메뉴 건너뛰기




Volumn 4, Issue 1, 2011, Pages

A comparison of machine learning techniques for survival prediction in breast cancer

Author keywords

[No Author keywords available]

Indexed keywords

ACCURACY; ARTICLE; AUTOMATION; BREAST CANCER; CANCER PATIENT; CANCER SURVIVAL; DATA ANALYSIS; GENE EXPRESSION; GENETIC PROGRAMMING; HUMAN; INTERMETHOD COMPARISON; MACHINE LEARNING; MULTILAYERED PERCEPTRON; NUCLEOTIDE SEQUENCE; PATIENT CODING; PERFORMANCE; PREDICTION; PRIORITY JOURNAL; RANDOM FOREST; SCORING SYSTEM; SUPPORT VECTOR MACHINE;

EID: 79955776386     PISSN: None     EISSN: 17560381     Source Type: Journal    
DOI: 10.1186/1756-0381-4-12     Document Type: Article
Times cited : (46)

References (39)
  • 1
    • 34447555782 scopus 로고    scopus 로고
    • Mining gene expression profiles: Expression signatures as cancer phenotypes
    • DOI 10.1038/nrg2137, PII NRG2137
    • Mining gene expression profiles: expression signatures as cancer phenotypes. JR Nevins A Potti, Nat Rev Genet 2007 8 8 601 609 17607306 (Pubitemid 47077277)
    • (2007) Nature Reviews Genetics , vol.8 , Issue.8 , pp. 601-609
    • Nevins, J.R.1    Potti, A.2
  • 3
    • 33644875477 scopus 로고    scopus 로고
    • Applications of support vector machines to cancer classification with microarray data
    • DOI 10.1142/S0129065705000396, PII S0129065705000396
    • Applications of support vector machines to cancer classification with microarray data. F Chu L Wang, Int J Neural Syst 2005 15 6 475 484 10.1142/S0129065705000396 16385636 (Pubitemid 44099482)
    • (2005) International Journal of Neural Systems , vol.15 , Issue.6 , pp. 475-484
    • Chu, F.1    Wang, L.2
  • 4
    • 0345724886 scopus 로고    scopus 로고
    • Reliable classification of two-class cancer data using evolutionary algorithms
    • DOI 10.1016/S0303-2647(03)00138-2
    • Reliable classification of two-class cancer data using evolutionary algorithms. K Deb AR Reddy, Biosystems 2003 72 1-2 111 129 10.1016/S0303- 2647(03)00138-2 14642662 (Pubitemid 37464793)
    • (2003) BioSystems , vol.72 , Issue.1-2 , pp. 111-129
    • Deb, K.1    Raji Reddy, A.2
  • 5
    • 0037255041 scopus 로고    scopus 로고
    • Evolutionary algorithms for finding optimal gene sets in microarray prediction
    • DOI 10.1093/bioinformatics/19.1.45
    • Evolutionary algorithms for finding optimal gene sets in microarray prediction. JM Deutsch, Bioinformatics 2003 19 45 52 10.1093/bioinformatics/19. 1.45 12499292 (Pubitemid 36157275)
    • (2003) Bioinformatics , vol.19 , Issue.1 , pp. 45-52
    • Deutsch, J.M.1
  • 7
    • 27844547091 scopus 로고    scopus 로고
    • Gene selection for classification of cancers using probabilistic model building genetic algorithm
    • DOI 10.1016/j.biosystems.2005.07.003, PII S0303264705000997
    • Gene selection for classification of cancers using probabilistic model building genetic algorithm. TK Paul H Iba, Biosystems 2005 82 3 208 225 10.1016/j.biosystems.2005.07.003 16112804 (Pubitemid 41654495)
    • (2005) BioSystems , vol.82 , Issue.3 , pp. 208-225
    • Paul, T.K.1    Iba, H.2
  • 8
    • 34247214462 scopus 로고    scopus 로고
    • Feature selection and molecular classification of cancer using genetic programming
    • DOI 10.1593/neo.07121
    • Feature Selection and Molecular Classification of Cancer Using Genetic Programming. J Yu J Yu AA Almal SM Dhanasekaran D Ghosh WP Worzel AM Chinnaiyan, Neoplasia 2007 9 4 292 303 10.1593/neo.07121 17460773 (Pubitemid 46608296)
    • (2007) Neoplasia , vol.9 , Issue.4 , pp. 292-303
    • Yu, J.1    Yu, J.2    Almal, A.A.3    Dhanasekaran, S.M.4    Ghosh, D.5    Worzel, W.P.6    Chinnaiyan, A.M.7
  • 10
    • 0037623370 scopus 로고    scopus 로고
    • Cancer classification using gene expression data
    • 10.1016/S0306-4379(02)00072-8
    • Cancer classification using gene expression data. Y Lu J Han, Inf Syst 2003 28 4 243 268 10.1016/S0306-4379(02)00072-8
    • (2003) Inf Syst , vol.28 , Issue.4 , pp. 243-268
    • Lu, Y.1    Han, J.2
  • 13
    • 0242475332 scopus 로고    scopus 로고
    • An unsupervised hierarchical dynamic self-organizing approach to cancer class discovery and marker gene identification in microarray data
    • DOI 10.1093/bioinformatics/btg296
    • An unsupervised hierarchical dynamic self-organizing approach to cancer class discovery and marker gene identification in microarray data. A Hsu S Tang S Halgamuge, Bioinformatics 2003 19 16 2131 40 10.1093/bioinformatics/btg296 14594719 (Pubitemid 37408165)
    • (2003) Bioinformatics , vol.19 , Issue.16 , pp. 2131-2140
    • Hsu, A.L.1    Tang, S.-L.2    Halgamuge, S.K.3
  • 14
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • DOI 10.1023/A:1012487302797
