메뉴 건너뛰기




Volumn 31, Issue 1, 2014, Pages 34-44

Hyperspectral target detection : An overview of current and future challenges

Author keywords

[No Author keywords available]

Indexed keywords

DATA HANDLING; INFRARED RADIATION; REMOTE SENSING; SPECTROSCOPY;

EID: 85032752318     PISSN: 10535888     EISSN: None     Source Type: Journal    
DOI: 10.1109/MSP.2013.2278992     Document Type: Article
Times cited : (515)

References (36)
  • 1
    • 85032751277 scopus 로고    scopus 로고
    • Detection algorithms for hyperspectral imaging applications
    • DOI 10.1109/79.974724
    • D. Manolakis and G. Shaw, Detection algorithms for hyperspectral imaging applications, IEEE Signal Processing Mag., vol. 19, no. 1, pp. 29-43, Jan. 2002. (Pubitemid 34237206)
    • (2002) IEEE Signal Processing Magazine , vol.19 , Issue.1 , pp. 29-43
    • Manolakis, D.G.1    Shaw, G.2
  • 2
    • 66249130979 scopus 로고    scopus 로고
    • Automated hyperspectral cueing for civilian search and rescue
    • June
    • M. T. Eismann, A. D. Stocker, and N. M. Nasrabadi, Automated hyperspectral cueing for civilian search and rescue, Proc. IEEE, vol. 97, no. 6, pp. 1031-1055, June 2009.
    • (2009) Proc. IEEE , vol.97 , Issue.6 , pp. 1031-1055
    • Eismann, M.T.1    Stocker, A.D.2    Nasrabadi, N.M.3
  • 4
    • 77955682014 scopus 로고    scopus 로고
    • A tutorial overview of anomaly detection in hyperspectral images
    • July
    • S. Matteoli, M. Diani, and G. Corsini, A tutorial overview of anomaly detection in hyperspectral images, IEEE Aerosp. Electron. Syst. Mag., vol. 25, no. 7, pp. 5-27, July 2010.
    • (2010) IEEE Aerosp. Electron. Syst. Mag. , vol.25 , Issue.7 , pp. 5-27
    • Matteoli, S.1    Diani, M.2    Corsini, G.3
  • 6
    • 0025508756 scopus 로고
    • Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution
    • Oct
    • I. S. Reed and X. Yu, Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution, IEEE Trans. Acoust., Speech, Signal Process., vol. 38, no. 10, pp. 1760-1770, Oct. 1990.
    • (1990) IEEE Trans. Acoust., Speech, Signal Process. , vol.38 , Issue.10 , pp. 1760-1770
    • Reed, I.S.1    Yu, X.2
  • 7
    • 11244309418 scopus 로고    scopus 로고
    • Joint subspace detection of hyperspectral targets
    • Big Sky, MT, Mar.
    • A. P. Schaum, Joint subspace detection of hyperspectral targets, in Proc. IEEE Aerospace Conf., Big Sky, MT, Mar. 2004, vol. 3, pp. 1818-1824.
    • (2004) Proc. IEEE Aerospace Conf. , vol.3 , pp. 1818-1824
    • Schaum, A.P.1
  • 10
    • 35948987265 scopus 로고    scopus 로고
    • A comparative study of linear and nonlinear anomaly detectors for hyperspectral imagery
    • Orlando, FL Apr. Article ID 656504
    • H. Goldberg and N. M. Nasrabadi, A comparative study of linear and nonlinear anomaly detectors for hyperspectral imagery, in Proc. SPIE, Orlando, FL, Apr. 2007, vol. 6565, Article ID 656504.
    • (2007) Proc. SPIE , vol.6565
    • Goldberg, H.1    Nasrabadi, N.M.2
  • 12
    • 13144293109 scopus 로고    scopus 로고
    • Kernel RX-algorithm: A nonlinear anomaly detector for hyperspectral imagery
    • DOI 10.1109/TGRS.2004.841487
    • H. Kwon and N. M. Nasrabadi, Kernel RX-algorithm: A nonlinear anomaly detector for hyperspectral imagery, IEEE Trans. Geosci. Remote Sensing, vol. 43, no. 2, pp. 388-397, Feb. 2005. (Pubitemid 40178510)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.2 , pp. 388-397
    • Kwon, H.1    Nasrabadi, N.M.2
  • 14
