-
1
-
-
34447555782
-
Mining gene expression profiles: Expression signatures as cancer phenotypes
-
DOI 10.1038/nrg2137, PII NRG2137
-
Mining gene expression profiles: expression signatures as cancer phenotypes. JR Nevins A Potti, Nat Rev Genet 2007 8 8 601 609 17607306 (Pubitemid 47077277)
-
(2007)
Nature Reviews Genetics
, vol.8
, Issue.8
, pp. 601-609
-
-
Nevins, J.R.1
Potti, A.2
-
2
-
-
18244409687
-
Gene expression profiling predicts clinical outcome of breast cancer
-
DOI 10.1038/415530a
-
Gene expression profiling predicts clinical outcome of breast cancer. LJ van 't Veer H Dai MJ van de Vijver YD He AAM Hart M Mao HL Peterse K van der Kooy MJ Marton AT Witteveen GJ Schreiber RM Kerkhoven C Roberts PS Linsley R Bernards SH Friend, Nature 2002 415 6871 530 536 10.1038/415530a 11823860 (Pubitemid 34130608)
-
(2002)
Nature
, vol.415
, Issue.6871
, pp. 530-536
-
-
Van't Veer, L.J.1
Dai, H.2
Van De Vijver, M.J.3
He, Y.D.4
Hart, A.A.M.5
Mao, M.6
Peterse, H.L.7
Van Der Kooy, K.8
Marton, M.J.9
Witteveen, A.T.10
Schreiber, G.J.11
Kerkhoven, R.M.12
Roberts, C.13
Linsley, P.S.14
Bernards, R.15
Friend, S.H.16
-
3
-
-
33644875477
-
Applications of support vector machines to cancer classification with microarray data
-
DOI 10.1142/S0129065705000396, PII S0129065705000396
-
Applications of support vector machines to cancer classification with microarray data. F Chu L Wang, Int J Neural Syst 2005 15 6 475 484 10.1142/S0129065705000396 16385636 (Pubitemid 44099482)
-
(2005)
International Journal of Neural Systems
, vol.15
, Issue.6
, pp. 475-484
-
-
Chu, F.1
Wang, L.2
-
4
-
-
0345724886
-
Reliable classification of two-class cancer data using evolutionary algorithms
-
DOI 10.1016/S0303-2647(03)00138-2
-
Reliable classification of two-class cancer data using evolutionary algorithms. K Deb AR Reddy, Biosystems 2003 72 1-2 111 129 10.1016/S0303- 2647(03)00138-2 14642662 (Pubitemid 37464793)
-
(2003)
BioSystems
, vol.72
, Issue.1-2
, pp. 111-129
-
-
Deb, K.1
Raji Reddy, A.2
-
5
-
-
0037255041
-
Evolutionary algorithms for finding optimal gene sets in microarray prediction
-
DOI 10.1093/bioinformatics/19.1.45
-
Evolutionary algorithms for finding optimal gene sets in microarray prediction. JM Deutsch, Bioinformatics 2003 19 45 52 10.1093/bioinformatics/19. 1.45 12499292 (Pubitemid 36157275)
-
(2003)
Bioinformatics
, vol.19
, Issue.1
, pp. 45-52
-
-
Deutsch, J.M.1
-
7
-
-
27844547091
-
Gene selection for classification of cancers using probabilistic model building genetic algorithm
-
DOI 10.1016/j.biosystems.2005.07.003, PII S0303264705000997
-
Gene selection for classification of cancers using probabilistic model building genetic algorithm. TK Paul H Iba, Biosystems 2005 82 3 208 225 10.1016/j.biosystems.2005.07.003 16112804 (Pubitemid 41654495)
-
(2005)
BioSystems
, vol.82
, Issue.3
, pp. 208-225
-
-
Paul, T.K.1
Iba, H.2
-
8
-
-
34247214462
-
Feature selection and molecular classification of cancer using genetic programming
-
DOI 10.1593/neo.07121
-
