메뉴 건너뛰기




Volumn 40, Issue 10, 2015, Pages 560-575

'View From A Bridge': A New Perspective on Eukaryotic rRNA Base Modification

Author keywords

Acetylation; Intersubunit bridge; Methylation; Nucleolus; Protein synthesis; Ribosome assembly; RRNA modification; Translation; Yeast

Indexed keywords

ACYLTRANSFERASE; LARGE SUBUNIT RIBOSOMAL RNA; MESSENGER RNA; METHYLTRANSFERASE; PEPTIDYLTRANSFERASE; RIBOSOME RNA; RNA 18S; SMALL NUCLEAR RIBONUCLEOPROTEIN; SMALL SUBUNIT RIBOSOMAL RNA; TRANSFER RNA; FUNGAL RNA;

EID: 84942099152     PISSN: 09680004     EISSN: 13624326     Source Type: Journal    
DOI: 10.1016/j.tibs.2015.07.008     Document Type: Review
Times cited : (177)

References (116)
  • 1
    • 78651335915 scopus 로고    scopus 로고
    • The RNA Modification Database, RNAMDB: 2011 update
    • Cantara W.A., et al. The RNA Modification Database, RNAMDB: 2011 update. Nucleic Acids Res. 2011, 39:D195-D201.
    • (2011) Nucleic Acids Res. , vol.39 , pp. D195-D201
    • Cantara, W.A.1
  • 2
    • 84875692043 scopus 로고    scopus 로고
    • MODOMICS: a database of RNA modification pathways--2013 update
    • Machnicka M.A., et al. MODOMICS: a database of RNA modification pathways--2013 update. Nucleic Acids Res. 2013, 41:D262-D267.
    • (2013) Nucleic Acids Res. , vol.41 , pp. D262-D267
    • Machnicka, M.A.1
  • 3
    • 84861908221 scopus 로고    scopus 로고
    • One core, two shells: bacterial and eukaryotic ribosomes
    • Melnikov S., et al. One core, two shells: bacterial and eukaryotic ribosomes. Nat. Struct. Mol. Biol. 2012, 19:560-567.
    • (2012) Nat. Struct. Mol. Biol. , vol.19 , pp. 560-567
    • Melnikov, S.1
  • 4
    • 84911474165 scopus 로고    scopus 로고
    • The ribosome emerges from a black box
    • Ramakrishnan V. The ribosome emerges from a black box. Cell 2014, 159:979-984.
    • (2014) Cell , vol.159 , pp. 979-984
    • Ramakrishnan, V.1
  • 5
    • 84925286904 scopus 로고    scopus 로고
    • Noncoding RNAs in eukaryotic ribosome synthesis and function
    • Lafontaine D.L.J. Noncoding RNAs in eukaryotic ribosome synthesis and function. Nat. Struct. Mol. Biol. 2015, 22:11-19.
    • (2015) Nat. Struct. Mol. Biol. , vol.22 , pp. 11-19
    • Lafontaine, D.L.J.1
  • 6
    • 84887113964 scopus 로고    scopus 로고
    • Ribosome biogenesis in the yeast Saccharomyces cerevisiae
    • Woolford J.L., Baserga S.J. Ribosome biogenesis in the yeast Saccharomyces cerevisiae. Genetics 2013, 195:643-681.
    • (2013) Genetics , vol.195 , pp. 643-681
    • Woolford, J.L.1    Baserga, S.J.2
  • 7
    • 84930708678 scopus 로고    scopus 로고
    • Functions of ribosomal proteins in assembly of eukaryotic ribosomes in vivo
    • de la Cruz J., et al. Functions of ribosomal proteins in assembly of eukaryotic ribosomes in vivo. Annu. Rev. Biochem. 2015, 84:93-129.
    • (2015) Annu. Rev. Biochem. , vol.84 , pp. 93-129
    • de la Cruz, J.1
  • 8
    • 33745228890 scopus 로고    scopus 로고
    • Hrr25-dependent phosphorylation state regulates organization of the pre-40S subunit
    • Schafer T., et al. Hrr25-dependent phosphorylation state regulates organization of the pre-40S subunit. Nature 2006, 441:651-655.
    • (2006) Nature , vol.441 , pp. 651-655
    • Schafer, T.1
  • 9
    • 77954404581 scopus 로고    scopus 로고
    • Defining the pathway of cytoplasmic maturation of the 60S ribosomal subunit
    • Lo K.Y., et al. Defining the pathway of cytoplasmic maturation of the 60S ribosomal subunit. Mol. Cell 2010, 39:196-208.
    • (2010) Mol. Cell , vol.39 , pp. 196-208
    • Lo, K.Y.1
  • 10
    • 77952583684 scopus 로고    scopus 로고
    • Maturation of eukaryotic ribosomes: acquisition of functionality
    • Panse V.G., Johnson A.W. Maturation of eukaryotic ribosomes: acquisition of functionality. Trends Biochem. Sci. 2010, 35:260-266.
    • (2010) Trends Biochem. Sci. , vol.35 , pp. 260-266
    • Panse, V.G.1    Johnson, A.W.2
  • 11
    • 84876816592 scopus 로고    scopus 로고
    • Quality control mechanisms during ribosome maturation
    • Karbstein K. Quality control mechanisms during ribosome maturation. Trends Cell Biol. 2013, 23:242-250.
    • (2013) Trends Cell Biol. , vol.23 , pp. 242-250
    • Karbstein, K.1
  • 12
    • 84930399902 scopus 로고    scopus 로고
    • The human 18S rRNA base methyltransferases DIMT1L and WBSCR22-TRMT112 but not rRNA modification are required for ribosome biogenesis
    • Zorbas C., et al. The human 18S rRNA base methyltransferases DIMT1L and WBSCR22-TRMT112 but not rRNA modification are required for ribosome biogenesis. Mol. Biol. Cell 2015, 26:2080-2095.
    • (2015) Mol. Biol. Cell , vol.26 , pp. 2080-2095
    • Zorbas, C.1
  • 13
    • 84875410311 scopus 로고    scopus 로고
    • Yeast Rrp8p, a novel methyltransferase responsible for m1A 645 base modification of 25S rRNA
    • Peifer C., et al. Yeast Rrp8p, a novel methyltransferase responsible for m1A 645 base modification of 25S rRNA. Nucleic Acids Res. 2013, 41:1151-1163.
    • (2013) Nucleic Acids Res. , vol.41 , pp. 1151-1163
    • Peifer, C.1
  • 14
    • 84878583858 scopus 로고    scopus 로고
    • Identification of a novel methyltransferase, Bmt2, responsible for the N-1-methyl-adenosine base modification of 25S rRNA in Saccharomyces cerevisiae
    • Sharma S., et al. Identification of a novel methyltransferase, Bmt2, responsible for the N-1-methyl-adenosine base modification of 25S rRNA in Saccharomyces cerevisiae. Nucleic Acids Res. 2013, 41:5428-5443.
