메뉴 건너뛰기




Volumn 120, Issue 2-3, 1999, Pages 65-73

Artificial neural networks as a tool in ecological modelling, an introduction

Author keywords

ANN Workshop; Backpropagation; Ecology; Kohonen neural network; Modelling; Self organizing maps

Indexed keywords

ARTIFICIAL NEURAL NETWORK; ECOLOGICAL MODELING;

EID: 0344604541     PISSN: 03043800     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0304-3800(99)00092-7     Document Type: Article
Times cited : (742)

References (58)
  • 1
  • 2
    • 0029159052 scopus 로고
    • Biomass estimation in plant cell cultures: A neural network approach
    • Albiol J., Campmajo C., Casas C., Poch M. Biomass estimation in plant cell cultures: a neural network approach. Biotechn. Progr. 11:1995;88-92.
    • (1995) Biotechn. Progr. , vol.11 , pp. 88-92
    • Albiol, J.1    Campmajo, C.2    Casas, C.3    Poch, M.4
  • 3
    • 0030299144 scopus 로고    scopus 로고
    • Stochastic models that predict trouts population densities or biomass on macrohabitat scale
    • Baran P., Lek S., Delacoste M., Belaud A. Stochastic models that predict trouts population densities or biomass on macrohabitat scale. Hydrobiologia. 337:1996;1-9.
    • (1996) Hydrobiologia , vol.337 , pp. 1-9
    • Baran, P.1    Lek, S.2    Delacoste, M.3    Belaud, A.4
  • 5
    • 0026089704 scopus 로고
    • Ecological Applications Using a Novel Expert System Shell
    • Bradshaw J.A., Carden K.J., Riordan D. Ecological Applications Using a Novel Expert System Shell. Comp. Appl. Biosci. 7:1991;79-83.
    • (1991) Comp. Appl. Biosci. , vol.7 , pp. 79-83
    • Bradshaw, J.A.1    Carden, K.J.2    Riordan, D.3
  • 6
    • 0029664143 scopus 로고    scopus 로고
    • Artificial neural network versus multiple linear regression: Predicting P/B ratios from empirical data
    • Brey T., Jarre-Teichmann A., Borlich O. Artificial neural network versus multiple linear regression: predicting P/B ratios from empirical data. Marine Ecol. Progr. Series. 140:1996;251-256.
    • (1996) Marine Ecol. Progr. Series , vol.140 , pp. 251-256
    • Brey, T.1    Jarre-Teichmann, A.2    Borlich, O.3
  • 7
    • 0032075520 scopus 로고    scopus 로고
    • Speech Signal Prediction Using Feedforward Neural-Network
    • Chu W.C., Bose N.K. Speech Signal Prediction Using Feedforward Neural-Network. Electr. Lett. 34:1998;999-1001.
    • (1998) Electr. Lett. , vol.34 , pp. 999-1001
    • Chu, W.C.1    Bose, N.K.2
  • 8
    • 0002233946 scopus 로고
    • Discussions of the possible use of neural network algorithms in ecological modelling
    • Colasanti R.L. Discussions of the possible use of neural network algorithms in ecological modelling. Binary. 3:1991;13-15.
    • (1991) Binary , vol.3 , pp. 13-15
    • Colasanti, R.L.1
  • 9
    • 0029322830 scopus 로고
    • A Neural-Network Accelerator for Image-Analysis
    • Cosatto E., Graf H.P. A Neural-Network Accelerator for Image-Analysis. IEEE Micro. 15:1995;32-38.
    • (1995) IEEE Micro , vol.15 , pp. 32-38
    • Cosatto, E.1    Graf, H.P.2
  • 10
    • 0024861871 scopus 로고
    • Approximations by superpositions of a sigmoidal function, Mathematics of Control
    • Cybenko G. Approximations by superpositions of a sigmoidal function, Mathematics of Control. Signals and Systems. 2:1989;303-314.
    • (1989) Signals and Systems , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 11
    • 0029518782 scopus 로고
    • Ecological use for genetic algorithms: Predicting fish distributions in complex physical habitats
    • d'Angelo D.J., Howard L.M., Meyer J.L., Gregory S.V., Ashkenas L.R. Ecological use for genetic algorithms: predicting fish distributions in complex physical habitats. Can. J. Fish. Aquat. Sc. 52:1995;1893-1908.
    • (1995) Can. J. Fish. Aquat. Sc. , vol.52 , pp. 1893-1908
    • D'Angelo, D.J.1    Howard, L.M.2    Meyer, J.L.3    Gregory, S.V.4    Ashkenas, L.R.5
  • 12
    • 0028419667 scopus 로고
    • Image-Processing and Neural Networks for Recognition of Cartographic Area Features
    • Dekruger D., Hunt B.R. Image-Processing and Neural Networks for Recognition of Cartographic Area Features. Pattern Recogn. 27:1994;461-483.
    • (1994) Pattern Recogn. , vol.27 , pp. 461-483
    • Dekruger, D.1    Hunt, B.R.2
  • 13
    • 0028973870 scopus 로고
    • The potential for computer-aided identification in biodiversity research
    • Edwards M., Morse D.R. The potential for computer-aided identification in biodiversity research. Trends Ecol. Evol. 10:1995;153-158.
