메뉴 건너뛰기




Volumn , Issue , 2014, Pages 106-115

Detecting drugs and adverse events from Spanish health social media streams

Author keywords

[No Author keywords available]

Indexed keywords

NATURAL LANGUAGE PROCESSING SYSTEMS;

EID: 85051987559     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (37)

References (34)
  • 3
    • 85106307453 scopus 로고    scopus 로고
    • Sentiment Analysis in Social Media Texts
    • Alexandra Balahur. 2013. Sentiment Analysis in Social Media Texts. WASSA 2013, 120.
    • (2013) WASSA , vol.2013 , pp. 120
    • Balahur, Alexandra1
  • 8
    • 84973587732 scopus 로고
    • A coefficient of agreement for nominal scales
    • Jacob Cohen. 1960. A coefficient of agreement for nominal scales. Educational and Psychol Meas ;20:37e46.
    • (1960) Educational and Psychol Meas , vol.20 , pp. 37e46
    • Cohen, Jacob1
  • 9
    • 0002386913 scopus 로고
    • On the interpretation of χ 2 from contingency tables, and the calculation of P
    • Ronald A. Fisher. 1922. On the interpretation of χ 2 from contingency tables, and the calculation of P. Journal of the Royal Statistical Society, 85(1):87-94.
    • (1922) Journal of the Royal Statistical Society , vol.85 , Issue.1 , pp. 87-94
    • Fisher, Ronald A.1
  • 11
    • 70350236893 scopus 로고    scopus 로고
    • Discovering novel adverse drug events using natural language processing and mining of the electronic health record
    • Carol Friedman. 2009. Discovering novel adverse drug events using natural language processing and mining of the electronic health record. In Artificial Intelligence in Medicine. LNAI 5651:1 -5.
    • (2009) Artificial Intelligence in Medicine. LNAI , vol.5651 , pp. 1-5
    • Friedman, Carol1
  • 12
    • 85119215140 scopus 로고    scopus 로고
    • Mining Social Network Postings for Mentions of Potential Adverse Drug Reactions, (9/10/2012 8/31/2016)
    • Graciela H. Gonzalez, Matthew L Scotch and Garrick L Wallstrom. Mining Social Network Postings for Mentions of Potential Adverse Drug Reactions. HHS-NIH-NLM (9/10/2012 - 8/31/2016).
    • HHS-NIH-NLM
    • Gonzalez, Graciela H.1    Scotch, Matthew L2    Wallstrom, Garrick L3
  • 15
    • 78649372421 scopus 로고    scopus 로고
    • Direct patient reporting of adverse drug reactions. A twelve-country survey & literature review
    • Health Action International (HAI). Europe. Paper Series Reference 01-2010/01
    • A Herxheimer, MR Crombag and TL Alves. 2010. Direct patient reporting of adverse drug reactions. A twelve-country survey & literature review. Health Action International (HAI). Europe. Paper Series Reference 01-2010/01.
    • (2010)
    • Herxheimer, A1    Crombag, MR2    Alves, TL3
  • 16
    • 84991769393 scopus 로고    scopus 로고
    • Lessons Learned About Public Health from Online Crowd Surveillance
    • Shawndra Hill, Raina Merchant and Lile Ungar. (2013). Lessons Learned About Public Health from Online Crowd Surveillance. Big Data, 1(3):160-167.
    • (2013) Big Data , vol.1 , Issue.3 , pp. 160-167
    • Hill, Shawndra1    Merchant, Raina2    Ungar, Lile3
  • 17
    • 18044385763 scopus 로고    scopus 로고
    • Agreement, the F-measure, and reliability in information retrieval
    • George Hripcsak and Adam S. Rothschild. 2005. Agreement, the F-measure, and reliability in information retrieval. J Am Med Inform Assoc.12:296e8.
    • (2005) J Am Med Inform Assoc , vol.12 , pp. 296e8
    • Hripcsak, George1    Rothschild, Adam S.2
  • 23
    • 34247477642 scopus 로고    scopus 로고
    • Drug Safety Reform at the FDA-Pendulum Swing or Systematic Improvement?
    • Mark McClellan. 2007. Drug Safety Reform at the FDA-Pendulum Swing or Systematic Improvement?. New England Journal of Medicine, 356(17):1700-1702.
    • (2007) New England Journal of Medicine , vol.356 , Issue.17 , pp. 1700-1702
    • McClellan, Mark1
  • 25
    • 84964001815 scopus 로고    scopus 로고
    • A POS Tagger for Social Media Texts trained on Web Comments
    • Melanie Neunerdt, Michael Reyer and Rudolf Mathar. 2013. A POS Tagger for Social Media Texts trained on Web Comments. Polibits, 48:59-66.
    • (2013) Polibits , vol.48 , pp. 59-66
    • Neunerdt, Melanie1    Reyer, Michael2    Mathar, Rudolf3
  • 26
    • 84874210162 scopus 로고    scopus 로고
    • Pattern mining for extraction of mentions of adverse drug reactions from user comments
    • American Medical Informatics Association
    • Azadeh Nikfarjam and Graciela H. Gonzalez. 2011. Pattern mining for extraction of mentions of adverse drug reactions from user comments. In AMIA Annual Symposium Proceedings, 2011:1019-1026. American Medical Informatics Association.
    • (2011) AMIA Annual Symposium Proceedings , vol.2011 , pp. 1019-1026
    • Nikfarjam, Azadeh1    Gonzalez, Graciela H.2
  • 29
    • 3142696208 scopus 로고    scopus 로고
    • GATE, a general architecture for text engineering
    • Hamish Cunningham. 2002. GATE, a general architecture for text engineering. Computers and the Humanities, 36(2):223-254.
    • (2002) Computers and the Humanities , vol.36 , Issue.2 , pp. 223-254
    • Cunningham, Hamish1
  • 30
    • 0028893733 scopus 로고
    • Pharmacovigilance: paradise lost, regained or postponed? The William Withering Lecture 1994
    • M Rawlins. 1995. Pharmacovigilance: paradise lost, regained or postponed? The William Withering Lecture 1994. Journal of the Royal College of Physicians of London, 29(1): 41-49.
    • (1995) Journal of the Royal College of Physicians of London , vol.29 , Issue.1 , pp. 41-49
    • Rawlins, M1
  • 33
    • 84878514642 scopus 로고    scopus 로고
    • Large-scale extraction of accurate drug-disease treatment pairs from biomedical literature for drug repurposing
    • Rong Xu and QuanQiu Wang. 2013. Large-scale extraction of accurate drug-disease treatment pairs from biomedical literature for drug repurposing. BMC Bioinformatics, 14(1):181.
    • (2013) BMC Bioinformatics , vol.14 , Issue.1 , pp. 181
    • Xu, Rong1    Wang, QuanQiu2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.