Feature Selection and Molecular Classification of Cancer Using Genetic Programming. J Yu J Yu AA Almal SM Dhanasekaran D Ghosh WP Worzel AM Chinnaiyan, Neoplasia 2007 9 4 292 303 10.1593/neo.07121 17460773 (Pubitemid 46608296)
-
(2007)
Neoplasia
, vol.9
, Issue.4
, pp. 292-303
-
-
Yu, J.1
Yu, J.2
Almal, A.A.3
Dhanasekaran, S.M.4
Ghosh, D.5
Worzel, W.P.6
Chinnaiyan, A.M.7
-
9
-
-
0037137519
-
A gene-expression signature as a predictor of survival in breast cancer
-
DOI 10.1056/NEJMoa021967
-
A gene-expression signature as a predictor of survival in breast cancer. MJ van de Vijver YD He LJ van't Veer H Dai AAM Hart DW Voskuil GJ Schreiber JL Peterse C Roberts MJ Marton M Parrish D Atsma A Witteveen A Glas L Delahaye T van der Velde H Bartelink S Rodenhuis ET Rutgers SH Friend R Bernards, N Engl J Med 2002 347 25 1999 2009 10.1056/NEJMoa021967 12490681 (Pubitemid 35461656)
-
(2002)
New England Journal of Medicine
, vol.347
, Issue.25
, pp. 1999-2009
-
-
Van De Vijver, M.J.1
He, Y.D.2
Van 'T Veer, L.J.3
Dai, H.4
Hart, A.A.M.5
Voskuil, D.W.6
Schreiber, G.J.7
Peterse, J.L.8
Roberts, C.9
Marton, M.J.10
Parrish, M.11
Atsma, D.12
Witteveen, A.13
Glas, A.14
Delahaye, L.15
Van Der Velde, T.16
Bartelink, H.17
Rodenhuis, S.18
Rutgers, E.T.19
Friend, S.H.20
Bernards, R.21
more..
-
10
-
-
0037623370
-
Cancer classification using gene expression data
-
10.1016/S0306-4379(02)00072-8
-
Cancer classification using gene expression data. Y Lu J Han, Inf Syst 2003 28 4 243 268 10.1016/S0306-4379(02)00072-8
-
(2003)
Inf Syst
, vol.28
, Issue.4
, pp. 243-268
-
-
Lu, Y.1
Han, J.2
-
12
-
-
0033536012
-
Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
-
DOI 10.1073/pnas.96.12.6745
-
Broad patterns of gene expression revealed by clustering analysis of tumour and normal colon tissues probed by oligonucleotide arrays. U Alon N Barkai D Notterman K Gish S Ybarra D Mack AJ Levine, Proc Nat Acad Sci USA 1999 96 6745 6750 10.1073/pnas.96.12.6745 10359783 (Pubitemid 29274954)
-
(1999)
Proceedings of the National Academy of Sciences of the United States of America
, vol.96
, Issue.12
, pp. 6745-6750
-
-
Alon, U.1
Barka, N.2
Notterman, D.A.3
Gish, K.4
Ybarra, S.5
Mack, D.6
Levine, A.J.7
-
13
-
-
0242475332
-
An unsupervised hierarchical dynamic self-organizing approach to cancer class discovery and marker gene identification in microarray data
-
DOI 10.1093/bioinformatics/btg296
-
An unsupervised hierarchical dynamic self-organizing approach to cancer class discovery and marker gene identification in microarray data. A Hsu S Tang S Halgamuge, Bioinformatics 2003 19 16 2131 40 10.1093/bioinformatics/btg296 14594719 (Pubitemid 37408165)
-
(2003)
Bioinformatics
, vol.19
, Issue.16
, pp. 2131-2140
-
-
Hsu, A.L.1
Tang, S.-L.2
Halgamuge, S.K.3
-
14
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
DOI 10.1023/A:1012487302797
-
Gene selection for cancer classification using support vector machines. I Guyon J Weston S Barnhill V Vapnik, Machine Learning 2002 46 389 422 10.1023/A:1012487302797 (Pubitemid 34129977)
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
