-
3
-
-
0036300732
-
Use of screening algorithms and computer systems to efficiently signal higher-than-expected combinations of drugs and events in the US FDA’s spontaneous reports database
-
COI: 1:CAS:528:DC%2BD38XlslOitrY%3D, PID: 12071774
-
Szarfman A, Machado SG, O’Neill RT. Use of screening algorithms and computer systems to efficiently signal higher-than-expected combinations of drugs and events in the US FDA’s spontaneous reports database. Drug Saf. 2002;25(6):381–92.
-
(2002)
Drug Saf
, vol.25
, Issue.6
, pp. 381-392
-
-
Szarfman, A.1
Machado, S.G.2
O’Neill, R.T.3
-
4
-
-
84878260825
-
Performance of pharmacovigilance signal-detection algorithms for the FDA adverse event reporting system
-
COI: 1:STN:280:DC%2BC3srjslyitQ%3D%3D, PID: 23571771
-
Harpaz R, Dumouchel W, Lependu P, Bauer-Mehren A, Ryan P, Shah NH. Performance of pharmacovigilance signal-detection algorithms for the FDA adverse event reporting system. Clin Pharmacol Ther. 2013;93(6):539–46. doi:10.1038/clpt.2013.24.
-
(2013)
Clin Pharmacol Ther
, vol.93
, Issue.6
, pp. 539-546
-
-
Harpaz, R.1
Dumouchel, W.2
Lependu, P.3
Bauer-Mehren, A.4
Ryan, P.5
Shah, N.H.6
-
5
-
-
84871571398
-
Multivariate bayesian logistic regression for analysis of clinical study safety issues
-
DuMouchel W. Multivariate bayesian logistic regression for analysis of clinical study safety issues. Stat Sci. 2012;27(3):319–39. doi:10.1214/11-STS381.
-
(2012)
Stat Sci
, vol.27
, Issue.3
, pp. 319-339
-
-
DuMouchel, W.1
-
6
-
-
84878248963
-
Advancing the science of pharmacovigilance
-
COI: 1:STN:280:DC%2BC3snltlGlsw%3D%3D, PID: 23689213
-
Honig PK. Advancing the science of pharmacovigilance. Clin Pharmacol Ther. 2013;93(6):474–5. doi:10.1038/clpt.2013.60.
-
(2013)
Clin Pharmacol Ther
, vol.93
, Issue.6
, pp. 474-475
-
-
Honig, P.K.1
-
7
-
-
84861346585
-
Novel data-mining methodologies for adverse drug event discovery and analysis
-
COI: 1:CAS:528:DC%2BC38XnsFGns7g%3D, PID: 22549283
-
Harpaz R, DuMouchel W, Shah NH, Madigan D, Ryan P, Friedman C. Novel data-mining methodologies for adverse drug event discovery and analysis. Clin Pharmacol Ther. 2012;91(6):1010–21. doi:10.1038/clpt.2012.50.
-
(2012)
Clin Pharmacol Ther
, vol.91
, Issue.6
, pp. 1010-1021
-
-
Harpaz, R.1
DuMouchel, W.2
Shah, N.H.3
Madigan, D.4
Ryan, P.5
Friedman, C.6
-
8
-
-
85028141690
-
-
Prescription Drug User Fee Act (PDUFA V). Accessed Apr 2014
-
Prescription Drug User Fee Act (PDUFA V). http://www.fda.gov/ForIndustry/UserFees/PrescriptionDrugUserFee/ucm272170.htm. Accessed Apr 2014.
-
-
-
-
9
-
-
85028170180
-
-
Regulation (EU) No 1235/2010 of the European Parliament and of the Council of 15 December 2010. Accessed Apr 2014
-
Regulation (EU) No 1235/2010 of the European Parliament and of the Council of 15 December 2010. http://www.ema.europa.eu/ema/index.jsp?curl=pages/regulation/general/general_content_000492.jsp. Accessed Apr 2014.
-
-
-
-
10
-
-
85028156256
-
-
Food and Drug Administration Amendments Act (FDAAA) of 2007. Accessed Apr 2014
-
Food and Drug Administration Amendments Act (FDAAA) of 2007. http://www.fda.gov/regulatoryinformation/legislation/federalfooddrugandcosmeticactfdcact/significantamendmentstothefdcact/foodanddrugadministrationamendmentsactof2007/default.htm. Accessed Apr 2014.
-
-
-
-
11
-
-
68849085448
-
The new sentinel network: improving the evidence of medical-product safety
-
COI: 1:CAS:528:DC%2BD1MXpvFOjtrg%3D, PID: 19635947
-
Platt R, Wilson M, Chan KA, Benner JS, Marchibroda J, McClellan M. The new sentinel network: improving the evidence of medical-product safety. N Engl J Med. 2009;361(7):645–7.
-
(2009)
N Engl J Med
, vol.361
, Issue.7
, pp. 645-647
-
-
Platt, R.1
Wilson, M.2
Chan, K.A.3
Benner, J.S.4
Marchibroda, J.5
McClellan, M.6
-
12
-
-
78751688048
-
Advancing the science for active surveillance: rationale and design for the observational medical outcomes partnership
-
Stang PE, Ryan PB, Racoosin JA, Overhage JM, Hartzema AG, Reich C, et al. Advancing the science for active surveillance: rationale and design for the observational medical outcomes partnership. Annal Intern Med. 2010;153(9):600–6.
-
(2010)
Annal Intern Med
, vol.153
, Issue.9
, pp. 600-606
-
-
Stang, P.E.1
Ryan, P.B.2
Racoosin, J.A.3
Overhage, J.M.4
Hartzema, A.G.5
Reich, C.6
-
13
-
-
78650362198
-
Combining electronic healthcare databases in Europe to allow for large-scale drug safety monitoring: the EU-ADR Project
-
PID: 21182150
-
Coloma PM, Schuemie MJ, Trifiro G, Gini R, Herings R, Hippisley-Cox J, et al. Combining electronic healthcare databases in Europe to allow for large-scale drug safety monitoring: the EU-ADR Project. Pharmacoepidemiol Drug Saf. 2011;20(1):1–11.
