메뉴 건너뛰기




Volumn 11, Issue 7, 2015, Pages

TopBP1 Governs Hematopoietic Stem/Progenitor Cells Survival in Zebrafish Definitive Hematopoiesis

Author keywords

[No Author keywords available]

Indexed keywords

ATR PROTEIN; CELL MARKER; CHECKPOINT KINASE 1; PROTEIN P53; TOPOISOMERASE II BETA BINDING PROTEIN 1; UNCLASSIFIED DRUG; ATM PROTEIN; CARRIER PROTEIN; DNA BINDING PROTEIN; DNA TOPOISOMERASE (ATP HYDROLYSING); DNA TOPOISOMERASE II BETA; HYDROXYUREA; P53 PROTEIN, ZEBRAFISH; PROTEIN KINASE; STOP CODON; TOPBP1 PROTEIN, ZEBRAFISH; ZEBRAFISH PROTEIN;

EID: 84938813543     PISSN: 15537390     EISSN: 15537404     Source Type: Journal    
DOI: 10.1371/journal.pgen.1005346     Document Type: Article
Times cited : (19)

References (87)
  • 1
    • 39349096526 scopus 로고    scopus 로고
    • Hematopoiesis: an evolving paradigm for stem cell biology
    • Orkin SH, Zon LI, (2008) Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132: 631–644. doi: 10.1016/j.cell.2008.01.025 18295580
    • (2008) Cell , vol.132 , pp. 631-644
    • Orkin, S.H.1    Zon, L.I.2
  • 2
    • 27644439542 scopus 로고    scopus 로고
    • Senescence of hematopoietic stem cells and bone marrow failure
    • Chen J, (2005) Senescence of hematopoietic stem cells and bone marrow failure. Int J Hematol 82: 190–195. 16207589
    • (2005) Int J Hematol , vol.82 , pp. 190-195
    • Chen, J.1
  • 4
    • 70350497395 scopus 로고    scopus 로고
    • Hematopoietic stem cell expansion precedes the generation of committed myeloid leukemia-initiating cells in C/EBPalpha mutant AML
    • Bereshchenko O, Mancini E, Moore S, Bilbao D, Mansson R, et al. (2009) Hematopoietic stem cell expansion precedes the generation of committed myeloid leukemia-initiating cells in C/EBPalpha mutant AML. Cancer Cell 16: 390–400. doi: 10.1016/j.ccr.2009.09.036 19878871
    • (2009) Cancer Cell , vol.16 , pp. 390-400
    • Bereshchenko, O.1    Mancini, E.2    Moore, S.3    Bilbao, D.4    Mansson, R.5
  • 5
    • 79954617712 scopus 로고    scopus 로고
    • cpsf1 is required for definitive hematopoietic stem cell survival in zebrafish
    • Bolli N, Payne EM, Rhodes J, Gjini E, Johnston AB, et al. (2011) cpsf1 is required for definitive hematopoietic stem cell survival in zebrafish. Blood 117: 3996–4007. doi: 10.1182/blood-2010-08-304030 21330472
    • (2011) Blood , vol.117 , pp. 3996-4007
    • Bolli, N.1    Payne, E.M.2    Rhodes, J.3    Gjini, E.4    Johnston, A.B.5
  • 6
    • 64549124376 scopus 로고    scopus 로고
    • Molecular bases of myelodysplastic syndromes: lessons from animal models
    • Komeno Y, Kitaura J, Kitamura T, (2009) Molecular bases of myelodysplastic syndromes: lessons from animal models. J Cell Physiol 219: 529–534. doi: 10.1002/jcp.21739 19259975
    • (2009) J Cell Physiol , vol.219 , pp. 529-534
    • Komeno, Y.1    Kitaura, J.2    Kitamura, T.3
  • 7
    • 79959659104 scopus 로고    scopus 로고
    • Zebrafish as a model for normal and malignant hematopoiesis
    • Jing LL, Zon LI, (2011) Zebrafish as a model for normal and malignant hematopoiesis. Disease Models and Mechanisms 4: 433–438. doi: 10.1242/dmm.006791 21708900
    • (2011) Disease Models and Mechanisms , vol.4 , pp. 433-438
    • Jing, L.L.1    Zon, L.I.2
  • 8
    • 84878315532 scopus 로고    scopus 로고
    • Hematopoiesis
    • Jagannathan-Bogdan M, Zon LI, (2013) Hematopoiesis. Development 140: 2463–2467. doi: 10.1242/dev.083147 23715539
    • (2013) Development , vol.140 , pp. 2463-2467
    • Jagannathan-Bogdan, M.1    Zon, L.I.2
  • 9
    • 84866864822 scopus 로고    scopus 로고
    • Myelopoiesis during zebrafish early development
    • Xu J, Du L, Wen Z, (2012) Myelopoiesis during zebrafish early development. J Genet Genomics 39: 435–442. doi: 10.1016/j.jgg.2012.06.005 23021543