    • (2013) Nucleic Acids Res. , vol.41 , pp. 5428-5443
    • Sharma, S.1
  • 15
    • 84885993080 scopus 로고    scopus 로고
    • Yeast Nop2 and Rcm1 methylate C2870 and C2278 of the 25S rRNA, respectively
    • Sharma S., et al. Yeast Nop2 and Rcm1 methylate C2870 and C2278 of the 25S rRNA, respectively. Nucleic Acids Res. 2013, 41:9062-9076.
    • (2013) Nucleic Acids Res. , vol.41 , pp. 9062-9076
    • Sharma, S.1
  • 16
    • 84898930928 scopus 로고    scopus 로고
    • Identification of novel methyltransferases, Bmt5 and Bmt6, responsible for the m3U methylations of 25S rRNA in Saccharomyces cerevisiae
    • Sharma S., et al. Identification of novel methyltransferases, Bmt5 and Bmt6, responsible for the m3U methylations of 25S rRNA in Saccharomyces cerevisiae. Nucleic Acids Res. 2014, 42:3246-3260.
    • (2014) Nucleic Acids Res. , vol.42 , pp. 3246-3260
    • Sharma, S.1
  • 17
    • 84907198762 scopus 로고    scopus 로고
    • A cluster of methylations in the domain IV of 25S rRNA is required for ribosome stability
    • Gigova A., et al. A cluster of methylations in the domain IV of 25S rRNA is required for ribosome stability. RNA 2014, 20:1632-1644.
    • (2014) RNA , vol.20 , pp. 1632-1644
    • Gigova, A.1
  • 18
    • 84907222762 scopus 로고    scopus 로고
    • A single acetylation of 18 S rRNA is essential for biogenesis of the small ribosomal subunit in Saccharomyces cerevisiae
    • Ito S., et al. A single acetylation of 18 S rRNA is essential for biogenesis of the small ribosomal subunit in Saccharomyces cerevisiae. J. Biol. Chem. 2014, 289:26201-26212.
    • (2014) J. Biol. Chem. , vol.289 , pp. 26201-26212
    • Ito, S.1
  • 19
    • 84941129093 scopus 로고    scopus 로고
    • Yeast Kre33 and human NAT10 are conserved 18S rRNA cytosine acetyltransferases that modify tRNAs assisted by the adaptor Tan1/THUMPD1
    • Sharma S., et al. Yeast Kre33 and human NAT10 are conserved 18S rRNA cytosine acetyltransferases that modify tRNAs assisted by the adaptor Tan1/THUMPD1. Nucleic Acids Res. 2015, 43:2242-2258.
    • (2015) Nucleic Acids Res. , vol.43 , pp. 2242-2258
    • Sharma, S.1
  • 20
    • 84919933439 scopus 로고    scopus 로고
    • Structural and functional studies of Bud23-Trm112 reveal 18S rRNA N7-G1575 methylation occurs on late 40S precursor ribosomes
    • Létoquart J., et al. Structural and functional studies of Bud23-Trm112 reveal 18S rRNA N7-G1575 methylation occurs on late 40S precursor ribosomes. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:E5518-E5526.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. E5518-E5526
    • Létoquart, J.1
  • 21
    • 84924995660 scopus 로고    scopus 로고
    • Distribution and frequencies of post-transcriptional modifications in tRNAs
    • Machnicka M.A., et al. Distribution and frequencies of post-transcriptional modifications in tRNAs. RNA Biol. 2014, 11:1619-1629.
    • (2014) RNA Biol. , vol.11 , pp. 1619-1629
    • Machnicka, M.A.1
  • 22
    • 84875514519 scopus 로고    scopus 로고
    • RNA pseudouridylation: new insights into an old modification
    • Ge J., Yu Y.T. RNA pseudouridylation: new insights into an old modification. Trends Biochem. Sci. 2013, 38:210-218.
    • (2013) Trends Biochem. Sci. , vol.38 , pp. 210-218
    • Ge, J.1    Yu, Y.T.2
  • 23
    • 84865837598 scopus 로고    scopus 로고
    • The box C/D and H/ACA snoRNPs: key players in the modification, processing and the dynamic folding of ribosomal RNA
    • Watkins N.J., Bohnsack M.T. The box C/D and H/ACA snoRNPs: key players in the modification, processing and the dynamic folding of ribosomal RNA. Wiley Interdiscip. Rev. RNA 2012, 3:397-414.
    • (2012) Wiley Interdiscip. Rev. RNA , vol.3 , pp. 397-414
    • Watkins, N.J.1    Bohnsack, M.T.2
  • 24
    • 0015920012 scopus 로고
    • Early and late methylations in HeLa cell ribosome maturation
    • Salim M., Maden B.E. Early and late methylations in HeLa cell ribosome maturation. Nature 1973, 244:334-336.
    • (1973) Nature , vol.244 , pp. 334-336
    • Salim, M.1    Maden, B.E.2
  • 25
    • 39749138785 scopus 로고    scopus 로고
    • A structural understanding of the dynamic ribosome machine
    • Steitz T.A. A structural understanding of the dynamic ribosome machine. Nat. Rev. Mol. Cell Biol. 2008, 9:242-253.
    • (2008) Nat. Rev. Mol. Cell Biol. , vol.9 , pp. 242-253
    • Steitz, T.A.1
  • 26
    • 84878924244 scopus 로고    scopus 로고
    • Structural basis of the translational elongation cycle
    • Voorhees R.M., Ramakrishnan V. Structural basis of the translational elongation cycle. Annu. Rev. Biochem. 2013, 82:203-236.
    • (2013) Annu. Rev. Biochem. , vol.82 , pp. 203-236
    • Voorhees, R.M.1    Ramakrishnan, V.2
  • 27
    • 84907187230 scopus 로고    scopus 로고
    • How the ribosome hands the A-site tRNA to the P site during EF-G-catalyzed translocation
    • Zhou J., et al. How the ribosome hands the A-site tRNA to the P site during EF-G-catalyzed translocation. Science 2014, 345:1188-1191.
    • (2014) Science , vol.345 , pp. 1188-1191
    • Zhou, J.1
  • 28
    • 77949776994 scopus 로고    scopus 로고
    • Roles of the ultra-conserved ribosomal RNA methyltransferase KsgA in ribosome biogenesis
    • Landes Bioscience, H. Grosjean (Ed.)
    • Rife J.P. Roles of the ultra-conserved ribosomal RNA methyltransferase KsgA in ribosome biogenesis. DNA and RNA Modification Enzymes: Structure, Mechanism, Function and Evolution 2009, 512-526. Landes Bioscience. H. Grosjean (Ed.).