-
(2011)
Pharmacoepidemiol Drug Saf
, vol.20
, Issue.1
, pp. 1-11
-
-
Coloma, P.M.1
Schuemie, M.J.2
Trifiro, G.3
Gini, R.4
Herings, R.5
Hippisley-Cox, J.6
-
14
-
-
80053254385
-
Using information mining of the medical literature to improve drug safety
-
PID: 21546507
-
Shetty KD, Dalal SR. Using information mining of the medical literature to improve drug safety. J Am Med Inform Assoc. 2011;18(5):668–74. doi:10.1136/amiajnl-2011-000096.
-
(2011)
J Am Med Inform Assoc
, vol.18
, Issue.5
, pp. 668-674
-
-
Shetty, K.D.1
Dalal, S.R.2
-
15
-
-
84879988282
-
Design and validation of an automated method to detect known adverse drug reactions in MEDLINE: a contribution from the EU-ADR project
-
PID: 23195749
-
Avillach P, Dufour JC, Diallo G, Salvo F, Joubert M, Thiessard F, et al. Design and validation of an automated method to detect known adverse drug reactions in MEDLINE: a contribution from the EU-ADR project. J Am Med Inform Assoc. 2013;20(3):446–52. doi:10.1136/amiajnl-2012-001083.
-
(2013)
J Am Med Inform Assoc
, vol.20
, Issue.3
, pp. 446-452
-
-
Avillach, P.1
Dufour, J.C.2
Diallo, G.3
Salvo, F.4
Joubert, M.5
Thiessard, F.6
-
16
-
-
85028144525
-
Bridging islands of information to establish an integrated knowledge base of drugs and health outcomes of interest
-
Boyce RD, Ryan PB, Noren GN, et al. Bridging islands of information to establish an integrated knowledge base of drugs and health outcomes of interest. Drug Saf. 2014;2014(07/02):1–11.
-
(2014)
Drug Saf
, vol.2014
, Issue.7-2
, pp. 1-11
-
-
Boyce, R.D.1
Ryan, P.B.2
Noren, G.N.3
-
17
-
-
84964936658
-
ADESSA: a real-time decision support service for delivery of semantically coded adverse drug event data
-
PID: 21346964
-
Duke JD, Friedlin J. ADESSA: a real-time decision support service for delivery of semantically coded adverse drug event data. AMIA Annu Symp Proc. 2010;2010:177–81.
-
(2010)
AMIA Annu Symp Proc
, vol.2010
, pp. 177-181
-
-
Duke, J.D.1
Friedlin, J.2
-
18
-
-
85028161172
-
-
Innovative medicines initiative. 9th call for proposals 2013. Accessed Apr 2014
-
Innovative medicines initiative. 9th call for proposals 2013. http://www.imi.europa.eu/sites/default/files/uploads/documents/9th_Call/Calll_9_Text.pdf. Accessed Apr 2014.
-
-
-
-
19
-
-
85028132219
-
-
FDA Science Board Subcommittee. Review of the FDA/CDER Pharmacovigilance Program (Prepared for the FDA Science Board May 2011). Accessed Apr 2014
-
FDA Science Board Subcommittee. Review of the FDA/CDER Pharmacovigilance Program (Prepared for the FDA Science Board May 2011). http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/ScienceBoardtotheFoodandDrugAdministration/UCM276888.pdf. Accessed Apr 2014.
-
-
-
-
20
-
-
84957970012
-
Natural language processing in health care and biomedicine
-
Shortliffe EH, Cimino JJ, (eds), Springer, London:
-
Friedman C, Elhadad N. Natural language processing in health care and biomedicine. In: Shortliffe EH, Cimino JJ, editors. Biomedical informatics. London: Springer; 2014. p. 255–84.
-
(2014)
Biomedical informatics
, pp. 255-284
-
-
Friedman, C.1
Elhadad, N.2
-
21
-
-
80053254020
-
Natural language processing: an introduction
-
PID: 21846786
-
Nadkarni PM, Ohno-Machado L, Chapman WW. Natural language processing: an introduction. J Am Med Inform Assoc. 2011;18(5):544–51. doi:10.1136/amiajnl-2011-000464.
-
(2011)
J Am Med Inform Assoc
, vol.18
, Issue.5
, pp. 544-551
-
-
Nadkarni, P.M.1
Ohno-Machado, L.2
Chapman, W.W.3
-
22
-
-
0027755702
-
The unified medical language system
-
COI: 1:STN:280:DyaK2c%2FhvVOkug%3D%3D, PID: 8412823
-
Lindberg DA, Humphreys BL, McCray AT. The unified medical language system. Methods Inf Med. 1993;32(4):281–91.
-
(1993)
Methods Inf Med
, vol.32
, Issue.4
, pp. 281-291
-
-
Lindberg, D.A.1
Humphreys, B.L.2
McCray, A.T.3
-
23
-
-
67849128700
-
BioPortal: ontologies and integrated data resources at the click of a mouse
-
COI: 1:CAS:528:DC%2BD1MXosFSksbY%3D, PID: 19483092
-
Noy NF, Shah NH, Whetzel PL, Dai B, Dorf M, Griffith N, et al. BioPortal: ontologies and integrated data resources at the click of a mouse. Nucleic Acids Res. 2009;37(Web Server issue):W170–3. doi:10.1093/nar/gkp440.
-
(2009)
Nucleic Acids Res
, vol.37
, Issue.Web Server issue
, pp. 170-173
-
-
Noy, N.F.1
Shah, N.H.2
Whetzel, P.L.3
Dai, B.4
Dorf, M.5
Griffith, N.6
-
24
-
-
80053292637
-
2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text
-
PID: 21685143
-
Uzuner O, South BR, Shen S, DuVall SL. 2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text. J Am Med Inform Assoc. 2011;18(5):552–6. doi:10.1136/amiajnl-2011-000203.