    • (1995) Trends Ecol. Evol. , vol.10 , pp. 153-158
    • Edwards, M.1    Morse, D.R.2
  • 14
    • 84950461478 scopus 로고
    • Estimating the error rate of a prediction rule: Improvement on cross-validation
    • Efron B. Estimating the error rate of a prediction rule: improvement on cross-validation. J. Am. Statist. Assoc. 78(382):1983;316-330.
    • (1983) J. Am. Statist. Assoc. , vol.78 , Issue.382 , pp. 316-330
    • Efron, B.1
  • 17
    • 0028855843 scopus 로고
    • A neural network model for survival data
    • Faraggi D., Simon R. A neural network model for survival data. Stat. Med. 14:1995;73-82.
    • (1995) Stat. Med. , vol.14 , pp. 73-82
    • Faraggi, D.1    Simon, R.2
  • 19
    • 21744462998 scopus 로고    scopus 로고
    • On bias, variance, 0/1-loss and the curse-of-dimensionality
    • Friedman J.H. On bias, variance, 0/1-loss and the curse-of-dimensionality. Data Mining and Knowledge Discovery. 1:1997;55-77.
    • (1997) Data Mining and Knowledge Discovery , vol.1 , pp. 55-77
    • Friedman, J.H.1
  • 24
    • 0344052657 scopus 로고    scopus 로고
    • Energy availability and habitat heterogeneity predict global riverine fish diversity
    • Guégan J.F., Lek S., Oberdorff T. Energy availability and habitat heterogeneity predict global riverine fish diversity. Nature. 391:1998;382-384.
    • (1998) Nature , vol.391 , pp. 382-384
    • Guégan, J.F.1    Lek, S.2    Oberdorff, T.3
  • 25
    • 0004199140 scopus 로고
    • Addison-Wesley, Massachusetts, USA
    • Hecht-Nielsen, R., 1990. Neurocomputing. Addison-Wesley, Massachusetts, USA.
    • (1990) Neurocomputing
    • Hecht-Nielsen, R.1
  • 26
    • 0020118274 scopus 로고
    • Neural networks and physical systems with emergent collective computational abilities
    • Hopfield J.J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA. 79:1982;2554-2558.
    • (1982) Proc. Natl. Acad. Sci. USA , vol.79 , pp. 2554-2558
    • Hopfield, J.J.1
  • 27
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornick K., Stinchcombe M., White H. Multilayer feedforward networks are universal approximators. Neural networks. 2:1989;359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornick, K.1    Stinchcombe, M.2    White, H.3
  • 29
    • 0028792845 scopus 로고
    • State-of-the-art of ecological modelling in limnology
    • Jørgensen S.E. State-of-the-art of ecological modelling in limnology. Ecol. Model. 78:1995;101-115.
    • (1995) Ecol. Model. , vol.78 , pp. 101-115
    • Jørgensen, S.E.1
  • 30
    • 0030390280 scopus 로고    scopus 로고
    • Feedforward backpropagation neural networks in prediction of farmer risk preference
    • Kastens T.L., Featherstone A.M. Feedforward backpropagation neural networks in prediction of farmer risk preference. Am. J. Agri. Econ. 78:1996;400-415.
    • (1996) Am. J. Agri. Econ. , vol.78 , pp. 400-415
    • Kastens, T.L.1    Featherstone, A.M.2
  • 31
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for estimation and model selection
    • Morgan Kaufmann Publishers
    • Kohavi, R., 1995. A study of cross-validation and bootstrap for estimation and model selection. Proc. of the 14th Int. Joint Conf. on Artificial Intelligence, Morgan Kaufmann Publishers, 1137-1143.
    • (1995) Proc. of the 14th Int. Joint Conf. on Artificial Intelligence , pp. 1137-1143
    • Kohavi, R.1
  • 33
    • 0020068152 scopus 로고
    • Self-organized formation of topologically correct feature maps
    • Kohonen T. Self-organized formation of topologically correct feature maps. Biol. Cybern. 43:1982;59-69.
    • (1982) Biol. Cybern. , vol.43 , pp. 59-69
    • Kohonen, T.1
  • 35
    • 0029182227 scopus 로고
    • Decision-Based Neural Networks with Signal Image Classification Applications
    • Kung S.Y., Taur J.S. Decision-Based Neural Networks with Signal Image Classification Applications. IEEE Trans. on Neural Networks. 6:1995;170-181.
    • (1995) IEEE Trans. on Neural Networks , vol.6 , pp. 170-181
    • Kung, S.Y.1    Taur, J.S.2
  • 36
    • 0004592379 scopus 로고
    • An application of neural networks in chemistry
    • Kvasnicka, V., 1990. An application of neural networks in chemistry. Chem. papers, 44(6): 775-792.
    • (1990) Chem. Papers , vol.44 , Issue.6 , pp. 775-792
    • Kvasnicka, V.1
  • 37
    • 0029661447 scopus 로고    scopus 로고
    • Role of some environmental variables in trout abundance models using neural networks
