361 scopus 로고    scopus 로고
    • Active computerized pharmacovigilance using natural language processing, statistics, and electronic health records: a feasibility study
    • PID: 19261932
    • Wang X, Hripcsak G, Markatou M, Friedman C. Active computerized pharmacovigilance using natural language processing, statistics, and electronic health records: a feasibility study. J Am Med Inform Assoc. 2009;16(3):328–37. doi:10.1197/jamia.M3028.
    • (2009) J Am Med Inform Assoc , vol.16 , Issue.3 , pp. 328-337
    • Wang, X.1    Hripcsak, G.2    Markatou, M.3    Friedman, C.4
  • 58
    • 84864128230 scopus 로고    scopus 로고
    • Haerian K, Varn D, Vaidya S, Ena L, Chase HS, Friedman C. Detection of pharmacovigilance-related adverse events using electronic health records and automated methods. Clin Pharmacol Ther. 2012;92(2):228–34. Accessed Apr 2014
    • Haerian K, Varn D, Vaidya S, Ena L, Chase HS, Friedman C. Detection of pharmacovigilance-related adverse events using electronic health records and automated methods. Clin Pharmacol Ther. 2012;92(2):228–34. http://www.nature.com/clpt/journal/v92/n2/suppinfo/clpt201254s1.html. Accessed Apr 2014.
  • 59
    • 84894026504 scopus 로고    scopus 로고
    • A method for controlling complex confounding effects in the detection of adverse drug reactions using electronic health records
    • PID: 23907285
    • Li Y, Salmasian H, Vilar S, Chase H, Friedman C, Wei Y. A method for controlling complex confounding effects in the detection of adverse drug reactions using electronic health records. J Am Med Inform Assoc. 2014;21(2):308–14. doi:10.1136/amiajnl-2013-001718.
    • (2014) J Am Med Inform Assoc , vol.21 , Issue.2 , pp. 308-314
    • Li, Y.1    Salmasian, H.2    Vilar, S.3    Chase, H.4    Friedman, C.5    Wei, Y.6
  • 60
    • 78650943943 scopus 로고    scopus 로고
    • Proceedings of the 1st ACM International Health Informatics Symposium; Arlington
    • Harpaz R, Haerian K, Chase HS, Friedman C. Mining electronic health records for adverse drug effects using regression based methods. In: Proceedings of the 1st ACM International Health Informatics Symposium; Arlington, VA. 1883008: ACM; 2010: pp. 100–7.
    • VA. 1883008: ACM , vol.2010 , pp. 100-107
    • Harpaz, R.1    Haerian, K.2    Chase, H.S.3    Friedman, C.4
  • 62
    • 77958007735 scopus 로고    scopus 로고
    • STRIDE—an integrated standards-based translational research informatics platform
    • PID: 20351886
    • Lowe HJ, Ferris TA, Hernandez PM, Weber SC. STRIDE—an integrated standards-based translational research informatics platform. AMIA Annu Symp Proc. 2009;2009:391–5.
    • (2009) AMIA Annu Symp Proc , vol.2009 , pp. 391-395
    • Lowe, H.J.1    Ferris, T.A.2    Hernandez, P.M.3    Weber, S.C.4
  • 63
    • 84894069926 scopus 로고    scopus 로고
    • Mining clinical text for signals of adverse drug-drug interactions, J Am Med Inform Assoc:
    • Iyer SV, Harpaz R, Lependu P, Bauer-Mehren A, Shah NH. Mining clinical text for signals of adverse drug-drug interactions. J Am Med Inform Assoc. 2013. doi:10.1136/amiajnl-2013-001612.
    • (2013) Shah NH
    • Iyer, S.V.1    Harpaz, R.2    Lependu, P.3    Bauer-Mehren, A.4
  • 64
  • 66
    • 84876670577 scopus 로고    scopus 로고
    • Combing signals from spontaneous reports and electronic health records for detection of adverse drug reactions
    • PID: 23118093
    • Harpaz R, Vilar S, Dumouchel W, Salmasian H, Haerian K, Shah NH, et al. Combing signals from spontaneous reports and electronic health records for detection of adverse drug reactions. J Am Med Inform Assoc. 2013;20(3):413–9. doi:10.1136/amiajnl-2012-000930.
    • (2013) J Am Med Inform Assoc , vol.20 , Issue.3 , pp. 413-419
    • Harpaz, R.1    Vilar, S.2    Dumouchel, W.3    Salmasian, H.4    Haerian, K.5    Shah, N.H.6
  • 67
    • 84883747248 scopus 로고    scopus 로고
    • Natural language processing: state of the art and prospects for significant progress, a workshop sponsored by the National Library of Medicine
    • PID: 23810857
    • Friedman C, Rindflesch TC, Corn M. Natural language processing: state of the art and prospects for significant progress, a workshop sponsored by the National Library of Medicine. J Biomed Inform. 2013;46(5):765–73. doi:10.1016/j.jbi.2013.06.004.