-
(2011)
J Am Med Inform Assoc
, vol.18
, Issue.5
, pp. 552-556
-
-
Uzuner, O.1
South, B.R.2
Shen, S.3
DuVall, S.L.4
-
26
-
-
78650495544
-
Drug safety surveillance using de-identified EMR and claims data: issues and challenges
-
PID: 20962129
-
Nadkarni PM. Drug safety surveillance using de-identified EMR and claims data: issues and challenges. J Am Med Inform Assoc. 2010;17(6):671–4. doi:10.1136/jamia.2010.008607.
-
(2010)
J Am Med Inform Assoc
, vol.17
, Issue.6
, pp. 671-674
-
-
Nadkarni, P.M.1
-
27
-
-
84983035827
-
A comprehensive analysis of five million UMLS Metathesaurus terms using eighteen million MEDLINE citations
-
PID: 21347110
-
Xu R, Musen MA, Shah NH. A comprehensive analysis of five million UMLS Metathesaurus terms using eighteen million MEDLINE citations. AMIA Annu Symp Proc. 2010;2010:907–11.
-
(2010)
AMIA Annu Symp Proc
, vol.2010
, pp. 907-911
-
-
Xu, R.1
Musen, M.A.2
Shah, N.H.3
-
28
-
-
84863537188
-
Unified Medical Language System term occurrences in clinical notes: a large-scale corpus analysis
-
PID: 22493050
-
Wu ST, Liu H, Li D, Tao C, Musen MA, Chute CG, et al. Unified Medical Language System term occurrences in clinical notes: a large-scale corpus analysis. J Am Med Inform Assoc. 2012;19(e1):e149–56. doi:10.1136/amiajnl-2011-000744.
-
(2012)
J Am Med Inform Assoc
, vol.19
, Issue.e1
, pp. 149-156
-
-
Wu, S.T.1
Liu, H.2
Li, D.3
Tao, C.4
Musen, M.A.5
Chute, C.G.6
-
29
-
-
74549117176
-
Biomedical text mining and its applications
-
PID: 20041219
-
Rodriguez-Esteban R, Mining Text, Applications Its. Biomedical text mining and its applications. PLoS Comput Biol. 2009;5(12):e1000597. doi:10.1371/journal.pcbi.1000597.
-
(2009)
PLoS Comput Biol
, vol.5
, Issue.12
, pp. 1000597
-
-
Rodriguez-Esteban, R.1
Mining, T.2
Applications, I.3
-
30
-
-
38949105955
-
Getting started in text mining
-
PID: 18225946
-
Cohen KB, Hunter L. Getting started in text mining. PLoS Comput Biol. 2008;4(1):e20. doi:10.1371/journal.pcbi.0040020.
-
(2008)
PLoS Comput Biol
, vol.4
, Issue.1
, pp. 20
-
-
Cohen, K.B.1
Hunter, L.2
-
31
-
-
82755183234
-
Integration and publication of heterogeneous text-mined relationships on the Semantic Web
-
Coulet A, Garten Y, Dumontier M, Altman RB, Musen MA, Shah NH. Integration and publication of heterogeneous text-mined relationships on the Semantic Web. J Biomed Semant. 2011;2(Suppl 2):S10. doi:10.1186/2041-1480-2-S2-S10.
-
(2011)
J Biomed Semant
, vol.2
, pp. 10
-
-
Coulet, A.1
Garten, Y.2
Dumontier, M.3
Altman, R.B.4
Musen, M.A.5
Shah, N.H.6
-
32
-
-
84858300305
-
Discovery and explanation of drug–drug interactions via text mining
-
Percha B, Garten Y, Altman RB. Discovery and explanation of drug–drug interactions via text mining. Pac Symp Biocomput; 2012; 410–21.
-
(2012)
Pac Symp Biocomput
, pp. 410-421
-
-
Percha, B.1
Garten, Y.2
Altman, R.B.3
-
33
-
-
77955287813
-
An overview of MetaMap: historical perspective and recent advances
-
PID: 20442139
-
Aronson AR, Lang FM. An overview of MetaMap: historical perspective and recent advances. J Am Med Inform Assoc. 2010;17(3):229–36. doi:10.1136/jamia.2009.002733.
-
(2010)
J Am Med Inform Assoc
, vol.17
, Issue.3
, pp. 229-236
-
-
Aronson, A.R.1
Lang, F.M.2
-
35
-
-
0035741485
-
A simple algorithm for identifying negated findings and diseases in discharge summaries
-
COI: 1:STN:280:DC%2BD38znslGqsA%3D%3D, PID: 12123149
-
Chapman WW, Bridewell W, Hanbury P, Cooper GF, Buchanan BG. A simple algorithm for identifying negated findings and diseases in discharge summaries. J Biomed Inform. 2001;34(5):301–10. doi:10.1006/jbin.2001.1029.
-
(2001)
J Biomed Inform
, vol.34
, Issue.5
, pp. 301-310
-
-
Chapman, W.W.1
Bridewell, W.2
Hanbury, P.3
Cooper, G.F.4
Buchanan, B.G.5
-
36
-
-
70349470770
-
ConText: an algorithm for determining negation, experiencer, and temporal status from clinical reports
-
PID: 19435614
-
Harkema H, Dowling JN, Thornblade T, Chapman WW. ConText: an algorithm for determining negation, experiencer, and temporal status from clinical reports. J Biomed Inform. 2009;42(5):839–51. doi:10.1016/j.jbi.2009.05.002.
-
(2009)
J Biomed Inform
, vol.42
, Issue.5
, pp. 839-851
-
-
Harkema, H.1
Dowling, J.N.2
Thornblade, T.3
Chapman, W.W.4
-
37
-
-
85028171856
-
-
Online registry of biomedical informatics tools. Accessed Apr 2014
-
Online registry of biomedical informatics tools. http://orbit.nlm.nih.gov/. Accessed Apr 2014.
-
-
-
-
38
-
-
85028161186
-
-
iDASH Center. Accessed Apr 2014
-
iDASH Center. http://idash.ucsd.edu/nlp/natural-language-processing-nlp-ecosystem. Accessed Apr 2014.