15
-
-
38049058802
-
A genetic embedded approach for gene selection and classification of microarray data
-
10.1007/978-3-540-71783-6-9
-
A genetic embedded approach for gene selection and classification of microarray data. JCH Hernandez B Duval J Hao, Lecture Notes in Computer Science 2007 4447 90 101 10.1007/978-3-540-71783-6-9
-
(2007)
Lecture Notes in Computer Science
, vol.4447
, pp. 90-101
-
-
Hernandez, J.C.H.1
Duval, B.2
Hao, J.3
-
16
-
-
0033707946
-
Using Bayesian Networks to Analyze Expression Data
-
10.1089/106652700750050961
-
Using Bayesian Networks to Analyze Expression Data. N Friedman M Linial I Nachmann D Peer, J Computational Biology 2000 7 601 620 10.1089/ 106652700750050961
-
(2000)
J Computational Biology
, vol.7
, pp. 601-620
-
-
Friedman, N.1
Linial, M.2
Nachmann, I.3
Peer, D.4
-
19
-
-
20744448405
-
Multiclass cancer classification and biomarker discovery using GA-based algorithms
-
DOI 10.1093/bioinformatics/bti419
-
Multiclass cancer classification and biomarker discovery using GA-based algorithms. J Liu G Cutler W Li Z Pan S Peng T Hoey L Chen XB Ling, Bioinformatics 2005 21 2691 2697 10.1093/bioinformatics/bti419 15814557 (Pubitemid 40852316)
-
(2005)
Bioinformatics
, vol.21
, Issue.11
, pp. 2691-2697
-
-
Liu, J.J.1
Cutler, G.2
Li, W.3
Pan, Z.4
Peng, S.5
Hoey, T.6
Chen, L.7
Ling, X.B.8
-
20
-
-
84948136563
-
Symbolic Discriminant Analysis for Mining Gene Expression Patterns
-
Machine Learning: ECML 2001
-
Symbolic discriminant analysis for mining gene expression patterns. J Moore J Parker L Hahn, Lecture Notes in Artificial Intelligence 2001 2167 372 381 (Pubitemid 33331084)
-
(2001)
Lecture Notes in Computer Science
, Issue.2167
, pp. 372-381
-
-
Moore, J.H.1
Parker, J.S.2
Hahn, L.W.3
-
23
-
-
30344458742
-
The classification of cancer based on DNA microarray data that uses diverse ensemble genetic programming
-
DOI 10.1016/j.artmed.2005.06.002, PII S0933365705000795
-
The classification of cancer based on DNA microarray data that uses diverse ensemble genetic programming. J Hong S Cho, Artif Intell Med 2006 36 43 58 10.1016/j.artmed.2005.06.002 16102956 (Pubitemid 43068582)
-
(2006)
Artificial Intelligence in Medicine
, vol.36
, Issue.1
, pp. 43-58
-
-
Hong, J.-H.1
Cho, S.-B.2
-
24
-
-
26444546442
-
An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival
-
DOI 10.1073/pnas.0506230102
-
An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. LD Miller J Smeds J George VB Vega L Vergara A Ploner Y Pawitan P Hall S Klaar ET Liu J Bergh, Proc Natl Acad Sci USA 2005 102 38 13550 13555 10.1073/pnas.0506230102 16141321 (Pubitemid 41420886)
-
(2005)
Proceedings of the National Academy of Sciences of the United States of America
, vol.102
, Issue.38
, pp. 13550-13555
-
-
Miller, L.D.1
Smeds, J.2
George, J.3
Vega, V.B.4
Vergara, L.5
Ploner, A.6
Pawitan, Y.7
Hall, P.8
Klaar, S.9
Liu, E.T.10
Bergh, J.11
-
25
-
-
33846064113
-
NCBI GEO: Mining tens of millions of expression profiles-database and tools update
-