    • (2012) J Genet Genomics , vol.39 , pp. 435-442
    • Xu, J.1    Du, L.2    Wen, Z.3
  • 10
    • 84866866870 scopus 로고    scopus 로고
    • Large-scale forward genetic screening analysis of development of hematopoiesis in zebrafish
    • Wang K, Huang Z, Zhao L, Liu W, Chen X, et al. (2012) Large-scale forward genetic screening analysis of development of hematopoiesis in zebrafish. J Genet Genomics 39: 473–480. doi: 10.1016/j.jgg.2012.07.008 23021547
    • (2012) J Genet Genomics , vol.39 , pp. 473-480
    • Wang, K.1    Huang, Z.2    Zhao, L.3    Liu, W.4    Chen, X.5
  • 11
    • 9244224093 scopus 로고    scopus 로고
    • Hematopoietic gene expression profile in zebrafish kidney marrow
    • Song HD, Sun XJ, Deng M, Zhang GW, Zhou Y, et al. (2004) Hematopoietic gene expression profile in zebrafish kidney marrow. Proc Natl Acad Sci U S A 101: 16240–16245. 15520368
    • (2004) Proc Natl Acad Sci U S A , vol.101 , pp. 16240-16245
    • Song, H.D.1    Sun, X.J.2    Deng, M.3    Zhang, G.W.4    Zhou, Y.5
  • 12
    • 69249158143 scopus 로고    scopus 로고
    • Zebrafish blood stem cells
    • Chen AT, Zon LI, (2009) Zebrafish blood stem cells. J Cell Biochem 108: 35–42. doi: 10.1002/jcb.22251 19565566
    • (2009) J Cell Biochem , vol.108 , pp. 35-42
    • Chen, A.T.1    Zon, L.I.2
  • 13
    • 77949903295 scopus 로고    scopus 로고
    • Blood stem cells emerge from aortic endothelium by a novel type of cell transition
    • Kissa K, Herbomel P, (2010) Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature 464: 112–U125. doi: 10.1038/nature08761 20154732
    • (2010) Nature , vol.464 , pp. 112-U125
    • Kissa, K.1    Herbomel, P.2
  • 14
    • 77949895151 scopus 로고    scopus 로고
    • Haematopoietic stem cells derive directly from aortic endothelium during development
    • Bertrand JY, Chi NC, Santoso B, Teng ST, Stainier DYR, et al. (2010) Haematopoietic stem cells derive directly from aortic endothelium during development. Nature 464: 108–U120. doi: 10.1038/nature08738 20154733
    • (2010) Nature , vol.464 , pp. 108-U120
    • Bertrand, J.Y.1    Chi, N.C.2    Santoso, B.3    Teng, S.T.4    Stainier, D.Y.R.5
  • 15
    • 33845448620 scopus 로고    scopus 로고
    • Tracing hematopoietic precursor migration to successive hematopoietic organs during zebrafish development
    • Murayama E, Kissa K, Zapata A, Mordelet E, Briolat V, et al. (2006) Tracing hematopoietic precursor migration to successive hematopoietic organs during zebrafish development. Immunity 25: 963–975. 17157041
    • (2006) Immunity , vol.25 , pp. 963-975
    • Murayama, E.1    Kissa, K.2    Zapata, A.3    Mordelet, E.4    Briolat, V.5
  • 16
    • 34249980968 scopus 로고    scopus 로고
    • Migratory path of definitive hematopoietic stem/progenitor cells during zebrafish development
    • Jin H, Xu J, Wen Z, (2007) Migratory path of definitive hematopoietic stem/progenitor cells during zebrafish development. Blood 109: 5208–5214. 17327398
    • (2007) Blood , vol.109 , pp. 5208-5214
    • Jin, H.1    Xu, J.2    Wen, Z.3
  • 17
    • 84855885803 scopus 로고    scopus 로고
    • Cell cycle regulation in hematopoietic stem cells
    • Pietras EM, Warr MR, Passegue E, (2011) Cell cycle regulation in hematopoietic stem cells. J Cell Biol 195: 709–720. doi: 10.1083/jcb.201102131 22123859
    • (2011) J Cell Biol , vol.195 , pp. 709-720
    • Pietras, E.M.1    Warr, M.R.2    Passegue, E.3
  • 18
    • 84891301320 scopus 로고    scopus 로고
    • Causes and consequences of replication stress
    • Zeman MK, Cimprich KA, (2014) Causes and consequences of replication stress. Nature cell biology 16: 2–9. doi: 10.1038/ncb2897 24366029
