메뉴 건너뛰기




Volumn 9, Issue 6, 2015, Pages 1089-1104

Learning discriminative sparse representations for hyperspectral image classification

Author keywords

dictionary learning; discriminative sparse representation (DSR); Hyperspectral image classification; sparse multinomial logistic regression (SMLR); total variation (TV)

Indexed keywords

CONSTRAINED OPTIMIZATION; OPTIMIZATION; REGRESSION ANALYSIS; SPECTROSCOPY;

EID: 84939502049     PISSN: 19324553     EISSN: None     Source Type: Journal    
DOI: 10.1109/JSTSP.2015.2423260     Document Type: Article
Times cited : (56)

References (55)
  • 5
    • 77952717202 scopus 로고    scopus 로고
    • Sparse representation for computer vision and pattern recognition
    • IEEE Jun
    • J. Wright, Y. Ma, J. Mairal, G. Sapiro, T. S. Huang, and S. C. Yan, Sparse representation for computer vision and pattern recognition, Proc. IEEE, vol. 98, no. 6, pp. 1031-1044, Jun. 2010.
    • (2010) Proc. , vol.98 , Issue.6 , pp. 1031-1044
    • Wright, J.1    Ma, Y.2    Mairal, J.3    Sapiro, G.4    Huang, T.S.5    Yan, S.C.6
  • 6
    • 85032752318 scopus 로고    scopus 로고
    • Hyperspectral target detection
    • Jan
    • N. M. Nasrabadi, Hyperspectral target detection, IEEE Signal Process. Mag. , vol. 31, no. 1, pp. 34-44, Jan. 2014.
    • (2014) IEEE Signal Process. Mag. , vol.31 , Issue.1 , pp. 34-44
    • Nasrabadi, N.M.1
  • 9
    • 80053571096 scopus 로고    scopus 로고
    • Hyperspectral image classification using dictionary-based sparse representation
    • Oct
    • Y. Chen, N. M. Nasrabadi, and T. D. Tran, Hyperspectral image classification using dictionary-based sparse representation, IEEE Trans. Geosci. Remote Sens. , vol. 49, no. 10, pp. 3973-3985, Oct. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.10 , pp. 3973-3985
    • Chen, Y.1    Nasrabadi, N.M.2    Tran, T.D.3
  • 10
    • 84861338885 scopus 로고    scopus 로고
    • A fast and robust sparse approach for hyperspectral data classification using a few labeled samples
    • Jun
    • Q. S. Ul Haq, L. M. Tao, F. C. Sun, and S. Q. Yang, A fast and robust sparse approach for hyperspectral data classification using a few labeled samples, IEEE Trans. Geosci. Remote Sens. , vol. 50, no. 6, pp. 2287-2302, Jun. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.6 , pp. 2287-2302
    • Ul Haq, Q.S.1    Tao, L.M.2    Sun, F.C.3    Yang, S.Q.4
  • 11
    • 84871731919 scopus 로고    scopus 로고
    • Hyperspectral image classification via kernel sparse representation
    • Jan
    • Y. Chen, N. M. Nasrabadi, and T. D. Tran, Hyperspectral image classification via kernel sparse representation, IEEE Trans. Geosci. Remote Sens. , vol. 51, no. 1, pp. 217-231, Jan. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.1 , pp. 217-231
    • Chen, Y.1    Nasrabadi, N.M.2    Tran, T.D.3
  • 12
    • 84905922593 scopus 로고    scopus 로고
    • A nonlocal weighted joint sparse representation classification method for hyperspectral imagery
    • Jun
    • H. Y. Zhang, J. Y. Li, Y. C. Huang, and L. P. Zhang, A nonlocal weighted joint sparse representation classification method for hyperspectral imagery, IEEE J. Sel. Topics Appl. Earth Observat. Remote Sens. , vol. 7, no. 6, pp. 2056-2065, Jun. 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observat. Remote Sens. , vol.7 , Issue.6 , pp. 2056-2065