-
-
-
-
39
-
-
84876548863
-
A reference standard for evaluation of methods for drug safety signal detection using electronic healthcare record databases
-
COI: 1:CAS:528:DC%2BC3sXhsl2ns7bI, PID: 23315292
-
Coloma PM, Avillach P, Salvo F, Schuemie MJ, Ferrajolo C, Pariente A, et al. A reference standard for evaluation of methods for drug safety signal detection using electronic healthcare record databases. Drug Saf. 2013;36(1):13–23. doi:10.1007/s40264-012-0002-x.
-
(2013)
Drug Saf
, vol.36
, Issue.1
, pp. 13-23
-
-
Coloma, P.M.1
Avillach, P.2
Salvo, F.3
Schuemie, M.J.4
Ferrajolo, C.5
Pariente, A.6
-
40
-
-
84886264484
-
Automatic detection of adverse events to predict drug label changes using text and data mining techniques
-
PID: 23935003
-
Gurulingappa H, Toldo L, Rajput AM, Kors JA, Taweel A, Tayrouz Y. Automatic detection of adverse events to predict drug label changes using text and data mining techniques. Pharmacoepidemiol Drug Saf. 2013;22(11):1189–94. doi:10.1002/pds.3493.
-
(2013)
Pharmacoepidemiol Drug Saf
, vol.22
, Issue.11
, pp. 1189-1194
-
-
Gurulingappa, H.1
Toldo, L.2
Rajput, A.M.3
Kors, J.A.4
Taweel, A.5
Tayrouz, Y.6
-
41
-
-
84865989881
-
Development of a benchmark corpus to support the automatic extraction of drug-related adverse effects from medical case reports
-
PID: 22554702
-
Gurulingappa H, Rajput AM, Roberts A, Fluck J, Hofmann-Apitius M, Toldo L. Development of a benchmark corpus to support the automatic extraction of drug-related adverse effects from medical case reports. J Biomed Inform. 2012;45(5):885–92. doi:10.1016/j.jbi.2012.04.008.
-
(2012)
J Biomed Inform
, vol.45
, Issue.5
, pp. 885-892
-
-
Gurulingappa, H.1
Rajput, A.M.2
Roberts, A.3
Fluck, J.4
Hofmann-Apitius, M.5
Toldo, L.6
-
42
-
-
84893172915
-
Large-scale combining signals from both biomedical literature and the FDA Adverse Event Reporting System (FAERS) to improve post-marketing drug safety signal detection
-
Xu R, Wang Q. Large-scale combining signals from both biomedical literature and the FDA Adverse Event Reporting System (FAERS) to improve post-marketing drug safety signal detection. BMC Bioinform. 2014;15(1):17. doi:10.1186/1471-2105-15-17.
-
(2014)
BMC Bioinform
, vol.15
, Issue.1
, pp. 17
-
-
Xu, R.1
Wang, Q.2
-
43
-
-
85028130432
-
-
The Stanford Parser. Accessed Apr 2014
-
The Stanford Parser. http://nlp.stanford.edu/software/lex-parser.shtml. Accessed Apr 2014.
-
-
-
-
44
-
-
76149120425
-
A side effect resource to capture phenotypic effects of drugs
-
PID: 20087340
-
Kuhn M, Campillos M, Letunic I, Jensen LJ, Bork P. A side effect resource to capture phenotypic effects of drugs. Mol Syst Biol. 2010;6:343. doi:10.1038/msb.2009.98.
-
(2010)
Mol Syst Biol
, vol.6
, pp. 343
-
-
Kuhn, M.1
Campillos, M.2
Letunic, I.3
Jensen, L.J.4
Bork, P.5
-
45
-
-
84866067701
-
Literature based drug interaction prediction with clinical assessment using electronic medical records: novel myopathy associated drug interactions
-
COI: 1:CAS:528:DC%2BC38Xht1Srs7fE, PID: 22912565
-
Duke JD, Han X, Wang Z, Subhadarshini A, Karnik SD, Li X, et al. Literature based drug interaction prediction with clinical assessment using electronic medical records: novel myopathy associated drug interactions. PLoS Comput Biol. 2012;8(8):e1002614. doi:10.1371/journal.pcbi.1002614.
-
(2012)
PLoS Comput Biol
, vol.8
, Issue.8
, pp. 1002614
-
-
Duke, J.D.1
Han, X.2
Wang, Z.3
Subhadarshini, A.4
Karnik, S.D.5
Li, X.6
-
46
-
-
84870452887
-
Haerian K, Salmasian H, Harpaz R, Chase HS, Friedman C. A drug-adverse event extraction algorithm to support pharmacovigilance knowledge mining from PubMed citations
-
Wang W, Haerian K, Salmasian H, Harpaz R, Chase HS, Friedman C. A drug-adverse event extraction algorithm to support pharmacovigilance knowledge mining from PubMed citations. AMIA Annu Symp Proc. 2011; 2011:1464–70.
-
(2011)
AMIA Annu Symp Proc
, vol.2011
, pp. 1464-1470
-
-
-
47
-
-
84879902091
-
Extracting drug indication information from structured product labels using natural language processing
-
PID: 23475786
-
Fung KW, Jao CS, Demner-Fushman D. Extracting drug indication information from structured product labels using natural language processing. J Am Med Inform Assoc. 2013;20(3):482–8. doi:10.1136/amiajnl-2012-001291.
-
(2013)
J Am Med Inform Assoc
, vol.20
, Issue.3
, pp. 482-488
-
-
Fung, K.W.1
Jao, C.S.2
Demner-Fushman, D.3
-
48
-
-
85028154161
-
-
DailyMed. Accessed Apr 2014
-
DailyMed. http://dailymed.nlm.nih.gov/. Accessed Apr 2014.
-
-
-
-
49
-
-
85028160707
-
-
Friedlin J, Duke J. Applying natural language processing to extract codify adverse drug reaction in medication labels. Accessed Apr 2014
-
Friedlin J, Duke J. Applying natural language processing to extract codify adverse drug reaction in medication labels. http://omop.fnih.org/OMOPWhitePapers2010. Accessed Apr 2014.
