메뉴 건너뛰기




Volumn 8, Issue 1, 2015, Pages 1-21

Supervised learning methods in modeling of CD4+ T cell heterogeneity

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; ARTIFICIAL NEURAL NETWORK; CD4+ T LYMPHOCYTE; CELL HETEROGENEITY; CELLULAR IMMUNITY; COMPUTER MODEL; COMPUTER PREDICTION; CONCEPTUAL FRAMEWORK; CONTROLLED STUDY; INTERMETHOD COMPARISON; LEARNING ALGORITHM; LINEAR REGRESSION ANALYSIS; LYMPHOCYTE DIFFERENTIATION; MACHINE LEARNING; MATHEMATICAL COMPUTING; MATHEMATICAL MODEL; PERFORMANCE MEASUREMENT SYSTEM; PRIORITY JOURNAL; RANDOM FOREST; SIGNAL NOISE RATIO; SUPPORT VECTOR MACHINE; SYSTEM ANALYSIS; THEORETICAL MODEL;

EID: 84940666251     PISSN: None     EISSN: 17560381     Source Type: Journal    
DOI: 10.1186/s13040-015-0060-6     Document Type: Article
Times cited : (14)

References (75)
  • 4
    • 77958611660 scopus 로고    scopus 로고
    • Peripheral CD4 T cell differentiation regulated by networks of cytokines and transcription factors
    • 2975272 1:CAS:528:DC%2BC3cXhsVCjurzM 20969597
    • Zhu J, Paul WE. Peripheral CD4 T cell differentiation regulated by networks of cytokines and transcription factors. Immunol Rev. 2010;238:247-62.
    • (2010) Immunol Rev , vol.238 , pp. 247-262
    • Zhu, J.1    Paul, W.E.2
  • 5
    • 68049130978 scopus 로고    scopus 로고
    • The T(reg)/Th17 cell balance: a new paradigm for autoimmunity
    • 1:CAS:528:DC%2BD1MXmt1SmtLs%3D 19218879
    • Eisenstein EM, Williams CB. The T(reg)/Th17 cell balance: a new paradigm for autoimmunity. Pediatr Res. 2009;65:26R-31.
    • (2009) Pediatr Res , vol.65 , pp. 26R-31R
    • Eisenstein, E.M.1    Williams, C.B.2
  • 6
    • 0026006671 scopus 로고
    • A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase
    • 52661 1:CAS:528:DyaK3MXmslelsLg%3D 1833774
    • Goldbeter A. A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase. Proc Natl Acad Sci. 1991;88:9107-11.
    • (1991) Proc Natl Acad Sci , vol.88 , pp. 9107-9111
    • Goldbeter, A.1
  • 7
    • 0142027814 scopus 로고    scopus 로고
    • Structure and function of the feed-forward loop network motif
    • 218699 1:CAS:528:DC%2BD3sXotlGltLo%3D 14530388
    • Mangan S, Alon U. Structure and function of the feed-forward loop network motif. Proc Natl Acad Sci U S A. 2003;100:11980-5.
    • (2003) Proc Natl Acad Sci U S A , vol.100 , pp. 11980-11985
    • Mangan, S.1    Alon, U.2
  • 8
    • 84892712729 scopus 로고    scopus 로고
    • Unifying immunology with informatics and multiscale biology
    • 4345400 1:CAS:528:DC%2BC2cXps1aqtw%3D%3D 24448569
    • Kidd BA, Peters LA, Schadt EE, Dudley JT. Unifying immunology with informatics and multiscale biology. Nat Immunol. 2014;15:118-27.
    • (2014) Nat Immunol , vol.15 , pp. 118-127
    • Kidd, B.A.1    Peters, L.A.2    Schadt, E.E.3    Dudley, J.T.4
  • 16
    • 0014093657 scopus 로고
    • Studies in the History of Probability and Statistics. XV The historical development of the Gauss linear model
    • 1:STN:280:DyaF1c%2FgtlWmtQ%3D%3D 4860564
    • Seal HL. Studies in the History of Probability and Statistics. XV The historical development of the Gauss linear model. Biometrika. 1967;54:1-24.