    • Zhang, H.Y.1    Li, J.Y.2    Huang, Y.C.3    Zhang, L.P.4
  • 13
    • 84896389249 scopus 로고    scopus 로고
    • Kernel sparse multitask learning for hyperspectral image classification with empirical mode decomposition and morphological wavelet-based features
    • Aug
    • Z. He, Q. Wang, Y. Shen, and M. J. Sun, Kernel sparse multitask learning for hyperspectral image classification with empirical mode decomposition and morphological wavelet-based features, IEEE Trans. Geosci. Remote Sens. , vol. 52, no. 8, pp. 5150-5163, Aug. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.8 , pp. 5150-5163
    • He, Z.1    Wang, Q.2    Shen, Y.3    Sun, M.J.4
  • 15
    • 84903278535 scopus 로고    scopus 로고
    • Spectral-spatial hyperspectral image classification via multiscale adaptive sparse representation
    • Dec
    • L. Y. Fang, S. T. Li, X. D. Kang, and J. A. Benediktsson, Spectral-spatial hyperspectral image classification via multiscale adaptive sparse representation, IEEE Trans. Geosci. Remote Sens. , vol. 52, no. 12, pp. 7738-7749, Dec. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.12 , pp. 7738-7749
    • Fang, L.Y.1    Li, S.T.2    Kang, X.D.3    Benediktsson, J.A.4
  • 16
    • 84896390467 scopus 로고    scopus 로고
    • Sparse graph-based discriminant analysis for hyperspectral imagery
    • Jul
    • N. H. Ly, Q. Du, and J. E. Fowler, Sparse graph-based discriminant analysis for hyperspectral imagery, IEEE Trans. Geosci. Remote Sens. , vol. 52, no. 7, pp. 3872-3884, Jul. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.7 , pp. 3872-3884
    • Ly, N.H.1    Du, Q.2    Fowler, J.E.3
  • 17
    • 84903270810 scopus 로고    scopus 로고
    • Manifold-based sparse representation for hyperspectral image classification
    • Dec
    • Y. Y. Tang, H. L. Yuan, and L. Q. Li, Manifold-based sparse representation for hyperspectral image classification, IEEE Trans. Geosci. Remote Sens. , vol. 52, no. 12, pp. 7606-7618, Dec. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.12 , pp. 7606-7618
    • Tang, Y.Y.1    Yuan, H.L.2    Li, L.Q.3
  • 18
    • 84906784859 scopus 로고    scopus 로고
    • Automatic spatial-spectral feature selection for hyperspectral image via discriminative sparse multimodal learning
    • Jan
    • Q. Zhang, Y. Tian, Y. Yang, and C. Pan, Automatic spatial-spectral feature selection for hyperspectral image via discriminative sparse multimodal learning, IEEE Trans. Geosci. Remote Sens. , vol. 53, no. 1, pp. 261-279, Jan. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.1 , pp. 261-279
    • Zhang, Q.1    Tian, Y.2    Yang, Y.3    Pan, C.4
  • 19
    • 84906784880 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral data via morphological component analysis-based image separation
    • Jan
    • Z. H. Xue, J. Li, L. Cheng, and P. J. Du, Spectral-spatial classification of hyperspectral data via morphological component analysis-based image separation, IEEE Trans. Geosci. Remote Sens. , vol. 53, no. 1, pp. 70-84, Jan. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.1 , pp. 70-84
    • Xue, Z.H.1    Li, J.2    Cheng, L.3    Du, P.J.4
  • 20
    • 77952714665 scopus 로고    scopus 로고
    • Dictionaries for sparse representation modeling
    • Jun
    • R. Rubinstein, A. M. Bruckstein, and M. Elad, Dictionaries for sparse representation modeling, Proc. IEEE, vol. 98, no. 6, pp. 1045-1057, Jun. 2010.