    • 33746885881 scopus 로고    scopus 로고
    • A support vector method for anomaly detection in hyperspectral imagery
    • DOI 10.1109/TGRS.2006.873019, 1661816
    • A. Banerjee, P. Burlina, and C. Diehl, A support vector method for anomaly detection in hyperspectral imagery, IEEE Trans. Geosci. Remote Sensing, vol. 44, no. 8, pp. 2282-2291, Aug. 2006. (Pubitemid 44192167)
    • (2006) IEEE Transactions on Geoscience and Remote Sensing , vol.44 , Issue.8 , pp. 2282-2291
    • Banerjee, A.1    Burlina, P.2    Diehl, C.3
  • 15
    • 0942266514 scopus 로고    scopus 로고
    • Support vector data description
    • Jan
    • D. M. J. Tax and R. P. W. Duin, Support vector data description, Mach. Learn., vol. 54, no. 1, pp. 45-66, Jan. 2004.
    • (2004) Mach. Learn. , vol.54 , Issue.1 , pp. 45-66
    • Tax, D.M.J.1    Duin, R.P.W.2
  • 19
    • 0028467206 scopus 로고
    • Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach
    • July
    • J. C. Harsanyi and C.-I. Chang, Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach, IEEE Trans. Geosci. Remote Sensing, vol. 32, no. 4, pp. 779-785, July 1994.
    • (1994) IEEE Trans. Geosci. Remote Sensing , vol.32 , Issue.4 , pp. 779-785
    • Harsanyi, J.C.1    Chang, C.-I.2
  • 20
    • 33846220041 scopus 로고    scopus 로고
    • A comparative analysis of kernel subspace target detectors for hyperspectral imagery
    • Jan Article ID
    • H. Kwon and N. M. Nasrabadi, A comparative analysis of kernel subspace target detectors for hyperspectral imagery, EURASIP J. Advances Signal Process., vol. 2007, no. 1, Jan. 2007, Article ID 29250.
    • (2007) EURASIP J. Advances Signal Process. , vol.2007 , Issue.1 , pp. 29250
    • Kwon, H.1    Nasrabadi, N.M.2
  • 21
    • 84881149211 scopus 로고    scopus 로고
    • Continuum fusion methods of spectral detection
    • Nov
    • A. P. Schaum and B. J. Daniel, Continuum fusion methods of spectral detection, Opt. Eng., vol. 5, no. 2, pp. 1-11, Nov. 2012.
    • (2012) Opt. Eng. , vol.5 , Issue.2 , pp. 1-11
    • Schaum, A.P.1    Daniel, B.J.2
  • 22
    • 0033225639 scopus 로고    scopus 로고
    • Models and methods for automated material identification in hyperspectral imagery acquired under unknown illumination and atmospheric conditions
    • DOI 10.1109/36.803418
    • G. Healey and D. Slater, Models and methods for automated material identification in hyperspectral imagery acquired under unknown illumination and atmospheric conditions, IEEE Trans. Geosci. Remote Sensing, vol. 37, no. 6, pp. 2706-2717, Nov. 1999. (Pubitemid 30519603)
    • (1999) IEEE Transactions on Geoscience and Remote Sensing , vol.37 , Issue.6 , pp. 2706-2717
    • Healey, G.1
  • 24
    • 84890334180 scopus 로고    scopus 로고
    • Kernel sparse representation for hyperspectral target detection, in Proc. SPIE, Baltimore
    • May Article ID 839005
    • C. Chen, N. M. Nasrabadi, and T. D. Tran, Kernel sparse representation for hyperspectral target detection, in Proc. SPIE, Baltimore, MD, May 2012, vol. 8390, Article ID 839005.
    • (2012) MD , vol.8390 , pp. 839005
    • Chen, C.1    Nasrabadi, N.M.2    Tran, T.D.3
  • 25
    • 77950870473 scopus 로고    scopus 로고
    • Continuum fusion, a theory of inference, with applications to hyperspectral detection
    • Nov
    • A. P. Schaum, Continuum fusion, a theory of inference, with applications to hyperspectral detection, Opt. Express, vol. 18, no. 8, pp. 8171-8181, Nov. 2010.