    • (2013) J Biomed Inform , vol.46 , Issue.5 , pp. 765-773
    • Friedman, C.1    Rindflesch, T.C.2    Corn, M.3
  • 68
    • 85028129975 scopus 로고    scopus 로고
    • The Social Life of Health Information, Pew Research Center. Accessed Apr 2014
    • The Social Life of Health Information, Pew Research Center. http://www.pewinternet.org/2011/05/12/the-social-life-of-health-information-2011. Accessed Apr 2014.
  • 69
    • 79952770759 scopus 로고    scopus 로고
    • Social media and networks in pharmacovigilance
    • PID: 21417499
    • Edwards IR, Lindquist M. Social media and networks in pharmacovigilance. Drug Saf. 2011;34(4):267–71. doi:10.2165/11590720-000000000-00000.
    • (2011) Drug Saf , vol.34 , Issue.4 , pp. 267-271
    • Edwards, I.R.1    Lindquist, M.2
  • 70
    • 0037657836 scopus 로고    scopus 로고
    • Paroxetine, panorama and user reporting of ADRs: consumer intelligence matters in clinical practice and post-marketing drug surveillance
    • Medawar C, Herxheimer A, Bell A, Jofre S. Paroxetine, panorama and user reporting of ADRs: consumer intelligence matters in clinical practice and post-marketing drug surveillance. Int J Risk Saf Med. 2002;15(3):161–9.
    • (2002) Int J Risk Saf Med , vol.15 , Issue.3 , pp. 161-169
    • Medawar, C.1    Herxheimer, A.2    Bell, A.3    Jofre, S.4
  • 71
    • 13444260767 scopus 로고    scopus 로고
    • Alendronate and risedronate: reports of severe bone, joint, and muscle pain
    • PID: 15710802
    • Wysowski DK, Chang JT. Alendronate and risedronate: reports of severe bone, joint, and muscle pain. Arch Intern Med. 2005;165(3):346–7. doi:10.1001/archinte.165.3.346-b.
    • (2005) Arch Intern Med , vol.165 , Issue.3 , pp. 346-347
    • Wysowski, D.K.1    Chang, J.T.2
  • 72
    • 67649502972 scopus 로고    scopus 로고
    • Patient- and physician-oriented web sites and drug surveillance: bisphosphonates and severe bone, joint, and muscle pain
    • DeMonaco HJ. Patient- and physician-oriented web sites and drug surveillance: bisphosphonates and severe bone, joint, and muscle pain. Arch Inter Med. 2009;169(12):1164–6. doi:10.1001/archinternmed.2009.133.
    • (2009) Arch Inter Med , vol.169 , Issue.12 , pp. 1164-1166
    • DeMonaco, H.J.1
  • 73
    • 67649989050 scopus 로고    scopus 로고
    • The subjective experience of taking antipsychotic medication: a content analysis of Internet data
    • COI: 1:STN:280:DC%2BD1MvnvFWiuw%3D%3D, PID: 19222405
    • Moncrieff J, Cohen D, Mason JP. The subjective experience of taking antipsychotic medication: a content analysis of Internet data. Acta Psychiatrica Scandinavica. 2009;120(2):102–11. doi:10.1111/j.1600-0447.2009.01356.x.
    • (2009) Acta Psychiatrica Scandinavica , vol.120 , Issue.2 , pp. 102-111
    • Moncrieff, J.1    Cohen, D.2    Mason, J.P.3
  • 74
    • 85028139886 scopus 로고    scopus 로고
    • Towards internet-age pharmacovigilance: extracting adverse drug reactions from user posts in health-related social networks
    • Leaman R, Wojtulewicz L, Sullivan R, Skariah A, Yang J, Gonzalez G. Towards internet-age pharmacovigilance: extracting adverse drug reactions from user posts in health-related social networks. In: Proceedings of the 2010 Workshop on Biomedical Natural Language Processing. 2010: pp: 117–25.
    • (2010) In: Proceedings of the 2010 Workshop on Biomedical Natural Language Processing
  • 75
    • 84870462946 scopus 로고    scopus 로고
    • Proceedings of the 2012 International Workshop on Smart Health and Wellbeing; Maui
    • Yang CC, Yang H, Jiang L, Zhang M. Social media mining for drug safety signal detection. In: Proceedings of the 2012 International Workshop on Smart Health and Wellbeing; Maui, HI. 2389714: ACM; 2012. p. 33–40.
    • HI. 2389714: ACM , vol.2012 , pp. 33-40
    • Yang, C.C.1    Yang, H.2    Jiang, L.3    Zhang, M.4
  • 76
    • 85028174222 scopus 로고    scopus 로고
    • Consumer health vocabulary. Accessed Apr 2014
    • Consumer health vocabulary. http://consumerhealthvocab.org/. Accessed Apr 2014.