    • (2009) DNA and RNA Modification Enzymes: Structure, Mechanism, Function and Evolution , pp. 512-526
    • Rife, J.P.1
  • 29
    • 0030006310 scopus 로고    scopus 로고
    • The translational function of nucleotide C1054 in the small subunit rRNA is conserved throughout evolution: genetic evidence in yeast
    • Chernoff Y.O., et al. The translational function of nucleotide C1054 in the small subunit rRNA is conserved throughout evolution: genetic evidence in yeast. Proc. Natl. Acad. Sci. U.S.A. 1996, 93:2517-2522.
    • (1996) Proc. Natl. Acad. Sci. U.S.A. , vol.93 , pp. 2517-2522
    • Chernoff, Y.O.1
  • 30
    • 69049089806 scopus 로고    scopus 로고
    • Loss of rRNA modifications in the decoding center of the ribosome impairs translation and strongly delays pre-rRNA processing
    • Liang X.H., et al. Loss of rRNA modifications in the decoding center of the ribosome impairs translation and strongly delays pre-rRNA processing. RNA 2009, 15:1716-1728.
    • (2009) RNA , vol.15 , pp. 1716-1728
    • Liang, X.H.1
  • 31
    • 78649426085 scopus 로고    scopus 로고
    • Crystal structure of the eukaryotic ribosome
    • Ben-Shem A., et al. Crystal structure of the eukaryotic ribosome. Science 2010, 330:1203-1209.
    • (2010) Science , vol.330 , pp. 1203-1209
    • Ben-Shem, A.1
  • 32
    • 84959346008 scopus 로고    scopus 로고
    • An atlas of RNA base pairs involving modified nucleobases with optimal geometries and accurate energies
    • Published online June 27, 2015
    • Chawla M., et al. An atlas of RNA base pairs involving modified nucleobases with optimal geometries and accurate energies. Nucleic Acids Res. 2015, Published online June 27, 2015. 10.1093/nar/gkv606.
    • (2015) Nucleic Acids Res.
    • Chawla, M.1
  • 33
    • 84893736852 scopus 로고    scopus 로고
    • Quantitative analysis of rRNA modifications using stable isotope labeling and mass spectrometry
    • Popova A.M., Williamson J.R. Quantitative analysis of rRNA modifications using stable isotope labeling and mass spectrometry. J. Am. Chem. Soc. 2014, 136:2058-2069.
    • (2014) J. Am. Chem. Soc. , vol.136 , pp. 2058-2069
    • Popova, A.M.1    Williamson, J.R.2
  • 34
    • 84926407700 scopus 로고    scopus 로고
    • Structural insights into the role of rRNA modifications in protein synthesis and ribosome assembly
    • Polikanov Y.S., et al. Structural insights into the role of rRNA modifications in protein synthesis and ribosome assembly. Nat. Struct. Mol. Biol. 2015, 22:342-344.
    • (2015) Nat. Struct. Mol. Biol. , vol.22 , pp. 342-344
    • Polikanov, Y.S.1
  • 35
    • 83855162728 scopus 로고    scopus 로고
    • The structure of the eukaryotic ribosome at 3.0 A resolution
    • Ben-Shem A., et al. The structure of the eukaryotic ribosome at 3.0 A resolution. Science 2011, 334:1524-1529.
    • (2011) Science , vol.334 , pp. 1524-1529
    • Ben-Shem, A.1
  • 36
    • 84877310529 scopus 로고    scopus 로고
    • Structures of the human and Drosophila 80S ribosome
    • Anger A.M., et al. Structures of the human and Drosophila 80S ribosome. Nature 2013, 497:80-85.
    • (2013) Nature , vol.497 , pp. 80-85
    • Anger, A.M.1
  • 37
    • 84928786981 scopus 로고    scopus 로고
    • Structure of the human 80S ribosome
    • Khatter H., et al. Structure of the human 80S ribosome. Nature 2015, 520:640-645.
    • (2015) Nature , vol.520 , pp. 640-645
    • Khatter, H.1
  • 38
    • 84864705013 scopus 로고    scopus 로고
    • Proofreading of pre-40S ribosome maturation by a translation initiation factor and 60S subunits
    • Lebaron S., et al. Proofreading of pre-40S ribosome maturation by a translation initiation factor and 60S subunits. Nat. Struct. Mol. Biol. 2012, 19:744-753.
    • (2012) Nat. Struct. Mol. Biol. , vol.19 , pp. 744-753
    • Lebaron, S.1
  • 39
    • 84863619022 scopus 로고    scopus 로고
    • A translation-like cycle is a quality control checkpoint for maturing 40S ribosome subunits
    • Strunk B.S., et al. A translation-like cycle is a quality control checkpoint for maturing 40S ribosome subunits. Cell 2012, 150:111-121.
    • (2012) Cell , vol.150 , pp. 111-121
    • Strunk, B.S.1
  • 40
    • 0037474205 scopus 로고    scopus 로고
    • A dispensable yeast ribosomal protein optimizes peptidyltransferase activity and affects translocation
    • Dresios J., et al. A dispensable yeast ribosomal protein optimizes peptidyltransferase activity and affects translocation. J. Biol. Chem. 2003, 278:3314-3322.
    • (2003) J. Biol. Chem. , vol.278 , pp. 3314-3322
    • Dresios, J.1
  • 41
    • 77952580619 scopus 로고    scopus 로고
    • A 'garbage can' for ribosomes: how eukaryotes degrade their ribosomes
    • Lafontaine D.L.J. A 'garbage can' for ribosomes: how eukaryotes degrade their ribosomes. Trends Biochem. Sci. 2010, 35:267-277.
    • (2010) Trends Biochem. Sci. , vol.35 , pp. 267-277
    • Lafontaine, D.L.J.1
  • 42
    • 39149096592 scopus 로고    scopus 로고
    • The yeast ribosome synthesis factor Emg1 is a novel member of the superfamily of alpha/beta knot fold methyltransferases
    • Leulliot N., et al. The yeast ribosome synthesis factor Emg1 is a novel member of the superfamily of alpha/beta knot fold methyltransferases. Nucleic Acids Res. 2008, 36:629-639.
    • (2008) Nucleic Acids Res. , vol.36 , pp. 629-639
    • Leulliot, N.1
  • 43
    • 43249099857 scopus 로고    scopus 로고
    • Bud23 methylates G1575 of 18S rRNA and is required for efficient nuclear export of pre-40S subunits
    • White J., et al. Bud23 methylates G1575 of 18S rRNA and is required for efficient nuclear export of pre-40S subunits. Mol. Cell. Biol. 2008, 28:3151-3161.