    • (2014) Nature cell biology , vol.16 , pp. 2-9
    • Zeman, M.K.1    Cimprich, K.A.2
  • 19
    • 78649336706 scopus 로고    scopus 로고
    • The DNA damage response: making it safe to play with knives
    • Ciccia A, Elledge SJ, (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40: 179–204. doi: 10.1016/j.molcel.2010.09.019 20965415
    • (2010) Mol Cell , vol.40 , pp. 179-204
    • Ciccia, A.1    Elledge, S.J.2
  • 21
    • 79955519714 scopus 로고    scopus 로고
    • Congenital bone marrow failure in DNA-PKcs mutant mice associated with deficiencies in DNA repair
    • Zhang S, Yajima H, Huynh H, Zheng J, Callen E, et al. (2011) Congenital bone marrow failure in DNA-PKcs mutant mice associated with deficiencies in DNA repair. J Cell Biol 193: 295–305. doi: 10.1083/jcb.201009074 21482716
    • (2011) J Cell Biol , vol.193 , pp. 295-305
    • Zhang, S.1    Yajima, H.2    Huynh, H.3    Zheng, J.4    Callen, E.5
  • 22
    • 39149133141 scopus 로고    scopus 로고
    • DNA repair is crucial for maintaining hematopoietic stem cell function
    • Niedernhofer LJ, (2008) DNA repair is crucial for maintaining hematopoietic stem cell function. DNA Repair (Amst) 7: 523–529.
    • (2008) DNA Repair (Amst) , vol.7 , pp. 523-529
    • Niedernhofer, L.J.1
  • 23
    • 34250007142 scopus 로고    scopus 로고
    • Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age
    • Rossi DJ, Bryder D, Seita J, Nussenzweig A, Hoeijmakers J, et al. (2007) Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 447: 725–729. 17554309
    • (2007) Nature , vol.447 , pp. 725-729
    • Rossi, D.J.1    Bryder, D.2    Seita, J.3    Nussenzweig, A.4    Hoeijmakers, J.5
  • 24
    • 70349925666 scopus 로고    scopus 로고
    • The role of the Fanconi anemia network in the response to DNA replication stress
    • Gari K, Constantinou A, (2009) The role of the Fanconi anemia network in the response to DNA replication stress. Critical reviews in biochemistry and molecular biology 44: 292–325. doi: 10.1080/10409230903154150 19728769
    • (2009) Critical reviews in biochemistry and molecular biology , vol.44 , pp. 292-325
    • Gari, K.1    Constantinou, A.2
  • 25
    • 77149135723 scopus 로고    scopus 로고
    • ATR activation and replication fork restart are defective in FANCM-deficient cells
    • Schwab RA, Blackford AN, Niedzwiedz W, (2010) ATR activation and replication fork restart are defective in FANCM-deficient cells. EMBO J 29: 806–818. doi: 10.1038/emboj.2009.385 20057355
    • (2010) EMBO J , vol.29 , pp. 806-818
    • Schwab, R.A.1    Blackford, A.N.2    Niedzwiedz, W.3
  • 26
    • 79959635260 scopus 로고    scopus 로고
    • DNA interstrand crosslink repair and cancer
    • Deans AJ, West SC, (2011) DNA interstrand crosslink repair and cancer. Nat Rev Cancer 11: 467–480. doi: 10.1038/nrc3088 21701511
    • (2011) Nat Rev Cancer , vol.11 , pp. 467-480
    • Deans, A.J.1    West, S.C.2
  • 27
    • 0242456024 scopus 로고    scopus 로고
    • BRCT domain-containing protein TopBP1 functions in DNA replication and damage response
    • Makiniemi M, Hillukkala T, Tuusa J, Reini K, Vaara M, et al. (2001) BRCT domain-containing protein TopBP1 functions in DNA replication and damage response. J Biol Chem 276: 30399–30406. 11395493
    • (2001) J Biol Chem , vol.276 , pp. 30399-30406
    • Makiniemi, M.1    Hillukkala, T.2    Tuusa, J.3    Reini, K.4    Vaara, M.5
  • 28
    • 27544460716 scopus 로고    scopus 로고
    • Identification and functional analysis of TopBP1 and its homologs
    • Garcia V, Furuya K, Carr AM, (2005) Identification and functional analysis of TopBP1 and its homologs. DNA Repair (Amst) 4: 1227–1239.