    • Lek S., Belaud A., Baran P., Dimopoulos I., Delacoste M. Role of some environmental variables in trout abundance models using neural networks. Aquatic Living Res. 9:1996a;23-29.
    • (1996) Aquatic Living Res. , vol.9 , pp. 23-29
    • Lek, S.1    Belaud, A.2    Baran, P.3    Dimopoulos, I.4    Delacoste, M.5
  • 41
    • 0004616014 scopus 로고
    • Application of Artificial Neural Networks to Interpretation of Mammograms on the Basis of the Radiologists Impression and Optimized Image Features
    • Lo J.Y., Baker J.A., Kornguth P.J., Floyd C.E. Application of Artificial Neural Networks to Interpretation of Mammograms on the Basis of the Radiologists Impression and Optimized Image Features. Radiology. 197:1995;242-242.
    • (1995) Radiology , vol.197 , pp. 242-242
    • Lo, J.Y.1    Baker, J.A.2    Kornguth, P.J.3    Floyd, C.E.4
  • 42
    • 0032077579 scopus 로고    scopus 로고
    • Predicting local fish species richness in the Garonne river basin., C.R. Acad. Sci. Paris
    • Mastrorillo S., Dauba F., Oberdorff T., Guégan J.F., Lek S. Predicting local fish species richness in the Garonne river basin., C.R. Acad. Sci. Paris. Life Sciences. 321:1998;423-428.
    • (1998) Life Sciences , vol.321 , pp. 423-428
    • Mastrorillo, S.1    Dauba, F.2    Oberdorff, T.3    Guégan, J.F.4    Lek, S.5
  • 43
    • 0004225003 scopus 로고
    • Learning logic
    • Office of Technology Licensing, Stanford University
    • Parker, D.B., 1982. Learning logic. Invention report S81-64, File 1, Office of Technology Licensing, Stanford University.
    • (1982) Invention Report S81-64, File 1
    • Parker, D.B.1
  • 45
    • 0028162053 scopus 로고
    • Hybrid Expert-System Delaqua-A Toolkit for Water-Quality Control of Lakes and Reservoirs
    • Recknagel F., Petzoldt T., Jaeke O., Krusche F. Hybrid Expert-System Delaqua-A Toolkit for Water-Quality Control of Lakes and Reservoirs. Ecol. Model. 71:1994;17-36.
    • (1994) Ecol. Model. , vol.71 , pp. 17-36
    • Recknagel, F.1    Petzoldt, T.2    Jaeke, O.3    Krusche, F.4
  • 46
    • 0030619529 scopus 로고    scopus 로고
    • Artificial neural network approach for modelling and prediction of algal blooms
    • Recknagel F., French M., Harkonen P., Yabunaka K.I. Artificial neural network approach for modelling and prediction of algal blooms. Ecol. Model. 96:1997;11-28.
    • (1997) Ecol. Model. , vol.96 , pp. 11-28
    • Recknagel, F.1    French, M.2    Harkonen, P.3    Yabunaka, K.I.4
  • 47
    • 0000696616 scopus 로고
    • Neural networks and related methods for classification
    • Ripley B.D. Neural networks and related methods for classification. J. R. Stat. Soc., B. 56(3):1994;409-456.
    • (1994) J. R. Stat. Soc., B , vol.56 , Issue.3 , pp. 409-456
    • Ripley, B.D.1
  • 48
    • 11144273669 scopus 로고
    • The Perceptron: A probabilistic model for information storage and organization in the brain
    • Rosenblatt F. The Perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65:1958;386-408.
    • (1958) Psychol. Rev. , vol.65 , pp. 386-408
    • Rosenblatt, F.1
  • 49
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart D.E., Hinton G.E., Williams R.J. Learning representations by back-propagating errors. Nature. 323:1986;533-536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 50
    • 0029662837 scopus 로고    scopus 로고
    • Artificial neural networks as empirical models for estimating phytoplankton production
    • Scardi M. Artificial neural networks as empirical models for estimating phytoplankton production. Marine Ecol. Progr. Series. 139:1996;289-299.
    • (1996) Marine Ecol. Progr. Series , vol.139 , pp. 289-299
    • Scardi, M.1
  • 51
  • 55
    • 0027038620 scopus 로고
    • New computer architectures as tools for ecological thought
    • Villa F. New computer architectures as tools for ecological thought. Trends Ecol. Evol. 7:1992;179-183.
    • (1992) Trends Ecol. Evol. , vol.7 , pp. 179-183
    • Villa, F.1
  • 57
  • 58
    • 0025708936 scopus 로고
    • Spectral peak verification and recognition using a multilayered neural network
    • Wythoff B.J., Levine S.P., Tomellini S.A. Spectral peak verification and recognition using a multilayered neural network. Anal. Chem. 62(24):1990;2702-2709.
    • (1990) Anal. Chem. , vol.62 , Issue.24 , pp. 2702-2709
    • Wythoff, B.J.1    Levine, S.P.2    Tomellini, S.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.