    • (1967) Biometrika , vol.54 , pp. 1-24
    • Seal, H.L.1
  • 18
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Smola AJ, Schölkopf B. A tutorial on support vector regression. Stat Comput. 2004;14:199-222.
    • (2004) Stat Comput , vol.14 , pp. 199-222
    • Smola, A.J.1    Schölkopf, B.2
  • 19
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20:273-97.
    • (1995) Mach Learn , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 21
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Mach Learn. 1996;24:123-40.
    • (1996) Mach Learn , vol.24 , pp. 123-140
    • Breiman, L.1
  • 22
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach Learn. 2001;45:5-32.
    • (2001) Mach Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 23
    • 0345040873 scopus 로고    scopus 로고
    • Classification and Regression by randomForest
    • Liaw A, Wiener M. Classification and Regression by randomForest. R News. 2002;2:18-22.
    • (2002) R News , vol.2 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 26
    • 84906828147 scopus 로고    scopus 로고
    • Comparison of ARIMA and Random Forest time series models for prediction of avian influenza H5N1 outbreaks
    • 4152592 25123979
    • Kane MJ, Price N, Scotch M, Rabinowitz P. Comparison of ARIMA and Random Forest time series models for prediction of avian influenza H5N1 outbreaks. BMC Bioinformatics. 2014;15:276.
    • (2014) BMC Bioinformatics , vol.15 , pp. 276
    • Kane, M.J.1    Price, N.2    Scotch, M.3    Rabinowitz, P.4
  • 28
    • 77649220954 scopus 로고    scopus 로고
    • Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells
    • 2997673 20185720
    • O'Shea JJ, Paul WE. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science. 2010;327:1098-102.
    • (2010) Science , vol.327 , pp. 1098-1102
    • O'Shea, J.J.1    Paul, W.E.2
  • 29
    • 32944464648 scopus 로고    scopus 로고
    • Pathogen recognition and innate immunity
    • 1:CAS:528:DC%2BD28Xit1Kltb8%3D 16497588
    • Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124:783-801.
    • (2006) Cell , vol.124 , pp. 783-801
    • Akira, S.1    Uematsu, S.2    Takeuchi, O.3
  • 31
    • 0029928417 scopus 로고    scopus 로고
    • The expanding universe of T-cell subsets: Th1, Th2 and more
    • 1:CAS:528:DyaK28XhsVensLo%3D 8820272
    • Mosmann TR, Sad S. The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today. 1996;17:138-46.
    • (1996) Immunol Today , vol.17 , pp. 138-146
    • Mosmann, T.R.1    Sad, S.2
  • 32
    • 0030704726 scopus 로고    scopus 로고
    • A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis
    • 1:CAS:528:DyaK2sXmvVSgtb0%3D 9338786
    • Groux H, O'Garra A, Bigler M, Rouleau M, Antonenko S, de Vries JE, et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature. 1997;389:737-42.
    • (1997) Nature , vol.389 , pp. 737-742
    • Groux, H.1    O'Garra, A.2    Bigler, M.3    Rouleau, M.4    Antonenko, S.5    De Vries, J.E.6    Roncarolo, M.G.7
  • 33
    • 80355131976 scopus 로고    scopus 로고
    • Protective and pathogenic functions of macrophage subsets
    • 3422549 1:CAS:528:DC%2BC3MXhtlWltb%2FE 21997792
    • Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 2011;11:723-37.
    • (2011) Nat Rev Immunol , vol.11 , pp. 723-737
    • Murray, P.J.1    Wynn, T.A.2
  • 36
    • 0031568526 scopus 로고    scopus 로고
    • IFN-gamma-inducing factor (IGIF) is a costimulatory factor on the activation of Th1 but not Th2 cells and exerts its effect independently of IL-12
    • 1:CAS:528:DyaK2sXhtF2gtL0%3D 9029088
    • Kohno K, Kataoka J, Ohtsuki T, Suemoto Y, Okamoto I, Usui M, et al. IFN-gamma-inducing factor (IGIF) is a costimulatory factor on the activation of Th1 but not Th2 cells and exerts its effect independently of IL-12. J Immunol. 1997;158:1541-50.