    • (2008) Mol. Cell. Biol. , vol.28 , pp. 3151-3161
    • White, J.1
  • 44
    • 0028866774 scopus 로고
    • The 18S rRNA dimethylase Dim1p is required for pre-ribosomal RNA processing in yeast
    • Lafontaine D.L.J., et al. The 18S rRNA dimethylase Dim1p is required for pre-ribosomal RNA processing in yeast. Genes Dev. 1995, 9:2470-2481.
    • (1995) Genes Dev. , vol.9 , pp. 2470-2481
    • Lafontaine, D.L.J.1
  • 45
    • 0031944479 scopus 로고    scopus 로고
    • Yeast 18S rRNA dimethylase Dim1p: a quality control mechanism in ribosome synthesis?
    • Lafontaine D.L.J., et al. Yeast 18S rRNA dimethylase Dim1p: a quality control mechanism in ribosome synthesis?. Mol. Cell. Biol. 1998, 18:2360-2370.
    • (1998) Mol. Cell. Biol. , vol.18 , pp. 2360-2370
    • Lafontaine, D.L.J.1
  • 46
    • 84861634017 scopus 로고    scopus 로고
    • Mapping the cleavage sites on mammalian pre-rRNAs: where do we stand?
    • Mullineux S.T., Lafontaine D.L.J. Mapping the cleavage sites on mammalian pre-rRNAs: where do we stand?. Biochimie 2012, 94:1521-1532.
    • (2012) Biochimie , vol.94 , pp. 1521-1532
    • Mullineux, S.T.1    Lafontaine, D.L.J.2
  • 47
    • 84922998994 scopus 로고    scopus 로고
    • An overview of pre-ribosomal RNA processing in eukaryotes
    • Henras A., et al. An overview of pre-ribosomal RNA processing in eukaryotes. Wiley Interdiscip. Rev. RNA 2015, 6:225-242.
    • (2015) Wiley Interdiscip. Rev. RNA , vol.6 , pp. 225-242
    • Henras, A.1
  • 48
    • 84923044522 scopus 로고    scopus 로고
    • Processing of preribosomal RNA in Saccharomyces cerevisiae
    • Fernandez-Pevida A., et al. Processing of preribosomal RNA in Saccharomyces cerevisiae. Wiley Interdiscip. Rev. RNA 2014, 6:191-209.
    • (2014) Wiley Interdiscip. Rev. RNA , vol.6 , pp. 191-209
    • Fernandez-Pevida, A.1
  • 49
    • 84921351874 scopus 로고    scopus 로고
    • WBSCR22/Merm1 is required for late nuclear pre-ribosomal RNA processing and mediates N7-methylation of G1639 in human 18S rRNA
    • Haag S., et al. WBSCR22/Merm1 is required for late nuclear pre-ribosomal RNA processing and mediates N7-methylation of G1639 in human 18S rRNA. RNA 2014, 21:180-187.
    • (2014) RNA , vol.21 , pp. 180-187
    • Haag, S.1
  • 50
    • 65649134700 scopus 로고    scopus 로고
    • RNA helicase module in an acetyltransferase that modifies a specific tRNA anticodon
    • Chimnaronk S., et al. RNA helicase module in an acetyltransferase that modifies a specific tRNA anticodon. EMBO J. 2009, 28:1362-1373.
    • (2009) EMBO J. , vol.28 , pp. 1362-1373
    • Chimnaronk, S.1
  • 51
    • 84924857942 scopus 로고    scopus 로고
    • Two-subunit enzymes involved in eukaryotic post-transcriptional tRNA modification
    • Guy M.P., Phizicky E.M. Two-subunit enzymes involved in eukaryotic post-transcriptional tRNA modification. RNA Biol. 2014, 11:1608-1618.
    • (2014) RNA Biol. , vol.11 , pp. 1608-1618
    • Guy, M.P.1    Phizicky, E.M.2
  • 52
    • 41149170790 scopus 로고    scopus 로고
    • The crystal structure of Nep1 reveals an extended SPOUT-class methyltransferase fold and a pre-organized SAM-binding site
    • Taylor A.B., et al. The crystal structure of Nep1 reveals an extended SPOUT-class methyltransferase fold and a pre-organized SAM-binding site. Nucleic Acids Res. 2008, 36:1542-1554.
    • (2008) Nucleic Acids Res. , vol.36 , pp. 1542-1554
    • Taylor, A.B.1
  • 53
    • 77952314717 scopus 로고    scopus 로고
    • The ribosome assembly factor Nep1 responsible for Bowen-Conradi syndrome is a pseudouridine-N1-specific methyltransferase
    • Wurm J.P., et al. The ribosome assembly factor Nep1 responsible for Bowen-Conradi syndrome is a pseudouridine-N1-specific methyltransferase. Nucleic Acids Res. 2010, 38:2387-2398.
    • (2010) Nucleic Acids Res. , vol.38 , pp. 2387-2398
    • Wurm, J.P.1
  • 54
    • 77949563362 scopus 로고    scopus 로고
    • Yeast pre-rRNA processing and modification occur cotranscriptionally
    • Kos M., Tollervey D. Yeast pre-rRNA processing and modification occur cotranscriptionally. Mol. Cell 2010, 37:809-820.
    • (2010) Mol. Cell , vol.37 , pp. 809-820
    • Kos, M.1    Tollervey, D.2
  • 55
    • 84916641219 scopus 로고    scopus 로고
    • Cotranscriptional events in eukaryotic ribosome synthesis
    • Turowski T.W., Tollervey D. Cotranscriptional events in eukaryotic ribosome synthesis. Wiley Interdiscip. Rev. RNA 2015, 6:129-139.
    • (2015) Wiley Interdiscip. Rev. RNA , vol.6 , pp. 129-139
    • Turowski, T.W.1    Tollervey, D.2
  • 56
    • 0017364906 scopus 로고
    • Secondary methylation of yeast ribosomal precursor RNA
    • Brand R.C., et al. Secondary methylation of yeast ribosomal precursor RNA. Eur. J. Biochem. 1977, 75:311-318.
    • (1977) Eur. J. Biochem. , vol.75 , pp. 311-318
    • Brand, R.C.1
  • 57
    • 0037536219 scopus 로고    scopus 로고
    • The path from nucleolar 90S to cytoplasmic 40S pre-ribosomes
    • Schafer T., et al. The path from nucleolar 90S to cytoplasmic 40S pre-ribosomes. EMBO J. 2003, 22:1370-1380.
    • (2003) EMBO J. , vol.22 , pp. 1370-1380
    • Schafer, T.1
  • 58
    • 33646778150 scopus 로고    scopus 로고
    • Biosynthesis of wybutosine, a hyper-modified nucleoside in eukaryotic phenylalanine tRNA
    • Noma A., et al. Biosynthesis of wybutosine, a hyper-modified nucleoside in eukaryotic phenylalanine tRNA. EMBO J. 2006, 25:2142-2154.