    • (2010) Proc. IEEE , vol.98 , Issue.6 , pp. 1045-1057
    • Rubinstein, R.1    Bruckstein, A.M.2    Elad, M.3
  • 21
    • 85032751780 scopus 로고    scopus 로고
    • Dictionary learning
    • Mar
    • I. Tosic and P. Frossard, Dictionary learning, IEEE Signal Process. Mag. , vol. 28, no. 2, pp. 27-38, Mar. 2011.
    • (2011) IEEE Signal Process. Mag. , vol.28 , Issue.2 , pp. 27-38
    • Tosic, I.1    Frossard, P.2
  • 22
    • 33750383209 scopus 로고    scopus 로고
    • K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
    • Nov.
    • M. Aharon, M. Elad, and A. Bruckstein, K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation, IEEE Trans. Signal Process. , vol. 54, no. 11, pp. 4311-4322, Nov. 2006.
    • (2006) IEEE Trans. Signal Process. , vol.54 , Issue.11 , pp. 4311-4322
    • Aharon, M.1    Elad, M.2    Bruckstein, A.3
  • 23
    • 66849115117 scopus 로고    scopus 로고
    • Dictionary learning for sparse approximations with the majorization method
    • Jun.
    • M. Yaghoobi, T. Blumensath, and M. E. Davies, Dictionary learning for sparse approximations with the majorization method, IEEE Trans. Signal Process. , vol. 57, no. 6, pp. 2178-2191, Jun. 2009.
    • (2009) IEEE Trans. Signal Process. , vol.57 , Issue.6 , pp. 2178-2191
    • Yaghoobi, M.1    Blumensath, T.2    Davies, M.E.3
  • 27
    • 84884571014 scopus 로고    scopus 로고
    • Label consistent K-SVD: Learning a discriminative dictionary for recognition
    • Nov
    • Z. L. Jiang, Z. Lin, and L. S. Davis, Label consistent K-SVD: Learning a discriminative dictionary for recognition, IEEE Trans. Pattern Anal. Mach. Intell. , vol. 35, no. 11, pp. 2651-2664, Nov. 2013.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , Issue.11 , pp. 2651-2664
    • Jiang, Z.L.1    Lin, Z.2    Davis, L.S.3
  • 29
    • 80455122805 scopus 로고    scopus 로고
    • Learning discriminative sparse representations for modeling, source separation, and mapping of hyperspectral imagery
    • Nov
    • A. Castrodad, Z. M. Xing, J. B. Greer, E. Bosch, L. Carin, and G. Sapiro, Learning discriminative sparse representations for modeling, source separation, and mapping of hyperspectral imagery, IEEE Trans. Geosci. Remote Sens. , vol. 49, no. 11, pp. 4263-4281, Nov. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.11 , pp. 4263-4281
    • Castrodad, A.1    Xing, Z.M.2    Greer, J.B.3    Bosch, E.4    Carin, L.5    Sapiro, G.6
  • 30
    • 84896391507 scopus 로고    scopus 로고
    • Spatial-spectral classification of hyperspectral images using discriminative dictionary designed by learning vector quantization
    • Aug
    • Z. W. Wang, N. M. Nasrabadi, and T. S. Huang, Spatial-spectral classification of hyperspectral images using discriminative dictionary designed by learning vector quantization, IEEE Trans. Geosci. Remote Sens. , vol. 52, no. 8, pp. 4808-4822, Aug. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.8 , pp. 4808-4822
    • Wang, Z.W.1    Nasrabadi, N.M.2    Huang, T.S.3
  • 31
    • 84907474375 scopus 로고    scopus 로고
    • Semisupervised hyperspectral classification using task-driven dictionary learning with Laplacian regularization
    • Mar
    • Z. Y. Wang, N. M. Nasrabadi, and T. S. Huang, Semisupervised hyperspectral classification using task-driven dictionary learning with Laplacian regularization, IEEE Trans. Geosci. Remote Sens. , vol. 53, no. 3, pp. 1161-1173, Mar. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.3 , pp. 1161-1173
    • Wang, Z.Y.1    Nasrabadi, N.M.2    Huang, T.S.3
  • 32
    • 84869498082 scopus 로고    scopus 로고
    • Total variation spatial regularization for sparse hyperspectral unmixing
    • Nov
    • M. D. Iordache, J. M. Bioucas-Dias, and A. Plaza, Total variation spatial regularization for sparse hyperspectral unmixing, IEEE Trans. Geosci. Remote Sens. , vol. 50, no. 11, pp. 4484-4502, Nov. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.11 , pp. 4484-4502
    • Iordache, M.D.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 34
    • 34249837486 scopus 로고
    • On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators
    • J. Eckstein and D. P. Bertsekas, On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators, Math. Program. , vol. 55, no. 1-3, pp. 293-318, 1992.