    • (1997) J Immunol , vol.158 , pp. 1541-1550
    • Kohno, K.1    Kataoka, J.2    Ohtsuki, T.3    Suemoto, Y.4    Okamoto, I.5    Usui, M.6    Ikeda, M.7    Kurimoto, M.8
  • 37
    • 0037079054 scopus 로고    scopus 로고
    • Computational systems biology
    • 1:CAS:528:DC%2BD38Xos1Gnsbo%3D 12432404
    • Kitano H. Computational systems biology. Nature. 2002;420:206-10.
    • (2002) Nature , vol.420 , pp. 206-210
    • Kitano, H.1
  • 38
    • 74049122828 scopus 로고    scopus 로고
    • Cancer systems biology: a network modeling perspective
    • 2802670 1:CAS:528:DC%2BC3cXktlCmsw%3D%3D 19861649
    • Kreeger PK, Lauffenburger DA. Cancer systems biology: a network modeling perspective. Carcinogenesis. 2010;31:2-8.
    • (2010) Carcinogenesis , vol.31 , pp. 2-8
    • Kreeger, P.K.1    Lauffenburger, D.A.2
  • 39
    • 0036499997 scopus 로고    scopus 로고
    • Modeling the heart - From genes to cells to the whole organ
    • 1:CAS:528:DC%2BD38Xhsleiuro%3D 11872832
    • Noble D. Modeling the heart - from genes to cells to the whole organ. Science. 2002;295:1678-82.
    • (2002) Science , vol.295 , pp. 1678-1682
    • Noble, D.1
  • 40
    • 0036500993 scopus 로고    scopus 로고
    • Systems biology: a brief overview
    • 1:CAS:528:DC%2BD38Xhsleitb0%3D 11872829
    • Kitano H. Systems biology: a brief overview. Science. 2002;295:1662-4.
    • (2002) Science , vol.295 , pp. 1662-1664
    • Kitano, H.1
  • 41
    • 23444439817 scopus 로고    scopus 로고
    • Using process diagrams for the graphical representation of biological networks
    • 1:CAS:528:DC%2BD2MXntVSrtr0%3D 16082367
    • Kitano H, Funahashi A, Matsuoka Y, Oda K. Using process diagrams for the graphical representation of biological networks. Nat Biotechnol. 2005;23:961-6.
    • (2005) Nat Biotechnol , vol.23 , pp. 961-966
    • Kitano, H.1    Funahashi, A.2    Matsuoka, Y.3    Oda, K.4
  • 46
    • 84910131331 scopus 로고    scopus 로고
    • Integration of multiscale dendritic spine structure and function data into systems biology models
    • 4228840 25429262
    • Mancuso JJ, Cheng J, Yin Z, Gilliam JC, Xia X, Li X, et al. Integration of multiscale dendritic spine structure and function data into systems biology models. Front Neuroanat. 2014;8:130.
    • (2014) Front Neuroanat , vol.8 , pp. 130
    • Mancuso, J.J.1    Cheng, J.2    Yin, Z.3    Gilliam, J.C.4    Xia, X.5    Li, X.6    Wong, S.T.7
  • 47
    • 84946479380 scopus 로고    scopus 로고
    • Computational modeling of chemo-bio-mechanical coupling: a systems-biology approach toward wound healing
    • Buganza Tepole A, Kuhl E. Computational modeling of chemo-bio-mechanical coupling: a systems-biology approach toward wound healing. Comput Methods Biomech Biomed Engin. 2014;24:1-18.
    • (2014) Comput Methods Biomech Biomed Engin , vol.24 , pp. 1-18
    • Buganza Tepole, A.1    Kuhl, E.2
  • 52
    • 0035871371 scopus 로고    scopus 로고
    • Artificial neural networks
    • 1:STN:280:DC%2BD3M3hvFWgsQ%3D%3D 11309760
    • Dayhoff JE, DeLeo JM. Artificial neural networks. Cancer. 2001;91:1615-35.