    • (2006) EMBO J. , vol.25 , pp. 2142-2154
    • Noma, A.1
  • 59
    • 0017802149 scopus 로고
    • Biosynthesis of a hypermodified nucleotide in Saccharomyces carlsbergensis 17S and HeLa-cell 18S ribosomal ribonucleic acid
    • Brand R.C., et al. Biosynthesis of a hypermodified nucleotide in Saccharomyces carlsbergensis 17S and HeLa-cell 18S ribosomal ribonucleic acid. Biochem. J. 1978, 169:71-77.
    • (1978) Biochem. J. , vol.169 , pp. 71-77
    • Brand, R.C.1
  • 60
    • 84925324285 scopus 로고    scopus 로고
    • Snapshots of pre-rRNA structural flexibility reveal eukaryotic 40S assembly dynamics at nucleotide resolution
    • Hector R.D., et al. Snapshots of pre-rRNA structural flexibility reveal eukaryotic 40S assembly dynamics at nucleotide resolution. Nucleic Acids Res. 2014, 42:12138-12154.
    • (2014) Nucleic Acids Res. , vol.42 , pp. 12138-12154
    • Hector, R.D.1
  • 61
    • 84941069609 scopus 로고    scopus 로고
    • The association of late-acting snoRNPs with human pre-ribosomal complexes requires the RNA helicase DDX21
    • Sloan K.E., et al. The association of late-acting snoRNPs with human pre-ribosomal complexes requires the RNA helicase DDX21. Nucleic Acids Res. 2015, 43:553-564.
    • (2015) Nucleic Acids Res. , vol.43 , pp. 553-564
    • Sloan, K.E.1
  • 62
    • 0038374971 scopus 로고    scopus 로고
    • Many paths to methyltransfer: a chronicle of convergence
    • Schubert H.L., et al. Many paths to methyltransfer: a chronicle of convergence. Trends Biochem. Sci. 2003, 28:329-335.
    • (2003) Trends Biochem. Sci. , vol.28 , pp. 329-335
    • Schubert, H.L.1
  • 63
    • 0345096517 scopus 로고    scopus 로고
    • The first structure of an RNA m5C methyltransferase, Fmu, provides insight into catalytic mechanism and specific binding of RNA substrate
    • Foster P.G., et al. The first structure of an RNA m5C methyltransferase, Fmu, provides insight into catalytic mechanism and specific binding of RNA substrate. Structure 2003, 11:1609-1620.
    • (2003) Structure , vol.11 , pp. 1609-1620
    • Foster, P.G.1
  • 64
    • 84901327508 scopus 로고    scopus 로고
    • Physical and functional interaction between the methyltransferase Bud23 and the essential DEAH-Box RNA helicase Ecm16
    • Sardana R., et al. Physical and functional interaction between the methyltransferase Bud23 and the essential DEAH-Box RNA helicase Ecm16. Mol. Cell. Biol. 2014, 34:2208-2220.
    • (2014) Mol. Cell. Biol. , vol.34 , pp. 2208-2220
    • Sardana, R.1
  • 65
    • 0033830343 scopus 로고    scopus 로고
    • Dhr1p, a putative DEAH-box RNA helicase, is associated with the box C+D snoRNP U3
    • Colley A., et al. Dhr1p, a putative DEAH-box RNA helicase, is associated with the box C+D snoRNP U3. Mol. Cell. Biol. 2000, 20:7238-7246.
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 7238-7246
    • Colley, A.1
  • 66
    • 84942135052 scopus 로고    scopus 로고
    • The DEAH-box helicase Dhr1 dissociates U3 from the pre-rRNA to promote formation of the central pseudoknot
    • Sardana R., et al. The DEAH-box helicase Dhr1 dissociates U3 from the pre-rRNA to promote formation of the central pseudoknot. PLoS Biol. 2015, 13:e1002083.
    • (2015) PLoS Biol. , vol.13 , pp. e1002083
    • Sardana, R.1
  • 67
    • 84912086331 scopus 로고    scopus 로고
    • RNA cytidine acetyltransferase of small-subunit ribosomal RNA: identification of acetylation sites and the responsible acetyltransferase in fission yeast, Schizosaccharomyces pombe
    • Taoka M., et al. RNA cytidine acetyltransferase of small-subunit ribosomal RNA: identification of acetylation sites and the responsible acetyltransferase in fission yeast, Schizosaccharomyces pombe. PLoS ONE 2014, 9:e112156.
    • (2014) PLoS ONE , vol.9 , pp. e112156
    • Taoka, M.1
  • 68
    • 84919787527 scopus 로고    scopus 로고
    • Human NAT10 is an ATP-dependent RNA acetyltransferase responsible for N4-acetylcytidine formation in 18S rRNA
    • Ito S., et al. Human NAT10 is an ATP-dependent RNA acetyltransferase responsible for N4-acetylcytidine formation in 18S rRNA. J. Biol. Chem. 2014, 289:35724-35730.
    • (2014) J. Biol. Chem. , vol.289 , pp. 35724-35730
    • Ito, S.1
  • 69
    • 1642488233 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae TAN1 gene is required for N4-acetylcytidine formation in tRNA
    • Johansson M.J., Bystrom A.S. The Saccharomyces cerevisiae TAN1 gene is required for N4-acetylcytidine formation in tRNA. RNA 2004, 10:712-719.
    • (2004) RNA , vol.10 , pp. 712-719
    • Johansson, M.J.1    Bystrom, A.S.2
  • 70
    • 84861604923 scopus 로고    scopus 로고
    • Methylation of class I translation termination factors: structural and functional aspects
    • Graille M., et al. Methylation of class I translation termination factors: structural and functional aspects. Biochimie 2012, 94:1533-1543.
    • (2012) Biochimie , vol.94 , pp. 1533-1543
    • Graille, M.1
  • 71
    • 84864000733 scopus 로고    scopus 로고
    • Trm112 is required for Bud23-mediated methylation of the 18S rRNA at position G1575
    • Figaro S., et al. Trm112 is required for Bud23-mediated methylation of the 18S rRNA at position G1575. Mol. Cell. Biol. 2012, 32:2254-2267.
    • (2012) Mol. Cell. Biol. , vol.32 , pp. 2254-2267
    • Figaro, S.1
  • 72
    • 84922180958 scopus 로고    scopus 로고
    • Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells
    • Carlile T.M., et al. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 2014, 515:143-146.
    • (2014) Nature , vol.515 , pp. 143-146
    • Carlile, T.M.1
  • 73
    • 84907527348 scopus 로고    scopus 로고
    • Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA
    • Schwartz S., et al. Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell 2014, 159:148-162.