    • (2005) DNA Repair (Amst) , vol.4 , pp. 1227-1239
    • Garcia, V.1    Furuya, K.2    Carr, A.M.3
  • 29
    • 80052006741 scopus 로고    scopus 로고
    • DNA replication: mammalian Treslin-TopBP1 interaction mirrors yeast Sld3-Dpb11
    • Mueller AC, Keaton MA, Dutta A, (2011) DNA replication: mammalian Treslin-TopBP1 interaction mirrors yeast Sld3-Dpb11. Current biology: CB 21: R638–640. doi: 10.1016/j.cub.2011.07.004 21855008
    • (2011) Current biology: CB , vol.21 , pp. R638-640
    • Mueller, A.C.1    Keaton, M.A.2    Dutta, A.3
  • 30
    • 28544450740 scopus 로고    scopus 로고
    • Human TopBP1 ensures genome integrity during normal S phase
    • Kim JE, McAvoy SA, Smith DI, Chen J, (2005) Human TopBP1 ensures genome integrity during normal S phase. Mol Cell Biol 25: 10907–10915. 16314514
    • (2005) Mol Cell Biol , vol.25 , pp. 10907-10915
    • Kim, J.E.1    McAvoy, S.A.2    Smith, D.I.3    Chen, J.4
  • 31
    • 33644757806 scopus 로고    scopus 로고
    • TopBP1 activates the ATR-ATRIP complex
    • Kumagai A, Lee J, Yoo HY, Dunphy WG, (2006) TopBP1 activates the ATR-ATRIP complex. Cell 124: 943–955. 16530042
    • (2006) Cell , vol.124 , pp. 943-955
    • Kumagai, A.1    Lee, J.2    Yoo, H.Y.3    Dunphy, W.G.4
  • 32
    • 47749141560 scopus 로고    scopus 로고
    • ATR: an essential regulator of genome integrity
    • Cimprich KA, Cortez D, (2008) ATR: an essential regulator of genome integrity. Nat Rev Mol Cell Biol 9: 616–627. doi: 10.1038/nrm2450 18594563
    • (2008) Nat Rev Mol Cell Biol , vol.9 , pp. 616-627
    • Cimprich, K.A.1    Cortez, D.2
  • 33
    • 79952454660 scopus 로고    scopus 로고
    • ATR: a master conductor of cellular responses to DNA replication stress
    • Flynn RL, Zou L, (2011) ATR: a master conductor of cellular responses to DNA replication stress. Trends Biochem Sci 36: 133–140. doi: 10.1016/j.tibs.2010.09.005 20947357
    • (2011) Trends Biochem Sci , vol.36 , pp. 133-140
    • Flynn, R.L.1    Zou, L.2
  • 34
    • 0034967556 scopus 로고    scopus 로고
    • ATR-mediated checkpoint pathways regulate phosphorylation and activation of human Chk1
    • Zhao H, Piwnica-Worms H, (2001) ATR-mediated checkpoint pathways regulate phosphorylation and activation of human Chk1. Mol Cell Biol 21: 4129–4139. 11390642
    • (2001) Mol Cell Biol , vol.21 , pp. 4129-4139
    • Zhao, H.1    Piwnica-Worms, H.2
  • 35
    • 33746948393 scopus 로고    scopus 로고
    • Claspin operates downstream of TopBP1 to direct ATR signaling towards Chk1 activation
    • Liu S, Bekker-Jensen S, Mailand N, Lukas C, Bartek J, et al. (2006) Claspin operates downstream of TopBP1 to direct ATR signaling towards Chk1 activation. Mol Cell Biol 26: 6056–6064. 16880517
    • (2006) Mol Cell Biol , vol.26 , pp. 6056-6064
    • Liu, S.1    Bekker-Jensen, S.2    Mailand, N.3    Lukas, C.4    Bartek, J.5
  • 36
    • 44849128194 scopus 로고    scopus 로고
    • How ATR turns on: TopBP1 goes on ATRIP with ATR