  • 77
    • 84881133007 scopus 로고    scopus 로고
    • AZDrugMiner: an information extraction system for mining patient-reported adverse drug events in online patient forums
    • Zeng D, Yang C, Tseng V, Xing C, Chen H, Wang F-Y, (eds), Berlin Heidelberg, Springer:
    • Liu X, Chen H. AZDrugMiner: an information extraction system for mining patient-reported adverse drug events in online patient forums. In: Zeng D, Yang C, Tseng V, Xing C, Chen H, Wang F-Y, et al., editors. Smart Health. Lecture notes in computer science. Springer: Berlin Heidelberg; 2013. p. 134–50.
    • (2013) Smart Health. Lecture notes in computer science , pp. 134-150
    • Liu, X.1    Chen, H.2
  • 78
    • 84874210162 scopus 로고    scopus 로고
    • Pattern mining for extraction of mentions of adverse drug reactions from user comments
    • PID: 22195162
    • Nikfarjam A, Gonzalez GH. Pattern mining for extraction of mentions of adverse drug reactions from user comments. AMIA Annu Symp Proc. 2011;2011:1019–26.
    • (2011) AMIA Annu Symp Proc , vol.2011 , pp. 1019-1026
    • Nikfarjam, A.1    Gonzalez, G.H.2
  • 79
    • 84863556111 scopus 로고    scopus 로고
    • Predicting adverse drug events from personal health messages
    • PID: 22195073
    • Chee BW, Berlin R, Schatz B. Predicting adverse drug events from personal health messages. AMIA Annu Symp Proc. 2011;2011:217–26.
    • (2011) AMIA Annu Symp Proc , vol.2011 , pp. 217-226
    • Chee, B.W.1    Berlin, R.2    Schatz, B.3
  • 82
    • 84855919063 scopus 로고    scopus 로고
    • Identifying potential adverse effects using the web: a new approach to medical hypothesis generation
    • PID: 21820083
    • Benton A, Ungar L, Hill S, Hennessy S, Mao J, Chung A, et al. Identifying potential adverse effects using the web: a new approach to medical hypothesis generation. J Biomed Inform. 2011;44(6):989–96. doi:10.1016/j.jbi.2011.07.005.
    • (2011) J Biomed Inform , vol.44 , Issue.6 , pp. 989-996
    • Benton, A.1    Ungar, L.2    Hill, S.3    Hennessy, S.4    Mao, J.5    Chung, A.6
  • 83
    • 85028169071 scopus 로고    scopus 로고
    • Statistic brain. Accessed Apr 2014
    • Statistic brain. http://www.statisticbrain.com/twitter-statistics/. Accessed Apr 2014.
  • 84
    • 84870431352 scopus 로고    scopus 로고
    • Proceedings of the 2012 International Workshop on Smart Health and Wellbeing; Maui
    • Bian J, Topaloglu U, Yu F. Towards large-scale twitter mining for drug-related adverse events. In: Proceedings of the 2012 International Workshop on Smart Health and Wellbeing; Maui, HI. 2389713: ACM; 2012: pp. 25–32.
    • HI. 2389713: ACM , vol.2012 , pp. 25-32
    • Bian, J.1    Topaloglu, U.2    Yu, F.3
  • 85
    • 84893075973 scopus 로고    scopus 로고
    • Mining twitter data for potential drug effects
    • Motoda H, Wu Z, Cao L, Zaiane O, Yao M, Wang W, (eds), Berlin, Springer:
    • Jiang K, Zheng Y. Mining twitter data for potential drug effects. In: Motoda H, Wu Z, Cao L, Zaiane O, Yao M, Wang W, editors. Advanced data mining and applications. Lecture notes in computer science. Springer: Berlin; 2013. p. 434–43.
    • (2013) Advanced data mining and applications. Lecture notes in computer science , pp. 434-443
    • Jiang, K.1    Zheng, Y.2
  • 86
    • 84942551298 scopus 로고    scopus 로고
    • Phonetic spelling filter for keyword selection in drug mention mining from social media
    • Pimpalkhute P, Patki A, Nikfarjam A, Gonzalez G. Phonetic spelling filter for keyword selection in drug mention mining from social media. AMIA TBI Summit. 2014.
    • (2014) AMIA TBI Summit
    • Pimpalkhute, P.1    Patki, A.2    Nikfarjam, A.3    Gonzalez, G.4
  • 87
    • 85028165070 scopus 로고    scopus 로고
    • Centers for Disease Control and Prevention (CDC). Use of the Internet for health information: United States, 2009. Accessed Apr 2014
    • Centers for Disease Control and Prevention (CDC). Use of the Internet for health information: United States, 2009. http://www.cdc.gov/nchs/data/databriefs/db66.htm. Accessed Apr 2014.