-
-
-
-
50
-
-
84892918936
-
Defining a reference set to support methodological research in drug safety
-
PID: 24166222
-
Ryan PB, Schuemie MJ, Welebob E, Duke J, Valentine S, Hartzema AG. Defining a reference set to support methodological research in drug safety. Drug Saf. 2013;36(Suppl 1):S33–47. doi:10.1007/s40264-013-0097-8.
-
(2013)
Drug Saf
, vol.36
, pp. 33-47
-
-
Ryan, P.B.1
Schuemie, M.J.2
Welebob, E.3
Duke, J.4
Valentine, S.5
Hartzema, A.G.6
-
51
-
-
84874511186
-
Consistency in the safety labeling of bioequivalent medications
-
COI: 1:CAS:528:DC%2BC3sXjsVKmsb0%3D, PID: 23042584
-
Duke J, Friedlin J, Li X. Consistency in the safety labeling of bioequivalent medications. Pharmacoepidemiol Drug Saf. 2013;22(3):294–301. doi:10.1002/pds.3351.
-
(2013)
Pharmacoepidemiol Drug Saf
, vol.22
, Issue.3
, pp. 294-301
-
-
Duke, J.1
Friedlin, J.2
Li, X.3
-
52
-
-
84893076281
-
Lessons learned from developing a drug evidence base to support pharmacovigilance
-
COI: 1:STN:280:DC%2BC2czosleqsw%3D%3D, PID: 24454585
-
Smith JC, Denny JC, Chen Q, Nian H, Spickard III A, Rosenbloom ST, et al. Lessons learned from developing a drug evidence base to support pharmacovigilance. Appl Clin Inform. 2013;4(4):596–617. doi:10.4338/ACI-2013-08-RA-0062.
-
(2013)
Appl Clin Inform
, vol.4
, Issue.4
, pp. 596-617
-
-
Smith, J.C.1
Denny, J.C.2
Chen, Q.3
Nian, H.4
Spickard III, A.5
Rosenbloom, S.T.6
-
53
-
-
0038154028
-
Understanding” medical school curriculum content using KnowledgeMap
-
PID: 12668688
-
Denny JC, Smithers JD, Miller RA, Spickard A. “Understanding” medical school curriculum content using KnowledgeMap. J Am Med Inform Assoc. 2003;10(4):351–62. doi:10.1197/jamia.M1176.
-
(2003)
J Am Med Inform Assoc
, vol.10
, Issue.4
, pp. 351-362
-
-
Denny, J.C.1
Smithers, J.D.2
Miller, R.A.3
Spickard, A.4
-
54
-
-
79955618085
-
‘Global Trigger Tool’ shows that adverse events in hospitals may be ten times greater than previously measured
-
Classen DC, Resar R, Griffin F, Federico F, Frankel T, Kimmel N, et al. ‘Global Trigger Tool’ shows that adverse events in hospitals may be ten times greater than previously measured. Health Aff. 2011;30(4):581–9. doi:10.1377/hlthaff.2011.0190.
-
(2011)
Health Aff
, vol.30
, Issue.4
, pp. 581-589
-
-
Classen, D.C.1
Resar, R.2
Griffin, F.3
Federico, F.4
Frankel, T.5
Kimmel, N.6
-
55
-
-
84890536260
-
Defining a comprehensive verotype using electronic health records for personalized medicine
-
PID: 24001516
-
Boland MR, Hripcsak G, Shen Y, Chung WK, Weng C. Defining a comprehensive verotype using electronic health records for personalized medicine. J Am Med Inform Assoc. 2013;20(e2):e232–8. doi:10.1136/amiajnl-2013-001932.
-
(2013)
J Am Med Inform Assoc
, vol.20
, Issue.e2
, pp. 232-238
-
-
Boland, M.R.1
Hripcsak, G.2
Shen, Y.3
Chung, W.K.4
Weng, C.5
-
56
-
-
4544280638
-
Automated encoding of clinical documents based on natural language processing
-
PID: 15187068
-
Friedman C, Shagina L, Lussier Y, Hripcsak G. Automated encoding of clinical documents based on natural language processing. J Am Med Inform Assoc. 2004;11(5):392–402. doi:10.1197/jamia.M1552.
-
(2004)
J Am Med Inform Assoc
, vol.11
, Issue.5
, pp. 392-402
-
-
Friedman, C.1
Shagina, L.2
Lussier, Y.3
Hripcsak, G.4
-
57
-
-
65349157361
-
Active computerized pharmacovigilance using natural language processing, statistics, and electronic health records: a feasibility study
-
PID: 19261932
-
Wang X, Hripcsak G, Markatou M, Friedman C. Active computerized pharmacovigilance using natural language processing, statistics, and electronic health records: a feasibility study. J Am Med Inform Assoc. 2009;16(3):328–37. doi:10.1197/jamia.M3028.
-
(2009)
J Am Med Inform Assoc
, vol.16
, Issue.3
, pp. 328-337
-
-
Wang, X.1
Hripcsak, G.2
Markatou, M.3
Friedman, C.4
-
58
-
-
84864128230
-
-
Haerian K, Varn D, Vaidya S, Ena L, Chase HS, Friedman C. Detection of pharmacovigilance-related adverse events using electronic health records and automated methods. Clin Pharmacol Ther. 2012;92(2):228–34. Accessed Apr 2014
-
Haerian K, Varn D, Vaidya S, Ena L, Chase HS, Friedman C. Detection of pharmacovigilance-related adverse events using electronic health records and automated methods. Clin Pharmacol Ther. 2012;92(2):228–34. http://www.nature.com/clpt/journal/v92/n2/suppinfo/clpt201254s1.html. Accessed Apr 2014.
-
-
-
-
59
-
-
84894026504
-
A method for controlling complex confounding effects in the detection of adverse drug reactions using electronic health records
-
PID: 23907285
-
Li Y, Salmasian H, Vilar S, Chase H, Friedman C, Wei Y. A method for controlling complex confounding effects in the detection of adverse drug reactions using electronic health records. J Am Med Inform Assoc. 2014;21(2):308–14. doi:10.1136/amiajnl-2013-001718.