    • (1992) Math. Program. , vol.55 , Issue.1-3 , pp. 293-318
    • Eckstein, J.1    Bertsekas, D.P.2
  • 35
    • 84899967600 scopus 로고    scopus 로고
    • Advances in spectral-spatial classification of hyperspectral images
    • Mar
    • M. Fauvel, Y. Tarabalka, J. A. Benediktsson, J. Chanussot, and J. C. Tilton, Advances in spectral-spatial classification of hyperspectral images, Proc. IEEE, vol. 101, no. 3, pp. 652-675, Mar. 2013.
    • (2013) Proc. IEEE , vol.101 , Issue.3 , pp. 652-675
    • Fauvel, M.1    Tarabalka, Y.2    Benediktsson, J.A.3    Chanussot, J.4    Tilton, J.C.5
  • 36
    • 80053562930 scopus 로고    scopus 로고
    • Hyperspectral image segmentation using a new Bayesian approach with active learning
    • Oct
    • J. Li, J. M. Bioucas-Dias, and A. Plaza, Hyperspectral image segmentation using a new Bayesian approach with active learning, IEEE Trans. Geosci. Remote Sens. , vol. 49, no. 10, pp. 3947-3960, Oct. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.10 , pp. 3947-3960
    • Li, J.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 37
    • 80052087931 scopus 로고    scopus 로고
    • Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov r and om fields
    • Mar
    • J. Li, J. M. Bioucas-Dias, and A. Plaza, Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov r and om fields, IEEE Trans. Geosci. Remote Sens. , vol. 50, no. 3, pp. 809-823, Mar. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.3 , pp. 809-823
    • Li, J.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 38
    • 84872922940 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral data using loopy belief propagation and active learning
    • Feb
    • J. Li, J. M. Bioucas-Dias, and A. Plaza, Spectral-spatial classification of hyperspectral data using loopy belief propagation and active learning, IEEE Trans. Geosci. Remote Sens. , vol. 51, no. 2, pp. 844-856, Feb. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.2 , pp. 844-856
    • Li, J.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 42
    • 39449126969 scopus 로고    scopus 로고
    • Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems
    • Dec.
    • M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems, IEEE J. Sel. Topics Signal Process. , vol. 1, no. 4, pp. 586-597, Dec. 2007.
    • (2007) IEEE J. Sel. Topics Signal Process. , vol.1 , Issue.4 , pp. 586-597
    • Figueiredo, M.A.T.1    Nowak, R.D.2    Wright, S.J.3
  • 43
    • 77249156864 scopus 로고    scopus 로고
    • On the total variation dictionary model
    • Mar
    • T. Y. Zeng and M. K. Ng, On the total variation dictionary model, IEEE Trans. Image Process. , vol. 19, no. 3, pp. 821-825, Mar. 2010.
    • (2010) IEEE Trans. Image Process. , vol.19 , Issue.3 , pp. 821-825
    • Zeng, T.Y.1    Ng, M.K.2
  • 44
    • 0040528764 scopus 로고
    • Multinomial logistic-regression algorithm
    • Mar.
    • D. Böhning, Multinomial logistic-regression algorithm, Ann. Inst. Statist. Math. , vol. 44, no. 1, pp. 197-200, Mar. 1992.
    • (1992) Ann. Inst. Statist. Math. , vol.44 , Issue.1 , pp. 197-200
    • Böhning, D.1
  • 45
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-based methods for hyperspectral image classification
    • Jun.