    • (2001) Cancer , vol.91 , pp. 1615-35
    • Dayhoff, J.E.1    DeLeo, J.M.2
  • 53
    • 84885742317 scopus 로고    scopus 로고
    • Novel recurrent neural network for modelling biological networks: oscillatory p53 interaction dynamics
    • 1:CAS:528:DC%2BC3sXhvVags73M 24012741
    • Ling H, Samarasinghe S, Kulasiri D. Novel recurrent neural network for modelling biological networks: oscillatory p53 interaction dynamics. Biosystems. 2013;114:191-205.
    • (2013) Biosystems , vol.114 , pp. 191-205
    • Ling, H.1    Samarasinghe, S.2    Kulasiri, D.3
  • 54
    • 0028148549 scopus 로고
    • Artificial neural networks in the diagnosis and prognosis of prostate cancer: a pilot study
    • 1:STN:280:DyaK2M%2FhvVyitA%3D%3D 7523737
    • Snow PB, Smith DS, Catalona WJ. Artificial neural networks in the diagnosis and prognosis of prostate cancer: a pilot study. J Urol. 1994;152:1923-6.
    • (1994) J Urol , vol.152 , pp. 1923-1926
    • Snow, P.B.1    Smith, D.S.2    Catalona, W.J.3
  • 55
    • 0344604541 scopus 로고    scopus 로고
    • Artificial neural networks as a tool in ecological modelling, an introduction
    • Lek S, Guégan J-F. Artificial neural networks as a tool in ecological modelling, an introduction. Ecol Model. 1999;120:65-73.
    • (1999) Ecol Model , vol.120 , pp. 65-73
    • Lek, S.1    Guégan, J.-F.2
  • 57
    • 0000243355 scopus 로고
    • Learning in artificial neural networks: A statistical perspective
    • White H. Learning in artificial neural networks: A statistical perspective. Neural Comput. 1989;1:425-64.
    • (1989) Neural Comput , vol.1 , pp. 425-464
    • White, H.1
  • 58
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • 1:STN:280:DC%2BD1c7gvFegsg%3D%3D
    • Hagan MT, Menhaj MB. Training feedforward networks with the Marquardt algorithm. Neural Networks, IEEE Trans. 1994;5:989-93.
    • (1994) Neural Networks, IEEE Trans , vol.5 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 59
    • 0032165970 scopus 로고    scopus 로고
    • Artificial neural networks for solving ordinary and partial differential equations
    • 1:STN:280:DC%2BD1c%2FpvVChtA%3D%3D
    • Lagaris IE, Likas A, Fotiadis DI. Artificial neural networks for solving ordinary and partial differential equations. Neural Networks, IEEE Trans. 1998;9:987-1000.
    • (1998) Neural Networks, IEEE Trans , vol.9 , pp. 987-1000
    • Lagaris, I.E.1    Likas, A.2    Fotiadis, D.I.3
  • 60
    • 84871390883 scopus 로고    scopus 로고
    • Neuralnet: Training of neural networks
    • Günther F, Fritsch S. Neuralnet: Training of neural networks. R J. 2010;2:30-8.
    • (2010) R J , vol.2 , pp. 30-8
    • Günther, F.1    Fritsch, S.2
  • 61
    • 0030305457 scopus 로고    scopus 로고
    • R: a language for data analysis and graphics
    • Ihaka R, Gentleman R. R: a language for data analysis and graphics. J Comput Graph Stat. 1996;5:299-314.
    • (1996) J Comput Graph Stat , vol.5 , pp. 299-314
    • Ihaka, R.1    Gentleman, R.2
  • 63
    • 36248965294 scopus 로고    scopus 로고
    • TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology
    • 1:CAS:528:DC%2BD2sXhtlajtr7K 17994024
    • McGeachy MJ, Bak-Jensen KS, Chen Y, Tato CM, Blumenschein W, McClanahan T, et al. TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat Immunol. 2007;8:1390-7.
    • (2007) Nat Immunol , vol.8 , pp. 1390-1397
    • McGeachy, M.J.1    Bak-Jensen, K.S.2    Chen, Y.3    Tato, C.M.4    Blumenschein, W.5    McClanahan, T.6    Cua, D.J.7
  • 64
    • 33646577466 scopus 로고    scopus 로고
    • Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells
    • 1:CAS:528:DC%2BD28XksVGns7g%3D 16648838
    • Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441:235-8.