    • (2014) Cell , vol.159 , pp. 148-162
    • Schwartz, S.1
  • 74
    • 37349128219 scopus 로고    scopus 로고
    • RRNA modifications in an intersubunit bridge of the ribosome strongly affect both ribosome biogenesis and activity
    • Liang X.H., et al. rRNA modifications in an intersubunit bridge of the ribosome strongly affect both ribosome biogenesis and activity. Mol. Cell 2007, 28:965-977.
    • (2007) Mol. Cell , vol.28 , pp. 965-977
    • Liang, X.H.1
  • 75
    • 81355153985 scopus 로고    scopus 로고
    • RRNA pseudouridylation defects affect ribosomal ligand binding and translational fidelity from yeast to human cells
    • Jack K., et al. rRNA pseudouridylation defects affect ribosomal ligand binding and translational fidelity from yeast to human cells. Mol. Cell 2011, 44:660-666.
    • (2011) Mol. Cell , vol.44 , pp. 660-666
    • Jack, K.1
  • 76
    • 84938977749 scopus 로고    scopus 로고
    • Methylation of ribosomal RNA by NSUN5 is a conserved mechanism modulating organismal lifespan
    • Schosserer M., et al. Methylation of ribosomal RNA by NSUN5 is a conserved mechanism modulating organismal lifespan. Nat. Commun. 2015, 6:6158.
    • (2015) Nat. Commun. , vol.6 , pp. 6158
    • Schosserer, M.1
  • 77
    • 0000400795 scopus 로고
    • Structural anf functional aspects of the N6, N6 dimethyladenosines in 16S ribosomal RNA
    • Springer-Verlag, B. Hardesty, G. Kramer (Eds.)
    • van Knippenberg P.H. Structural anf functional aspects of the N6, N6 dimethyladenosines in 16S ribosomal RNA. Structure, Function, and Genetics of Ribosomes 1986, 412-424. Springer-Verlag. B. Hardesty, G. Kramer (Eds.).
    • (1986) Structure, Function, and Genetics of Ribosomes , pp. 412-424
    • van Knippenberg, P.H.1
  • 78
    • 78649652763 scopus 로고    scopus 로고
    • Modification of 16S ribosomal RNA by the KsgA methyltransferase restructures the 30S subunit to optimize ribosome function
    • Demirci H., et al. Modification of 16S ribosomal RNA by the KsgA methyltransferase restructures the 30S subunit to optimize ribosome function. RNA 2010, 16:2319-2324.
    • (2010) RNA , vol.16 , pp. 2319-2324
    • Demirci, H.1
  • 79
    • 78650905534 scopus 로고    scopus 로고
    • U2 snRNA is inducibly pseudouridylated at novel sites by Pus7p and snR81 RNP
    • Wu G., et al. U2 snRNA is inducibly pseudouridylated at novel sites by Pus7p and snR81 RNP. EMBO J. 2011, 30:79-89.
    • (2011) EMBO J. , vol.30 , pp. 79-89
    • Wu, G.1
  • 80
    • 84925871653 scopus 로고    scopus 로고
    • Aminoacyl-tRNA synthetase complexes in evolution
    • Havrylenko S., Mirande M. Aminoacyl-tRNA synthetase complexes in evolution. Int. J. Mol. Sci. 2015, 16:6571-6594.
    • (2015) Int. J. Mol. Sci. , vol.16 , pp. 6571-6594
    • Havrylenko, S.1    Mirande, M.2
  • 81
    • 33747617329 scopus 로고    scopus 로고
    • Genetic evidence for 18S rRNA binding and an Rps19p assembly function of yeast nucleolar protein Nep1p
    • Buchhaupt M., et al. Genetic evidence for 18S rRNA binding and an Rps19p assembly function of yeast nucleolar protein Nep1p. Mol. Genet. Genomics 2006, 276:273-284.
    • (2006) Mol. Genet. Genomics , vol.276 , pp. 273-284
    • Buchhaupt, M.1
  • 82
    • 79952331212 scopus 로고    scopus 로고
    • The Bowen-Conradi syndrome protein Nep1 (Emg1) has a dual role in eukaryotic ribosome biogenesis, as an essential assembly factor and in the methylation of Psi1191 in yeast 18S rRNA
    • Meyer B., et al. The Bowen-Conradi syndrome protein Nep1 (Emg1) has a dual role in eukaryotic ribosome biogenesis, as an essential assembly factor and in the methylation of Psi1191 in yeast 18S rRNA. Nucleic Acids Res. 2011, 39:1526-1537.
    • (2011) Nucleic Acids Res. , vol.39 , pp. 1526-1537
    • Meyer, B.1
  • 83
    • 79953683436 scopus 로고    scopus 로고
    • Structural insight into the functional mechanism of Nep1/Emg1 N1-specific pseudouridine methyltransferase in ribosome biogenesis
    • Thomas S.R., et al. Structural insight into the functional mechanism of Nep1/Emg1 N1-specific pseudouridine methyltransferase in ribosome biogenesis. Nucleic Acids Res. 2011, 39:2445-2457.
    • (2011) Nucleic Acids Res. , vol.39 , pp. 2445-2457
    • Thomas, S.R.1
  • 84
    • 84861155523 scopus 로고    scopus 로고
    • Genetic interactions of yeast NEP1 (EMG1), encoding an essential factor in ribosome biogenesis
    • Schilling V., et al. Genetic interactions of yeast NEP1 (EMG1), encoding an essential factor in ribosome biogenesis. Yeast 2012, 29:167-183.
    • (2012) Yeast , vol.29 , pp. 167-183
    • Schilling, V.1
  • 85
    • 80051719282 scopus 로고    scopus 로고
    • Mechanism of activation of methyltransferases involved in translation by the Trm112 'hub' protein
    • Liger D., et al. Mechanism of activation of methyltransferases involved in translation by the Trm112 'hub' protein. Nucleic Acids Res. 2011, 39:6249-6259.
    • (2011) Nucleic Acids Res. , vol.39 , pp. 6249-6259
    • Liger, D.1
  • 86
    • 84868250838 scopus 로고    scopus 로고
    • The methyltransferase adaptor protein Trm112 is involved in biogenesis of both ribosomal subunits
    • Sardana R., Johnson A.W. The methyltransferase adaptor protein Trm112 is involved in biogenesis of both ribosomal subunits. Mol. Biol. Cell 2012, 23:4313-4322.
    • (2012) Mol. Biol. Cell , vol.23 , pp. 4313-4322
    • Sardana, R.1    Johnson, A.W.2
  • 87
    • 84878034404 scopus 로고    scopus 로고
    • The rRNA methyltransferase Bud23 shows functional interaction with components of the SSU processome and RNase MRP
    • Sardana R., et al. The rRNA methyltransferase Bud23 shows functional interaction with components of the SSU processome and RNase MRP. RNA 2013, 19:828-840.