    • (2010) Opt. Express , vol.18 , Issue.8 , pp. 8171-8181
    • Schaum, A.P.1
  • 27
    • 50249142908 scopus 로고    scopus 로고
    • Stochastic modeling of physically derived signature spaces
    • Aug.
    • E. J. Ientilucci and P. Bajorski, Stochastic modeling of physically derived signature spaces, J. Appl. Remote Sensing, vol. 2, no. 1, pp. 023532(1-10), Aug. 2008.
    • (2008) J. Appl. Remote Sensing , vol.2 , Issue.1 , pp. 0235321-02353210
    • Ientilucci, E.J.1    Bajorski, P.2
  • 28
    • 79957457001 scopus 로고    scopus 로고
    • Sparse matrix transform for hyperspectral imagery processing, IEEE J. Select
    • Mar
    • J. Theiler, G. Cao, L. R. Bachega, and C. A. Bouman, Sparse matrix transform for hyperspectral imagery processing, IEEE J. Select. Topics Signal Processing, vol. 5, no. 3, pp. 424-437, Mar. 2011.
    • (2011) Topics Signal Processing , vol.5 , Issue.3 , pp. 424-437
    • Theiler, J.1    Cao, G.2    Bachega, L.R.3    Bouman, C.A.4
  • 29
    • 77949787894 scopus 로고    scopus 로고
    • Improved covariance matrices for point target detection in hyperspectral data
    • (1-13) July
    • C. E. Caefer, J. Silvermana, O. Orthalb, D. Antonellib, Y. Sharonib, and S. R. Rotman, Improved covariance matrices for point target detection in hyperspectral data, Opt. Eng., vol. 47, no. 7, pp. 076402(1-13), July 2008.
    • (2008) Opt. Eng. , vol.47 , Issue.7 , pp. 076402
    • Caefer, C.E.1    Silvermana, J.2    Orthalb, O.3    Antonellib, D.4    Sharonib, Y.5    Rotman, S.R.6
  • 30
    • 66249142802 scopus 로고    scopus 로고
    • Regularized spectral matched filter for target recognition in hyperspectral imagery
    • N. M. Nasrabadi, Regularized spectral matched filter for target recognition in hyperspectral imagery, IEEE Signal Processing Lett., vol. 15, pp. 317-320, 2008.
    • (2008) IEEE Signal Processing Lett. , vol.15 , pp. 317-320
    • Nasrabadi, N.M.1
  • 34
    • 79957470922 scopus 로고    scopus 로고
    • Sparse representation for target detection in hyperspectral imagery, IEEE J. Select
    • Mar
    • Y. Chen, N. M. Nasrabadi, and T. D. Tran, Sparse representation for target detection in hyperspectral imagery, IEEE J. Select. Topics Signal Processing, vol. 5, no. 3, pp. 629-640, Mar. 2011.
    • (2011) Topics Signal Processing , vol.5 , Issue.3 , pp. 629-640
    • Chen, Y.1    Nasrabadi, N.M.2    Tran, T.D.3
  • 35
    • 79959708449 scopus 로고    scopus 로고
    • Simultaneous joint sparsity model for target detection in hyperspectral imagery
    • July
    • Y. Chen, N. M. Nasrabadi, and T. D. Tran, Simultaneous joint sparsity model for target detection in hyperspectral imagery, IEEE Trans. Geosci. Remote Sensing Lett., vol. 8, no. 4, pp. 676-680, July 2011.
    • (2011) IEEE Trans. Geosci. Remote Sensing Lett. , vol.8 , Issue.4 , pp. 676-680
    • Chen, Y.1    Nasrabadi, N.M.2    Tran, T.D.3
  • 36
    • 84855234497 scopus 로고    scopus 로고
    • Effects of linear projections on the performance of target detection and classification in hyperspectral imagery
    • (1-0532625) Nov.
    • Y. Chen, N. M. Nasrabadi, and T. D. Tran, Effects of linear projections on the performance of target detection and classification in hyperspectral imagery, J. Appl. Remote Sensing, vol. 5, no. 1, pp. 053263(1-25), Nov. 2011.
    • (2011) J. Appl. Remote Sensing , vol.5 , Issue.1 , pp. 053263
    • Chen, Y.1    Nasrabadi, N.M.2    Tran, T.D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.