NCBI GEO: mining tens of millions of expression profiles-database and tools update. T Barrett DB Troup SE Wilhite P Ledoux D Rudnev C Evangelista IF Kim A Soboleva M Tomashevsky R Edgar, Nucleic Acids Res 2007 35 Database 760 D765
-
(2007)
Nucleic Acids Res
, Issue.35 DATABASE
-
-
Barrett, T.1
Troup, D.B.2
Wilhite, S.E.3
Ledoux, P.4
Rudnev, D.5
Evangelista, C.6
Kim, I.F.7
Soboleva, A.8
Tomashevsky, M.9
Edgar, R.10
-
26
-
-
0004139833
-
-
Cambridge, Massachusetts: The MIT Press
-
JR Koza, Genetic Programming Cambridge, Massachusetts: The MIT Press 1992
-
(1992)
Genetic Programming
-
-
Koza, J.R.1
-
27
-
-
65549161963
-
-
Published via. and freely available at. 2008. [(With contributions by J. R. Koza)] http://www.gp-field-guide.org.uk
-
R Poli WB Langdon NF McPhee, A field guide to genetic programming Published via http://lulu.com and freely available at http://www.gp-field-guide. org.uk 2008. [(With contributions by J. R. Koza)]
-
A Field Guide to Genetic Programming
-
-
Poli, R.1
Langdon, W.B.2
McPhee, N.F.3
-
28
-
-
24644442379
-
Theory and Practice for Efficient Genetic Programming
-
University of Lausanne, Switzerland
-
Theory and Practice for Efficient Genetic Programming. L Vanneschi, Ph.D. thesis, Faculty of Sciences University of Lausanne, Switzerland 2004
-
(2004)
Ph.D. Thesis, Faculty of Sciences
-
-
Vanneschi, L.1
-
30
-
-
33750254294
-
Genetic programming for human oral bioavailability of drugs
-
GECCO 2006 - Genetic and Evolutionary Computation Conference
-
Genetic programming for human oral bioavailability of drugs. F Archetti S Lanzeni E Messina L Vanneschi, Proceedings of the 8th annual conference on Genetic and Evolutionary Computation Seattle, Washington, USA, Cattolico M et al, 2006 255 262 (Pubitemid 44611324)
-
(2006)
GECCO 2006 - Genetic and Evolutionary Computation Conference
, vol.1
, pp. 255-262
-
-
Archetti, F.1
Lanzeni, S.2
Messina, E.3
Vanneschi, L.4
-
31
-
-
38049091189
-
Genetic Programming and other Machine Learning approaches to predict Median Oral Lethal Dose (LD50) and Plasma Protein Binding levels (%PPB) of drugs
-
Springer, Berlin, Heidelberg, New York Marchiori E, et al.
-
Genetic Programming and other Machine Learning approaches to predict Median Oral Lethal Dose (LD50) and Plasma Protein Binding levels (%PPB) of drugs. F Archetti E Messina S Lanzeni L Vanneschi, Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics. Proceedings of the Fifth European Conference, EvoBIO 2007, Lecture Notes in Computer Science, LNCS 4447 Springer, Berlin, Heidelberg, New York, Marchiori E et al, 2007 11 23
-
(2007)
Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics. Proceedings of the Fifth European Conference, EvoBIO 2007, Lecture Notes in Computer Science, LNCS 4447
, pp. 11-23
-
-
Archetti, F.1
Messina, E.2
Lanzeni, S.3
Vanneschi, L.4
-
39
-
-
0035478854
-
Random forests
-
DOI 10.1023/A:1010933404324
-
Random Forests. L Breiman, Machine Learning 2001 45 5 32 10.1023/A:1010933404324 (Pubitemid 32933532)
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
|