    • Gene selection for cancer classification using support vector machines. I Guyon J Weston S Barnhill V Vapnik, Machine Learning 2002 46 389 422 10.1023/A:1012487302797 (Pubitemid 34129977)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 15
    • 38049058802 scopus 로고    scopus 로고
    • A genetic embedded approach for gene selection and classification of microarray data
    • 10.1007/978-3-540-71783-6-9
    • A genetic embedded approach for gene selection and classification of microarray data. JCH Hernandez B Duval J Hao, Lecture Notes in Computer Science 2007 4447 90 101 10.1007/978-3-540-71783-6-9
    • (2007) Lecture Notes in Computer Science , vol.4447 , pp. 90-101
    • Hernandez, J.C.H.1    Duval, B.2    Hao, J.3
  • 16
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian Networks to Analyze Expression Data
    • 10.1089/106652700750050961
    • Using Bayesian Networks to Analyze Expression Data. N Friedman M Linial I Nachmann D Peer, J Computational Biology 2000 7 601 620 10.1089/ 106652700750050961
    • (2000) J Computational Biology , vol.7 , pp. 601-620
    • Friedman, N.1    Linial, M.2    Nachmann, I.3    Peer, D.4
  • 19
    • 20744448405 scopus 로고    scopus 로고
    • Multiclass cancer classification and biomarker discovery using GA-based algorithms
    • DOI 10.1093/bioinformatics/bti419
    • Multiclass cancer classification and biomarker discovery using GA-based algorithms. J Liu G Cutler W Li Z Pan S Peng T Hoey L Chen XB Ling, Bioinformatics 2005 21 2691 2697 10.1093/bioinformatics/bti419 15814557 (Pubitemid 40852316)
    • (2005) Bioinformatics , vol.21 , Issue.11 , pp. 2691-2697
    • Liu, J.J.1    Cutler, G.2    Li, W.3    Pan, Z.4    Peng, S.5    Hoey, T.6    Chen, L.7    Ling, X.B.8
  • 20
    • 84948136563 scopus 로고    scopus 로고
    • Symbolic Discriminant Analysis for Mining Gene Expression Patterns
    • Machine Learning: ECML 2001
    • Symbolic discriminant analysis for mining gene expression patterns. J Moore J Parker L Hahn, Lecture Notes in Artificial Intelligence 2001 2167 372 381 (Pubitemid 33331084)
    • (2001) Lecture Notes in Computer Science , Issue.2167 , pp. 372-381
    • Moore, J.H.1    Parker, J.S.2    Hahn, L.W.3
  • 23
    • 30344458742 scopus 로고    scopus 로고
    • The classification of cancer based on DNA microarray data that uses diverse ensemble genetic programming
    • DOI 10.1016/j.artmed.2005.06.002, PII S0933365705000795
    • The classification of cancer based on DNA microarray data that uses diverse ensemble genetic programming. J Hong S Cho, Artif Intell Med 2006 36 43 58 10.1016/j.artmed.2005.06.002 16102956 (Pubitemid 43068582)
    • (2006) Artificial Intelligence in Medicine , vol.36 , Issue.1 , pp. 43-58
    • Hong, J.-H.1    Cho, S.-B.2
  • 26
    • 0004139833 scopus 로고
    • Cambridge, Massachusetts: The MIT Press
    • JR Koza, Genetic Programming Cambridge, Massachusetts: The MIT Press 1992
    • (1992) Genetic Programming
    • Koza, J.R.1
  • 27
    • 65549161963 scopus 로고    scopus 로고
    • Published via. and freely available at. 2008. [(With contributions by J. R. Koza)] http://www.gp-field-guide.org.uk
    • R Poli WB Langdon NF McPhee, A field guide to genetic programming Published via http://lulu.com and freely available at http://www.gp-field-guide. org.uk 2008. [(With contributions by J. R. Koza)]
    • A Field Guide to Genetic Programming
    • Poli, R.1    Langdon, W.B.2    McPhee, N.F.3
  • 28
    • 24644442379 scopus 로고    scopus 로고
    • Theory and Practice for Efficient Genetic Programming
    • University of Lausanne, Switzerland
    • Theory and Practice for Efficient Genetic Programming. L Vanneschi, Ph.D. thesis, Faculty of Sciences University of Lausanne, Switzerland 2004
    • (2004) Ph.D. Thesis, Faculty of Sciences
    • Vanneschi, L.1
  • 30
    • 33750254294 scopus 로고    scopus 로고
    • Genetic programming for human oral bioavailability of drugs
    • GECCO 2006 - Genetic and Evolutionary Computation Conference
    • Genetic programming for human oral bioavailability of drugs. F Archetti S Lanzeni E Messina L Vanneschi, Proceedings of the 8th annual conference on Genetic and Evolutionary Computation Seattle, Washington, USA, Cattolico M et al, 2006 255 262 (Pubitemid 44611324)
    • (2006) GECCO 2006 - Genetic and Evolutionary Computation Conference , vol.1 , pp. 255-262
    • Archetti, F.1    Lanzeni, S.2    Messina, E.3    Vanneschi, L.4
  • 39
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • DOI 10.1023/A:1010933404324
    • Random Forests. L Breiman, Machine Learning 2001 45 5 32 10.1023/A:1010933404324 (Pubitemid 32933532)
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.