    • G. Camps-Valls and L. Bruzzone, Kernel-based methods for hyperspectral image classification, IEEE Trans. Geosci. Remote Sens. , vol. 43, no. 6, pp. 1351-1362, Jun. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.6 , pp. 1351-1362
    • Camps-Valls, G.1    Bruzzone, L.2
  • 46
    • 0001868572 scopus 로고    scopus 로고
    • Text categorization based on regularized linear classification methods
    • T. Zhang and F. J. Oles, Text categorization based on regularized linear classification methods, Inf. Retrieval, vol. 4, pp. 5-31, 2000.
    • (2000) Inf. Retrieval , vol.4 , pp. 5-31
    • Zhang, T.1    Oles, F.J.2
  • 47
    • 30844445842 scopus 로고    scopus 로고
    • Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit
    • Mar.
    • J. A. Tropp, A. C. Gilbert, and M. J. Strauss, Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit, Signal Process. , vol. 86, no. 3, pp. 572-588, Mar. 2006.
    • (2006) Signal Process. , vol.86 , Issue.3 , pp. 572-588
    • Tropp, J.A.1    Gilbert, A.C.2    Strauss, M.J.3
  • 48
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes and V. Vapnik, Support-vector networks, Mach. Learn. , vol. 20, no. 3, pp. 273-297, 1995.
    • (1995) Mach. Learn. , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 51
    • 84905910095 scopus 로고    scopus 로고
    • Harmonic analysis for hyperspectral image classification integrated with PSO optimized SVM
    • Jun
    • Z. H. Xue, P. J. Du, and H. J. Su, Harmonic analysis for hyperspectral image classification integrated with PSO optimized SVM, IEEE J. Sel. Topics Appl. Earth Observat. Remote Sens. , vol. 7, no. 6, pp. 2131-2146, Jun. 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observat. Remote Sens. , vol.7 , Issue.6 , pp. 2131-2146
    • Xue, Z.H.1    Du, P.J.2    Su, H.J.3
  • 52
  • 53
    • 55349089531 scopus 로고    scopus 로고
    • Sparse estimation automatically selects voxels relevant for the decoding of fMRI activity patterns
    • Oct. 1
    • O. Yamashita, M. Sato, T. Yoshioka, F. Tong, and Y. Kamitani, Sparse estimation automatically selects voxels relevant for the decoding of fMRI activity patterns, Neuroimage, vol. 42, no. 4, pp. 1414-1429, Oct. 1, 2008.
    • (2008) Neuroimage , vol.42 , Issue.4 , pp. 1414-1429
    • Yamashita, O.1    Sato, M.2    Yoshioka, T.3    Tong, F.4    Kamitani, Y.5
  • 54
    • 55349132734 scopus 로고    scopus 로고
    • On the uniqueness of nonnegative sparse solutions to underdetermined systems of equations
    • Nov.
    • A. M. Bruckstein, M. Elad, and M. Zibulevsky, On the uniqueness of nonnegative sparse solutions to underdetermined systems of equations, IEEE Trans. Inf. Theory, vol. 54, no. 11, pp. 4813-4820, Nov. 2008.
    • (2008) IEEE Trans. Inf. Theory , vol.54 , Issue.11 , pp. 4813-4820
    • Bruckstein, A.M.1    Elad, M.2    Zibulevsky, M.3
  • 55
    • 84897025270 scopus 로고    scopus 로고
    • Structured priors for sparse-representation-based hyperspectral image classification
    • Jul
    • X. X. Sun, Q. Qu, N. M. Nasrabadi, and T. D. Tran, Structured priors for sparse-representation-based hyperspectral image classification, IEEE Geosci. Remote Sens. Lett. , vol. 11, no. 7, pp. 1235-1239, Jul. 2014.
    • (2014) IEEE Geosci. Remote Sens. Lett. , vol.11 , Issue.7 , pp. 1235-1239
    • Sun, X.X.1    Qu, Q.2    Nasrabadi, N.M.3    Tran, T.D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.