    • (2013) RNA , vol.19 , pp. 828-840
    • Sardana, R.1
  • 88
    • 77956283585 scopus 로고    scopus 로고
    • Genetic interactions show the importance of rRNA modification machinery for the role of Rps15p during ribosome biogenesis in S. cerevisiae
    • Bellemer C., et al. Genetic interactions show the importance of rRNA modification machinery for the role of Rps15p during ribosome biogenesis in S. cerevisiae. PLoS ONE 2010, 5:e10472.
    • (2010) PLoS ONE , vol.5 , pp. e10472
    • Bellemer, C.1
  • 89
    • 0028086499 scopus 로고
    • The DIM1 gene responsible for the conserved m6(2)Am6(2)A dimethylation in the 3'-terminal loop of 18 S rRNA is essential in yeast
    • Lafontaine D.L.J., et al. The DIM1 gene responsible for the conserved m6(2)Am6(2)A dimethylation in the 3'-terminal loop of 18 S rRNA is essential in yeast. J. Mol. Biol. 1994, 241:492-497.
    • (1994) J. Mol. Biol. , vol.241 , pp. 492-497
    • Lafontaine, D.L.J.1
  • 90
    • 84886775476 scopus 로고    scopus 로고
    • Regulation of SirT1-nucleomethylin binding by rRNA coordinates ribosome biogenesis with nutrient availability
    • Yang L., et al. Regulation of SirT1-nucleomethylin binding by rRNA coordinates ribosome biogenesis with nutrient availability. Mol. Cell. Biol. 2013, 33:3835-3848.
    • (2013) Mol. Cell. Biol. , vol.33 , pp. 3835-3848
    • Yang, L.1
  • 91
    • 0034043398 scopus 로고    scopus 로고
    • Rrp8p is a yeast nucleolar protein functionally linked to Gar1p and involved in pre-rRNA cleavage at site A2
    • Bousquet-Antonelli C., et al. Rrp8p is a yeast nucleolar protein functionally linked to Gar1p and involved in pre-rRNA cleavage at site A2. RNA 2000, 6:826-843.
    • (2000) RNA , vol.6 , pp. 826-843
    • Bousquet-Antonelli, C.1
  • 92
    • 0016167723 scopus 로고
    • Effect of ribose O(2')-methylation on the conformation of nucleosides and nucleotides
    • Prusiner P., et al. Effect of ribose O(2')-methylation on the conformation of nucleosides and nucleotides. Biochim. Biophys. Acta 1974, 366:115-123.
    • (1974) Biochim. Biophys. Acta , vol.366 , pp. 115-123
    • Prusiner, P.1
  • 94
    • 0014340979 scopus 로고
    • 1-Methyladenosine. Dimroth rearrangement and reversible reduction
    • Macon J.B., Wolfenden R. 1-Methyladenosine. Dimroth rearrangement and reversible reduction. Biochemistry 1968, 7:3453-3458.
    • (1968) Biochemistry , vol.7 , pp. 3453-3458
    • Macon, J.B.1    Wolfenden, R.2
  • 95
    • 0022885464 scopus 로고
    • Transfer RNA contains sites of localized positive charge: carbon NMR studies of [13C]methyl-enriched Escherichia coli and yeast tRNAPhe
    • Agris P.F., et al. Transfer RNA contains sites of localized positive charge: carbon NMR studies of [13C]methyl-enriched Escherichia coli and yeast tRNAPhe. Biochemistry 1986, 25:5126-5131.
    • (1986) Biochemistry , vol.25 , pp. 5126-5131
    • Agris, P.F.1
  • 96
    • 0036493202 scopus 로고    scopus 로고
    • Chemical incorporation of 1-methyladenosine into oligonucleotides
    • Mikhailov S.N., et al. Chemical incorporation of 1-methyladenosine into oligonucleotides. Nucleic Acids Res. 2002, 30:1124-1131.
    • (2002) Nucleic Acids Res. , vol.30 , pp. 1124-1131
    • Mikhailov, S.N.1
  • 97
    • 77950476036 scopus 로고    scopus 로고
    • 5-methylcytosine in RNA: detection, enzymatic formation and biological functions
    • Motorin Y., et al. 5-methylcytosine in RNA: detection, enzymatic formation and biological functions. Nucleic Acids Res. 2010, 38:1415-1430.
    • (2010) Nucleic Acids Res. , vol.38 , pp. 1415-1430
    • Motorin, Y.1
  • 98
    • 0035476599 scopus 로고    scopus 로고
    • Methylation of the nucleobases in RNA oligonucleotides mediates duplex-hairpin conversion
    • Micura R., et al. Methylation of the nucleobases in RNA oligonucleotides mediates duplex-hairpin conversion. Nucleic Acids Res. 2001, 29:3997-4005.
    • (2001) Nucleic Acids Res. , vol.29 , pp. 3997-4005
    • Micura, R.1
  • 99
    • 0025219085 scopus 로고
    • Conformational and thermodynamic effects of naturally occurring base methylations in a ribosomal RNA hairpin of Bacillus stearothermophilus
    • Heus H.A., et al. Conformational and thermodynamic effects of naturally occurring base methylations in a ribosomal RNA hairpin of Bacillus stearothermophilus. Eur. J. Biochem. 1990, 188:275-281.
    • (1990) Eur. J. Biochem. , vol.188 , pp. 275-281
    • Heus, H.A.1
  • 100
    • 0021029308 scopus 로고
    • High-resolution proton magnetic resonance studies of the 3'-terminal colicin fragment of 16 S ribosomal RNA from Escherichia coli. Assignment of iminoproton resonances by nuclear Overhauser effect experiments and the influence of adenine dimethylation on the hairpin conformation
    • Heus H.A., et al. High-resolution proton magnetic resonance studies of the 3'-terminal colicin fragment of 16 S ribosomal RNA from Escherichia coli. Assignment of iminoproton resonances by nuclear Overhauser effect experiments and the influence of adenine dimethylation on the hairpin conformation. J. Mol. Biol. 1983, 170:939-956.
    • (1983) J. Mol. Biol. , vol.170 , pp. 939-956
    • Heus, H.A.1
  • 101
    • 0024813479 scopus 로고
    • Conformational characteristics of 4-acetylcytidine found in tRNA
    • Kawai G., et al. Conformational characteristics of 4-acetylcytidine found in tRNA. Nucleic Acids Symp. Ser. 1989, 21:61-62.
    • (1989) Nucleic Acids Symp. Ser. , vol.21 , pp. 61-62
    • Kawai, G.1
  • 102
    • 84923011476 scopus 로고    scopus 로고
    • Small RNAs with big implications: new insights into H/ACA snoRNA function and their role in human disease
    • McMahon M., et al. Small RNAs with big implications: new insights into H/ACA snoRNA function and their role in human disease. Wiley Interdiscip. Rev. RNA 2015, 6:173-189.