  • 88
    • 85028147098 scopus 로고    scopus 로고
    • Pew Research Center. Pew Internet and American Life Project: Health Online 2013. Accessed Apr 2014
    • Pew Research Center. Pew Internet and American Life Project: Health Online 2013. http://www.pewinternet.org/~/media/Files/Reports/2013/Pew%20Internet%20Health%20Online%20report.pdf. Accessed Apr 2014.
  • 89
    • 60549098239 scopus 로고    scopus 로고
    • Detecting influenza epidemics using search engine query data
    • COI: 1:CAS:528:DC%2BD1MXht1ehurk%3D, PID: 19020500
    • Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, Brilliant L. Detecting influenza epidemics using search engine query data. Nature. 2009;457(7232):1012–4. doi:10.1038/Nature07634.
    • (2009) Nature , vol.457 , Issue.7232 , pp. 1012-1014
    • Ginsberg, J.1    Mohebbi, M.H.2    Patel, R.S.3    Brammer, L.4    Smolinski, M.S.5    Brilliant, L.6
  • 91
    • 84904857162 scopus 로고    scopus 로고
    • Toward enhanced pharmacovigilance using patient-generated data on the internet
    • White RW, Harpaz R, Shah NH, DuMouchel W, Horvitz E. Toward enhanced pharmacovigilance using patient-generated data on the internet. Clin Pharmacol Ther. 2014;96(2):239–46.
    • (2014) Clin Pharmacol Ther , vol.96 , Issue.2 , pp. 239-246
    • White, R.W.1    Harpaz, R.2    Shah, N.H.3    DuMouchel, W.4    Horvitz, E.5
  • 92
    • 79959379936 scopus 로고    scopus 로고
    • Detecting drug interactions from adverse-event reports: interaction between paroxetine and pravastatin increases blood glucose levels
    • COI: 1:CAS:528:DC%2BC3MXnvVaksLY%3D, PID: 21613990
    • Tatonetti NP, Denny JC, Murphy SN, Fernald GH, Krishnan G, Castro V, et al. Detecting drug interactions from adverse-event reports: interaction between paroxetine and pravastatin increases blood glucose levels. Clin Pharmacol Ther. 2011;90(1):133–142.
    • (2011) Clin Pharmacol Ther , vol.90 , Issue.1 , pp. 133-142
    • Tatonetti, N.P.1    Denny, J.C.2    Murphy, S.N.3    Fernald, G.H.4    Krishnan, G.5    Castro, V.6
  • 93
    • 80053260063 scopus 로고    scopus 로고
    • Text mining for the Vaccine Adverse Event Reporting System: medical text classification using informative feature selection
    • PID: 21709163
    • Botsis T, Nguyen MD, Woo EJ, Markatou M, Ball R. Text mining for the Vaccine Adverse Event Reporting System: medical text classification using informative feature selection. J Am Med Inform Assoc. 2011;18(5):631–8. doi:10.1136/amiajnl-2010-000022.
    • (2011) J Am Med Inform Assoc , vol.18 , Issue.5 , pp. 631-638
    • Botsis, T.1    Nguyen, M.D.2    Woo, E.J.3    Markatou, M.4    Ball, R.5
  • 94
    • 85028174566 scopus 로고    scopus 로고
    • New Drug Application (NDA). Accessed Apr 2014
    • New Drug Application (NDA). http://www.fda.gov/drugs/developmentapprovalprocess/howdrugsaredevelopedandapproved/approvalapplications/newdrugapplicationnda/default.htm. Accessed Apr 2014.
  • 95
    • 85028130434 scopus 로고    scopus 로고
    • European Public Assessment Reports. Accessed Apr 2014
    • European Public Assessment Reports. http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/landing/epar_search.jsp&mid=WC0b01ac058001d125. Accessed Apr 2014.
  • 96
    • 85028153457 scopus 로고    scopus 로고
    • World Health Organization pharmaceuticals newsletter. Accessed Apr 2014
    • World Health Organization pharmaceuticals newsletter. http://www.who.int/medicines/publications/newsletter/en/. Accessed Apr 2014.
  • 97
    • 85028133484 scopus 로고    scopus 로고
    • Potential signals of serious risks/new safety information identified from the FDA Adverse Event Reporting System (FAERS). Accessed Apr 2014
    • Potential signals of serious risks/new safety information identified from the FDA Adverse Event Reporting System (FAERS). http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/UCM082196. Accessed Apr 2014.
  • 98
    • 85028154384 scopus 로고    scopus 로고
    • Clinical trial reports. Accessed Apr 2014
    • Clinical trial reports. http://www.fda.gov/downloads/regulatoryinformation/guidances/ucm129456.pdf. Accessed Apr 2014.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.