-
(2014)
J Am Med Inform Assoc
, vol.21
, Issue.2
, pp. 308-314
-
-
Li, Y.1
Salmasian, H.2
Vilar, S.3
Chase, H.4
Friedman, C.5
Wei, Y.6
-
60
-
-
78650943943
-
Proceedings of the 1st ACM International Health Informatics Symposium; Arlington
-
Harpaz R, Haerian K, Chase HS, Friedman C. Mining electronic health records for adverse drug effects using regression based methods. In: Proceedings of the 1st ACM International Health Informatics Symposium; Arlington, VA. 1883008: ACM; 2010: pp. 100–7.
-
VA. 1883008: ACM
, vol.2010
, pp. 100-107
-
-
Harpaz, R.1
Haerian, K.2
Chase, H.S.3
Friedman, C.4
-
61
-
-
84878253500
-
Pharmacovigilance using clinical notes
-
COI: 1:STN:280:DC%2BC3srjslyiuw%3D%3D, PID: 23571773
-
LePendu P, Iyer SV, Bauer-Mehren A, Harpaz R, Mortensen JM, Podchiyska T, et al. Pharmacovigilance using clinical notes. Clin Pharmacol Ther. 2013;93(6):547–55. doi:10.1038/clpt.2013.47.
-
(2013)
Clin Pharmacol Ther
, vol.93
, Issue.6
, pp. 547-555
-
-
LePendu, P.1
Iyer, S.V.2
Bauer-Mehren, A.3
Harpaz, R.4
Mortensen, J.M.5
Podchiyska, T.6
-
62
-
-
77958007735
-
STRIDE—an integrated standards-based translational research informatics platform
-
PID: 20351886
-
Lowe HJ, Ferris TA, Hernandez PM, Weber SC. STRIDE—an integrated standards-based translational research informatics platform. AMIA Annu Symp Proc. 2009;2009:391–5.
-
(2009)
AMIA Annu Symp Proc
, vol.2009
, pp. 391-395
-
-
Lowe, H.J.1
Ferris, T.A.2
Hernandez, P.M.3
Weber, S.C.4
-
63
-
-
84894069926
-
-
Mining clinical text for signals of adverse drug-drug interactions, J Am Med Inform Assoc:
-
Iyer SV, Harpaz R, Lependu P, Bauer-Mehren A, Shah NH. Mining clinical text for signals of adverse drug-drug interactions. J Am Med Inform Assoc. 2013. doi:10.1136/amiajnl-2013-001612.
-
(2013)
Shah NH
-
-
Iyer, S.V.1
Harpaz, R.2
Lependu, P.3
Bauer-Mehren, A.4
-
64
-
-
84895862716
-
Automated detection of off-label drug use
-
PID: 24586689
-
Jung K, LePendu P, Chen WS, Iyer SV, Readhead B, Dudley JT, et al. Automated detection of off-label drug use. PLoS One. 2014;9(2):e89324. doi:10.1371/journal.pone.0089324.
-
(2014)
PLoS One
, vol.9
, Issue.2
, pp. 89324
-
-
Jung, K.1
LePendu, P.2
Chen, W.S.3
Iyer, S.V.4
Readhead, B.5
Dudley, J.T.6
-
66
-
-
84876670577
-
Combing signals from spontaneous reports and electronic health records for detection of adverse drug reactions
-
PID: 23118093
-
Harpaz R, Vilar S, Dumouchel W, Salmasian H, Haerian K, Shah NH, et al. Combing signals from spontaneous reports and electronic health records for detection of adverse drug reactions. J Am Med Inform Assoc. 2013;20(3):413–9. doi:10.1136/amiajnl-2012-000930.
-
(2013)
J Am Med Inform Assoc
, vol.20
, Issue.3
, pp. 413-419
-
-
Harpaz, R.1
Vilar, S.2
Dumouchel, W.3
Salmasian, H.4
Haerian, K.5
Shah, N.H.6
-
67
-
-
84883747248
-
Natural language processing: state of the art and prospects for significant progress, a workshop sponsored by the National Library of Medicine
-
PID: 23810857
-
Friedman C, Rindflesch TC, Corn M. Natural language processing: state of the art and prospects for significant progress, a workshop sponsored by the National Library of Medicine. J Biomed Inform. 2013;46(5):765–73. doi:10.1016/j.jbi.2013.06.004.
-
(2013)
J Biomed Inform
, vol.46
, Issue.5
, pp. 765-773
-
-
Friedman, C.1
Rindflesch, T.C.2
Corn, M.3
-
68
-
-
85028129975
-
-
The Social Life of Health Information, Pew Research Center. Accessed Apr 2014
-
The Social Life of Health Information, Pew Research Center. http://www.pewinternet.org/2011/05/12/the-social-life-of-health-information-2011. Accessed Apr 2014.
-
-
-
-
69
-
-
79952770759
-
Social media and networks in pharmacovigilance
-
PID: 21417499
-
Edwards IR, Lindquist M. Social media and networks in pharmacovigilance. Drug Saf. 2011;34(4):267–71. doi:10.2165/11590720-000000000-00000.
-
(2011)
Drug Saf
, vol.34
, Issue.4
, pp. 267-271
-
-
Edwards, I.R.1
Lindquist, M.2
-
70
-
-
0037657836
-
Paroxetine, panorama and user reporting of ADRs: consumer intelligence matters in clinical practice and post-marketing drug surveillance
-
Medawar C, Herxheimer A, Bell A, Jofre S. Paroxetine, panorama and user reporting of ADRs: consumer intelligence matters in clinical practice and post-marketing drug surveillance. Int J Risk Saf Med. 2002;15(3):161–9.