    • (2015) Wiley Interdiscip. Rev. RNA , vol.6 , pp. 173-189
    • McMahon, M.1
  • 103
    • 79551553123 scopus 로고    scopus 로고
    • The novel metastasis promoter Merm1/Wbscr22 enhances tumor cell survival in the vasculature by suppressing Zac1/p53-dependent apoptosis
    • Nakazawa Y., et al. The novel metastasis promoter Merm1/Wbscr22 enhances tumor cell survival in the vasculature by suppressing Zac1/p53-dependent apoptosis. Cancer Res. 2011, 71:1146-1155.
    • (2011) Cancer Res. , vol.71 , pp. 1146-1155
    • Nakazawa, Y.1
  • 104
    • 84897506754 scopus 로고    scopus 로고
    • The methyltransferase WBSCR22/Merm1 enhances glucocorticoid receptor function and is regulated in lung inflammation and cancer
    • Jangani M., et al. The methyltransferase WBSCR22/Merm1 enhances glucocorticoid receptor function and is regulated in lung inflammation and cancer. J. Biol. Chem. 2014, 289:8931-8946.
    • (2014) J. Biol. Chem. , vol.289 , pp. 8931-8946
    • Jangani, M.1
  • 105
    • 66449083254 scopus 로고    scopus 로고
    • Mutation of a gene essential for ribosome biogenesis, EMG1, causes Bowen-Conradi syndrome
    • Armistead J., et al. Mutation of a gene essential for ribosome biogenesis, EMG1, causes Bowen-Conradi syndrome. Am. J. Hum. Genet. 2009, 84:728-739.
    • (2009) Am. J. Hum. Genet. , vol.84 , pp. 728-739
    • Armistead, J.1
  • 106
    • 84899923151 scopus 로고    scopus 로고
    • Hepatic rRNA transcription regulates high-fat-diet-induced obesity
    • Oie S., et al. Hepatic rRNA transcription regulates high-fat-diet-induced obesity. Cell Rep. 2014, 7:807-820.
    • (2014) Cell Rep. , vol.7 , pp. 807-820
    • Oie, S.1
  • 107
    • 84892785163 scopus 로고    scopus 로고
    • Glutamine methylation in histone H2A is an RNA-polymerase-I-dedicated modification
    • Tessarz P., et al. Glutamine methylation in histone H2A is an RNA-polymerase-I-dedicated modification. Nature 2014, 505:564-568.
    • (2014) Nature , vol.505 , pp. 564-568
    • Tessarz, P.1
  • 108
    • 84872812804 scopus 로고    scopus 로고
    • The human base excision repair enzyme SMUG1 directly interacts with DKC1 and contributes to RNA quality control
    • Jobert L., et al. The human base excision repair enzyme SMUG1 directly interacts with DKC1 and contributes to RNA quality control. Mol. Cell 2013, 49:339-345.
    • (2013) Mol. Cell , vol.49 , pp. 339-345
    • Jobert, L.1
  • 109
    • 77951431225 scopus 로고    scopus 로고
    • Ribosomopathies: human disorders of ribosome dysfunction
    • Narla A., Ebert B.L. Ribosomopathies: human disorders of ribosome dysfunction. Blood 2010, 115:3196-3205.
    • (2010) Blood , vol.115 , pp. 3196-3205
    • Narla, A.1    Ebert, B.L.2
  • 110
    • 84900330481 scopus 로고    scopus 로고
    • Chemical inhibition of NAT10 corrects defects of laminopathic cells
    • Larrieu D., et al. Chemical inhibition of NAT10 corrects defects of laminopathic cells. Science 2014, 344:527-532.
    • (2014) Science , vol.344 , pp. 527-532
    • Larrieu, D.1
  • 111
    • 0035736207 scopus 로고    scopus 로고
    • Characterization of two novel genes, WBSCR20 and WBSCR22, deleted in Williams-Beuren syndrome
    • Doll A., Grzeschik K.H. Characterization of two novel genes, WBSCR20 and WBSCR22, deleted in Williams-Beuren syndrome. Cytogenet. Cell Genet. 2001, 95:20-27.
    • (2001) Cytogenet. Cell Genet. , vol.95 , pp. 20-27
    • Doll, A.1    Grzeschik, K.H.2
  • 112
    • 84884528223 scopus 로고    scopus 로고
    • The human WBSCR22 protein is involved in the biogenesis of the 40S ribosomal subunits in mammalian cells
    • Ounap K., et al. The human WBSCR22 protein is involved in the biogenesis of the 40S ribosomal subunits in mammalian cells. PLoS ONE 2013, 8:e75686.
    • (2013) PLoS ONE , vol.8 , pp. e75686
    • Ounap, K.1
  • 113
    • 79959717714 scopus 로고    scopus 로고
    • Genetic identification of Arabidopsis RID2 as an essential factor involved in pre-rRNA processing
    • Ohbayashi I., et al. Genetic identification of Arabidopsis RID2 as an essential factor involved in pre-rRNA processing. Plant J. 2011, 67:49-60.
    • (2011) Plant J. , vol.67 , pp. 49-60
    • Ohbayashi, I.1
  • 114
    • 0032076832 scopus 로고    scopus 로고
    • Chloroplast development at low temperatures requires a homolog of DIM1, a yeast gene encoding the 18S rRNA dimethylase
    • Tokuhisa J.G., et al. Chloroplast development at low temperatures requires a homolog of DIM1, a yeast gene encoding the 18S rRNA dimethylase. Plant Cell 1998, 10:699-711.
    • (1998) Plant Cell , vol.10 , pp. 699-711
    • Tokuhisa, J.G.1
  • 115
    • 0032832873 scopus 로고    scopus 로고
    • Prognostic value of nucleolar protein p120 in patients with resected lung adenocarcinoma
    • Sato G., et al. Prognostic value of nucleolar protein p120 in patients with resected lung adenocarcinoma. J. Clin. Oncol. 1999, 17:2721-2727.
    • (1999) J. Clin. Oncol. , vol.17 , pp. 2721-2727
    • Sato, G.1
  • 116
    • 17144365495 scopus 로고    scopus 로고
    • Determination of the 'critical region' for cat-like cry of Cri-du-chat syndrome and analysis of candidate genes by quantitative PCR
    • Wu Q., et al. Determination of the 'critical region' for cat-like cry of Cri-du-chat syndrome and analysis of candidate genes by quantitative PCR. Eur. J. Hum. Genet. 2005, 13:475-485.
    • (2005) Eur. J. Hum. Genet. , vol.13 , pp. 475-485
    • Wu, Q.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.