    • Burrows AE, Elledge SJ, (2008) How ATR turns on: TopBP1 goes on ATRIP with ATR. Genes Dev 22: 1416–1421. doi: 10.1101/gad.1685108 18519633
    • (2008) Genes Dev , vol.22 , pp. 1416-1421
    • Burrows, A.E.1    Elledge, S.J.2
  • 37
    • 77952980297 scopus 로고    scopus 로고
    • Function of TopBP1 in genome stability
    • Sokka M, Parkkinen S, Pospiech H, Syvaoja JE, (2010) Function of TopBP1 in genome stability. Subcell Biochem 50: 119–141. doi: 10.1007/978-90-481-3471-7_7 20012580
    • (2010) Subcell Biochem , vol.50 , pp. 119-141
    • Sokka, M.1    Parkkinen, S.2    Pospiech, H.3    Syvaoja, J.E.4
  • 38
    • 34948889415 scopus 로고    scopus 로고
    • The Rad9-Hus1-Rad1 checkpoint clamp regulates interaction of TopBP1 with ATR
    • Lee J, Kumagai A, Dunphy WG, (2007) The Rad9-Hus1-Rad1 checkpoint clamp regulates interaction of TopBP1 with ATR. J Biol Chem 282: 28036–28044. 17636252
    • (2007) J Biol Chem , vol.282 , pp. 28036-28044
    • Lee, J.1    Kumagai, A.2    Dunphy, W.G.3
  • 39
    • 75949092280 scopus 로고    scopus 로고
    • BACH1/FANCJ acts with TopBP1 and participates early in DNA replication checkpoint control
    • Gong Z, Kim JE, Leung CC, Glover JN, Chen J, (2010) BACH1/FANCJ acts with TopBP1 and participates early in DNA replication checkpoint control. Mol Cell 37: 438–446. doi: 10.1016/j.molcel.2010.01.002 20159562
    • (2010) Mol Cell , vol.37 , pp. 438-446
    • Gong, Z.1    Kim, J.E.2    Leung, C.C.3    Glover, J.N.4    Chen, J.5
  • 40
    • 79953020734 scopus 로고    scopus 로고
    • Molecular basis of BACH1/FANCJ recognition by TopBP1 in DNA replication checkpoint control
    • Leung CC, Gong Z, Chen J, Glover JN, (2011) Molecular basis of BACH1/FANCJ recognition by TopBP1 in DNA replication checkpoint control. J Biol Chem 286: 4292–4301. doi: 10.1074/jbc.M110.189555 21127055
    • (2011) J Biol Chem , vol.286 , pp. 4292-4301
    • Leung, C.C.1    Gong, Z.2    Chen, J.3    Glover, J.N.4
  • 41
    • 79955516080 scopus 로고    scopus 로고
    • MDC1 collaborates with TopBP1 in DNA replication checkpoint control
    • Wang J, Gong Z, Chen J, (2011) MDC1 collaborates with TopBP1 in DNA replication checkpoint control. J Cell Biol 193: 267–273. doi: 10.1083/jcb.201010026 21482717
    • (2011) J Cell Biol , vol.193 , pp. 267-273
    • Wang, J.1    Gong, Z.2    Chen, J.3
  • 42
    • 84881481957 scopus 로고    scopus 로고
    • Structural insights into recognition of MDC1 by TopBP1 in DNA replication checkpoint control
    • Leung CC, Sun L, Gong Z, Burkat M, Edwards R, et al. (2013) Structural insights into recognition of MDC1 by TopBP1 in DNA replication checkpoint control. Structure 21: 1450–1459. doi: 10.1016/j.str.2013.06.015 23891287
    • (2013) Structure , vol.21 , pp. 1450-1459
    • Leung, C.C.1    Sun, L.2    Gong, Z.3    Burkat, M.4    Edwards, R.5
  • 43
    • 84884614941 scopus 로고    scopus 로고