-
(2002)
Int J Risk Saf Med
, vol.15
, Issue.3
, pp. 161-169
-
-
Medawar, C.1
Herxheimer, A.2
Bell, A.3
Jofre, S.4
-
71
-
-
13444260767
-
Alendronate and risedronate: reports of severe bone, joint, and muscle pain
-
PID: 15710802
-
Wysowski DK, Chang JT. Alendronate and risedronate: reports of severe bone, joint, and muscle pain. Arch Intern Med. 2005;165(3):346–7. doi:10.1001/archinte.165.3.346-b.
-
(2005)
Arch Intern Med
, vol.165
, Issue.3
, pp. 346-347
-
-
Wysowski, D.K.1
Chang, J.T.2
-
72
-
-
67649502972
-
Patient- and physician-oriented web sites and drug surveillance: bisphosphonates and severe bone, joint, and muscle pain
-
DeMonaco HJ. Patient- and physician-oriented web sites and drug surveillance: bisphosphonates and severe bone, joint, and muscle pain. Arch Inter Med. 2009;169(12):1164–6. doi:10.1001/archinternmed.2009.133.
-
(2009)
Arch Inter Med
, vol.169
, Issue.12
, pp. 1164-1166
-
-
DeMonaco, H.J.1
-
73
-
-
67649989050
-
The subjective experience of taking antipsychotic medication: a content analysis of Internet data
-
COI: 1:STN:280:DC%2BD1MvnvFWiuw%3D%3D, PID: 19222405
-
Moncrieff J, Cohen D, Mason JP. The subjective experience of taking antipsychotic medication: a content analysis of Internet data. Acta Psychiatrica Scandinavica. 2009;120(2):102–11. doi:10.1111/j.1600-0447.2009.01356.x.
-
(2009)
Acta Psychiatrica Scandinavica
, vol.120
, Issue.2
, pp. 102-111
-
-
Moncrieff, J.1
Cohen, D.2
Mason, J.P.3
-
74
-
-
85028139886
-
Towards internet-age pharmacovigilance: extracting adverse drug reactions from user posts in health-related social networks
-
Leaman R, Wojtulewicz L, Sullivan R, Skariah A, Yang J, Gonzalez G. Towards internet-age pharmacovigilance: extracting adverse drug reactions from user posts in health-related social networks. In: Proceedings of the 2010 Workshop on Biomedical Natural Language Processing. 2010: pp: 117–25.
-
(2010)
In: Proceedings of the 2010 Workshop on Biomedical Natural Language Processing
-
-
-
75
-
-
84870462946
-
Proceedings of the 2012 International Workshop on Smart Health and Wellbeing; Maui
-
Yang CC, Yang H, Jiang L, Zhang M. Social media mining for drug safety signal detection. In: Proceedings of the 2012 International Workshop on Smart Health and Wellbeing; Maui, HI. 2389714: ACM; 2012. p. 33–40.
-
HI. 2389714: ACM
, vol.2012
, pp. 33-40
-
-
Yang, C.C.1
Yang, H.2
Jiang, L.3
Zhang, M.4
-
76
-
-
85028174222
-
-
Consumer health vocabulary. Accessed Apr 2014
-
Consumer health vocabulary. http://consumerhealthvocab.org/. Accessed Apr 2014.
-
-
-
-
77
-
-
84881133007
-
AZDrugMiner: an information extraction system for mining patient-reported adverse drug events in online patient forums
-
Zeng D, Yang C, Tseng V, Xing C, Chen H, Wang F-Y, (eds), Berlin Heidelberg, Springer:
-
Liu X, Chen H. AZDrugMiner: an information extraction system for mining patient-reported adverse drug events in online patient forums. In: Zeng D, Yang C, Tseng V, Xing C, Chen H, Wang F-Y, et al., editors. Smart Health. Lecture notes in computer science. Springer: Berlin Heidelberg; 2013. p. 134–50.
-
(2013)
Smart Health. Lecture notes in computer science
, pp. 134-150
-
-
Liu, X.1
Chen, H.2
-
78
-
-
84874210162
-
Pattern mining for extraction of mentions of adverse drug reactions from user comments
-
PID: 22195162
-
Nikfarjam A, Gonzalez GH. Pattern mining for extraction of mentions of adverse drug reactions from user comments. AMIA Annu Symp Proc. 2011;2011:1019–26.
-
(2011)
AMIA Annu Symp Proc
, vol.2011
, pp. 1019-1026
-
-
Nikfarjam, A.1
Gonzalez, G.H.2
-
79
-
-
84863556111
-
Predicting adverse drug events from personal health messages
-
PID: 22195073
-
Chee BW, Berlin R, Schatz B. Predicting adverse drug events from personal health messages. AMIA Annu Symp Proc. 2011;2011:217–26.
-
(2011)
AMIA Annu Symp Proc
, vol.2011
, pp. 217-226
-
-
Chee, B.W.1
Berlin, R.2
Schatz, B.3
-
82
-
-
84855919063
-
Identifying potential adverse effects using the web: a new approach to medical hypothesis generation
-
PID: 21820083
-
Benton A, Ungar L, Hill S, Hennessy S, Mao J, Chung A, et al. Identifying potential adverse effects using the web: a new approach to medical hypothesis generation. J Biomed Inform. 2011;44(6):989–96. doi:10.1016/j.jbi.2011.07.005.
-
(2011)
J Biomed Inform
, vol.44
, Issue.6
, pp. 989-996
-
-
Benton, A.1
Ungar, L.2
Hill, S.3
Hennessy, S.4
Mao, J.5
Chung, A.6
-
83
-
-
85028169071
-
-
Statistic brain. Accessed Apr 2014
-
Statistic brain. http://www.statisticbrain.com/twitter-statistics/. Accessed Apr 2014.
-
-
-
-
84
-
-
84870431352
-
Proceedings of the 2012 International Workshop on Smart Health and Wellbeing; Maui
-
Bian J, Topaloglu U, Yu F. Towards large-scale twitter mining for drug-related adverse events. In: Proceedings of the 2012 International Workshop on Smart Health and Wellbeing; Maui, HI. 2389713: ACM; 2012: pp. 25–32.