    • (2006) Nature , vol.441 , pp. 235-238
    • Bettelli, E.1    Carrier, Y.2    Gao, W.3    Korn, T.4    Strom, T.B.5    Oukka, M.6    Weiner, H.L.7    Kuchroo, V.K.8
  • 65
    • 4344591762 scopus 로고    scopus 로고
    • T-bet upregulation and subsequent interleukin 12 stimulation are essential for induction of Th1 mediated immunopathology in Crohn's disease
    • 1774174 1:CAS:528:DC%2BD2cXnvVyisbc%3D 15306590
    • Matsuoka K, Inoue N, Sato T, Okamoto S, Hisamatsu T, Kishi Y, et al. T-bet upregulation and subsequent interleukin 12 stimulation are essential for induction of Th1 mediated immunopathology in Crohn's disease. Gut. 2004;53:1303-8.
    • (2004) Gut , vol.53 , pp. 1303-1308
    • Matsuoka, K.1    Inoue, N.2    Sato, T.3    Okamoto, S.4    Hisamatsu, T.5    Kishi, Y.6    Sakuraba, A.7    Hitotsumatsu, O.8    Ogata, H.9    Koganei, K.10
  • 66
    • 84888322655 scopus 로고    scopus 로고
    • A comparison of the performances of an artificial neural network and a regression model for GFR estimation
    • 24011972
    • Liu X, Li NS, Lv LS, Huang JH, Tang H, Chen JX, et al. A comparison of the performances of an artificial neural network and a regression model for GFR estimation. Am J Kidney Dis. 2013;62:1109-15.
    • (2013) Am J Kidney Dis , vol.62 , pp. 1109-1115
    • Liu, X.1    Li, N.S.2    Lv, L.S.3    Huang, J.H.4    Tang, H.5    Chen, J.X.6    Ma, H.J.7    Wu, X.M.8    Lou, T.Q.9
  • 67
    • 84879236899 scopus 로고    scopus 로고
    • Determination of over-learning and over-fitting problem in back propagation neural network
    • Panchal G, Ganatra A, Shah P, Panchal D. Determination of over-learning and over-fitting problem in back propagation neural network. Int J Soft Comput. 2011;2:40-51.
    • (2011) Int J Soft Comput , vol.2 , pp. 40-51
    • Panchal, G.1    Ganatra, A.2    Shah, P.3    Panchal, D.4
  • 69
    • 27144489164 scopus 로고    scopus 로고
    • A Tutorial on Support Vector Machines for Pattern Recognition
    • Burges CC. A Tutorial on Support Vector Machines for Pattern Recognition. Data Min Knowl Disc. 1998;2:121-67.
    • (1998) Data Min Knowl Disc , vol.2 , pp. 121-167
    • Burges, C.C.1
  • 73
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using random forest
    • 1363357 16398926
    • Díaz-Uriarte R, De Andres SA. Gene selection and classification of microarray data using random forest. BMC Bioinformatics. 2006;7:3.
    • (2006) BMC Bioinformatics , vol.7 , pp. 3
    • Díaz-Uriarte, R.1    De Andres, S.A.2
  • 74
    • 13244272617 scopus 로고    scopus 로고
    • Relating HIV-1 sequence variation to replication capacity via trees and forests
    • 16646798
    • Segal MR, Barbour JD, Grant RM. Relating HIV-1 sequence variation to replication capacity via trees and forests. Stat Appl Genet Mol Biol. 2004;3:Article2.
    • (2004) Stat Appl Genet Mol Biol , vol.3
    • Segal, M.R.1    Barbour, J.D.2    Grant, R.M.3
  • 75
    • 84866037961 scopus 로고    scopus 로고
    • The secret of FOXP3 downregulation in the inflammation condition
    • 1:CAS:528:DC%2BC38Xhs1WhsbnO
    • Li Y, Zheng SG. The secret of FOXP3 downregulation in the inflammation condition. Int J Clin Exper Pathol. 2012;5:624-5.
    • (2012) Int J Clin Exper Pathol , vol.5 , pp. 624-625
    • Li, Y.1    Zheng, S.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.