메뉴 건너뛰기




Volumn 8549 LNCS, Issue , 2014, Pages 25-36

Identifying adverse drug events from health social media: A case study on heart disease discussion forums

Author keywords

Adverse drug event extraction; Health social media analytics; Heart disease; Medical entity extraction; Statistical learning

Indexed keywords

CARDIOLOGY; DISEASES; DRUG INTERACTIONS; DRUG PRODUCTS; HEALTH; POPULATION STATISTICS;

EID: 84905217429     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-319-08416-9_3     Document Type: Conference Paper
Times cited : (24)

References (13)
  • 1
    • 81855170110 scopus 로고    scopus 로고
    • Self-reported adverse drug events and the role of illness perception and medication beliefs in ambulatory heart failure patients: A cross-sectional survey
    • De Smedt, R.H., Denig, P., van der Meer, K., Haaijer-Ruskamp, F.M., Jaarsma, T.: Self-reported adverse drug events and the role of illness perception and medication beliefs in ambulatory heart failure patients: A cross-sectional survey. International Journal of Nursing Studies 48(12), 1540-1550 (2011)
    • (2011) International Journal of Nursing Studies , vol.48 , Issue.12 , pp. 1540-1550
    • De Smedt, R.H.1    Denig, P.2    Van Der Meer, K.3    Haaijer-Ruskamp, F.M.4    Jaarsma, T.5
  • 2
  • 4
    • 84863556111 scopus 로고    scopus 로고
    • Predicting adverse drug events from personal health messages
    • Chee, B.W., Berlin, R., Schatz, B.: Predicting adverse drug events from personal health messages. In: AMIA Annual Symposium Proceedings, vol. 2011, pp. 217-226 (2011)
    • (2011) AMIA Annual Symposium Proceedings , vol.2011 , pp. 217-226
    • Chee, B.W.1    Berlin, R.2    Schatz, B.3
  • 5
    • 84902548120 scopus 로고    scopus 로고
    • Towards internet-age pharmacovigilance: Extracting adverse drug reactions from user posts to health-related social networks
    • Association for Computational Linguistics
    • Leaman, R., Wojtulewicz, L., Sullivan, R., et al.: Towards internet-age pharmacovigilance: extracting adverse drug reactions from user posts to health-related social networks. In: Proceedings of the 2010 Workshop on Biomedical Natural Language Processing, pp. 117-125. Association for Computational Linguistics (2010)
    • (2010) Proceedings of the 2010 Workshop on Biomedical Natural Language Processing , pp. 117-125
    • Leaman, R.1    Wojtulewicz, L.2    Sullivan, R.3
  • 6
    • 84874210162 scopus 로고    scopus 로고
    • Pattern mining for extraction of mentions of Adverse Drug Reaction from user comments
    • Nikfarjam, A., Gonzalez, G.H.: Pattern mining for extraction of mentions of Adverse Drug Reaction from user comments. In: Proceeding of 2011 AMIA Annual Symposium, pp. 1019-1026 (2011)
    • (2011) Proceeding of 2011 AMIA Annual Symposium , pp. 1019-1026
    • Nikfarjam, A.1    Gonzalez, G.H.2
  • 8
    • 84881133007 scopus 로고    scopus 로고
    • AZDrugMiner: An information extraction system for mining patient-reported adverse drug events in online patient forums
    • Zeng, D., Yang, C.C., Tseng, V.S., Xing, C., Chen, H., Wang, F.-Y., Zheng, X. (eds.) ICSH 2013. Springer, Heidelberg
    • Liu, X., Chen, H.: AZDrugMiner: an information extraction system for mining patient-reported adverse drug events in online patient forums. In: Zeng, D., Yang, C.C., Tseng, V.S., Xing, C., Chen, H., Wang, F.-Y., Zheng, X. (eds.) ICSH 2013. LNCS, vol. 8040, pp. 134-150. Springer, Heidelberg (2013)
    • (2013) LNCS , vol.8040 , pp. 134-150
    • Liu, X.1    Chen, H.2
  • 10
    • 84905218089 scopus 로고    scopus 로고
    • MetaMap, http://metamap.nlm.nih.gov
    • MetaMap
  • 12
    • 84888274364 scopus 로고    scopus 로고
    • SVM-light, http://svmlight.joachims.org
    • SVM-light
  • 13
    • 84905218883 scopus 로고    scopus 로고
    • NegEx, https://code.google.com/p/negex
    • NegEx


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.