-
HI. 2389713: ACM
, vol.2012
, pp. 25-32
-
-
Bian, J.1
Topaloglu, U.2
Yu, F.3
-
85
-
-
84893075973
-
Mining twitter data for potential drug effects
-
Motoda H, Wu Z, Cao L, Zaiane O, Yao M, Wang W, (eds), Berlin, Springer:
-
Jiang K, Zheng Y. Mining twitter data for potential drug effects. In: Motoda H, Wu Z, Cao L, Zaiane O, Yao M, Wang W, editors. Advanced data mining and applications. Lecture notes in computer science. Springer: Berlin; 2013. p. 434–43.
-
(2013)
Advanced data mining and applications. Lecture notes in computer science
, pp. 434-443
-
-
Jiang, K.1
Zheng, Y.2
-
86
-
-
84942551298
-
Phonetic spelling filter for keyword selection in drug mention mining from social media
-
Pimpalkhute P, Patki A, Nikfarjam A, Gonzalez G. Phonetic spelling filter for keyword selection in drug mention mining from social media. AMIA TBI Summit. 2014.
-
(2014)
AMIA TBI Summit
-
-
Pimpalkhute, P.1
Patki, A.2
Nikfarjam, A.3
Gonzalez, G.4
-
87
-
-
85028165070
-
-
Centers for Disease Control and Prevention (CDC). Use of the Internet for health information: United States, 2009. Accessed Apr 2014
-
Centers for Disease Control and Prevention (CDC). Use of the Internet for health information: United States, 2009. http://www.cdc.gov/nchs/data/databriefs/db66.htm. Accessed Apr 2014.
-
-
-
-
88
-
-
85028147098
-
-
Pew Research Center. Pew Internet and American Life Project: Health Online 2013. Accessed Apr 2014
-
Pew Research Center. Pew Internet and American Life Project: Health Online 2013. http://www.pewinternet.org/~/media/Files/Reports/2013/Pew%20Internet%20Health%20Online%20report.pdf. Accessed Apr 2014.
-
-
-
-
89
-
-
60549098239
-
Detecting influenza epidemics using search engine query data
-
COI: 1:CAS:528:DC%2BD1MXht1ehurk%3D, PID: 19020500
-
Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, Brilliant L. Detecting influenza epidemics using search engine query data. Nature. 2009;457(7232):1012–4. doi:10.1038/Nature07634.
-
(2009)
Nature
, vol.457
, Issue.7232
, pp. 1012-1014
-
-
Ginsberg, J.1
Mohebbi, M.H.2
Patel, R.S.3
Brammer, L.4
Smolinski, M.S.5
Brilliant, L.6
-
91
-
-
84904857162
-
Toward enhanced pharmacovigilance using patient-generated data on the internet
-
White RW, Harpaz R, Shah NH, DuMouchel W, Horvitz E. Toward enhanced pharmacovigilance using patient-generated data on the internet. Clin Pharmacol Ther. 2014;96(2):239–46.
-
(2014)
Clin Pharmacol Ther
, vol.96
, Issue.2
, pp. 239-246
-
-
White, R.W.1
Harpaz, R.2
Shah, N.H.3
DuMouchel, W.4
Horvitz, E.5
-
92
-
-
79959379936
-
Detecting drug interactions from adverse-event reports: interaction between paroxetine and pravastatin increases blood glucose levels
-
COI: 1:CAS:528:DC%2BC3MXnvVaksLY%3D, PID: 21613990
-
Tatonetti NP, Denny JC, Murphy SN, Fernald GH, Krishnan G, Castro V, et al. Detecting drug interactions from adverse-event reports: interaction between paroxetine and pravastatin increases blood glucose levels. Clin Pharmacol Ther. 2011;90(1):133–142.
-
(2011)
Clin Pharmacol Ther
, vol.90
, Issue.1
, pp. 133-142
-
-
Tatonetti, N.P.1
Denny, J.C.2
Murphy, S.N.3
Fernald, G.H.4
Krishnan, G.5
Castro, V.6
-
93
-
-
80053260063
-
Text mining for the Vaccine Adverse Event Reporting System: medical text classification using informative feature selection
-
PID: 21709163
-
Botsis T, Nguyen MD, Woo EJ, Markatou M, Ball R. Text mining for the Vaccine Adverse Event Reporting System: medical text classification using informative feature selection. J Am Med Inform Assoc. 2011;18(5):631–8. doi:10.1136/amiajnl-2010-000022.
-
(2011)
J Am Med Inform Assoc
, vol.18
, Issue.5
, pp. 631-638
-
-
Botsis, T.1
Nguyen, M.D.2
Woo, E.J.3
Markatou, M.4
Ball, R.5
-
94
-
-
85028174566
-
-
New Drug Application (NDA). Accessed Apr 2014
-
New Drug Application (NDA). http://www.fda.gov/drugs/developmentapprovalprocess/howdrugsaredevelopedandapproved/approvalapplications/newdrugapplicationnda/default.htm. Accessed Apr 2014.
-
-
-
-
95
-
-
85028130434
-
-
European Public Assessment Reports. Accessed Apr 2014
-
European Public Assessment Reports. http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/landing/epar_search.jsp&mid=WC0b01ac058001d125. Accessed Apr 2014.
-
-
-
-
96
-
-
85028153457
-
-
World Health Organization pharmaceuticals newsletter. Accessed Apr 2014
-
World Health Organization pharmaceuticals newsletter. http://www.who.int/medicines/publications/newsletter/en/. Accessed Apr 2014.
-
-
-
-
97
-
-
85028133484
-
-
Potential signals of serious risks/new safety information identified from the FDA Adverse Event Reporting System (FAERS). Accessed Apr 2014
-
Potential signals of serious risks/new safety information identified from the FDA Adverse Event Reporting System (FAERS). http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/UCM082196. Accessed Apr 2014.
-
-
-
-
98
-
-
85028154384
-
-
Clinical trial reports. Accessed Apr 2014
-
Clinical trial reports. http://www.fda.gov/downloads/regulatoryinformation/guidances/ucm129456.pdf. Accessed Apr 2014.
-
-
-
|