    • An essential function for the ATR-activation-domain (AAD) of TopBP1 in mouse development and cellular senescence
    • Zhou ZW, Liu C, Li TL, Bruhn C, Krueger A, et al. (2013) An essential function for the ATR-activation-domain (AAD) of TopBP1 in mouse development and cellular senescence. PLoS Genet 9: e1003702. doi: 10.1371/journal.pgen.1003702 23950734
    • (2013) PLoS Genet , vol.9 , pp. e1003702
    • Zhou, Z.W.1    Liu, C.2    Li, T.L.3    Bruhn, C.4    Krueger, A.5
  • 44
    • 79953139076 scopus 로고    scopus 로고
    • TopBP1 deficiency causes an early embryonic lethality and induces cellular senescence in primary cells
    • Jeon Y, Ko E, Lee KY, Ko MJ, Park SY, et al. (2011) TopBP1 deficiency causes an early embryonic lethality and induces cellular senescence in primary cells. J Biol Chem 286: 5414–5422. doi: 10.1074/jbc.M110.189704 21149450
    • (2011) J Biol Chem , vol.286 , pp. 5414-5422
    • Jeon, Y.1    Ko, E.2    Lee, K.Y.3    Ko, M.J.4    Park, S.Y.5
  • 45
    • 84861572426 scopus 로고    scopus 로고
    • Neurogenesis requires TopBP1 to prevent catastrophic replicative DNA damage in early progenitors
    • Lee Y, Katyal S, Downing SM, Zhao J, Russell HR, et al. (2012) Neurogenesis requires TopBP1 to prevent catastrophic replicative DNA damage in early progenitors. Nat Neurosci 15: 819–826. doi: 10.1038/nn.3097 22522401
    • (2012) Nat Neurosci , vol.15 , pp. 819-826
    • Lee, Y.1    Katyal, S.2    Downing, S.M.3    Zhao, J.4    Russell, H.R.5
  • 46
    • 84897847051 scopus 로고    scopus 로고
    • TopBP1 deficiency impairs V(D)J recombination during lymphocyte development
    • Kim J, Lee SK, Jeon Y, Kim Y, Lee C, et al. (2014) TopBP1 deficiency impairs V(D)J recombination during lymphocyte development. EMBO J 33: 217–228. doi: 10.1002/embj.201284316 24442639
    • (2014) EMBO J , vol.33 , pp. 217-228
    • Kim, J.1    Lee, S.K.2    Jeon, Y.3    Kim, Y.4    Lee, C.5
  • 47
    • 50849138482 scopus 로고    scopus 로고
    • Critical roles for c-Myb in hematopoietic progenitor cells
    • Greig KT, Carotta S, Nutt SL, (2008) Critical roles for c-Myb in hematopoietic progenitor cells. Semin Immunol 20: 247–256. doi: 10.1016/j.smim.2008.05.003 18585056
    • (2008) Semin Immunol , vol.20 , pp. 247-256
    • Greig, K.T.1    Carotta, S.2    Nutt, S.L.3
  • 48
    • 67651099088 scopus 로고    scopus 로고
    • A genetic screen in zebrafish defines a hierarchical network of pathways required for hematopoietic stem cell emergence
    • Burns CE, Galloway JL, Smith AC, Keefe MD, Cashman TJ, et al. (2009) A genetic screen in zebrafish defines a hierarchical network of pathways required for hematopoietic stem cell emergence. Blood 113: 5776–5782. doi: 10.1182/blood-2008-12-193607 19332767
    • (2009) Blood , vol.113 , pp. 5776-5782
    • Burns, C.E.1    Galloway, J.L.2    Smith, A.C.3    Keefe, M.D.4    Cashman, T.J.5
  • 49
    • 65549102186 scopus 로고    scopus 로고
    • Hematopoietic stem cell development is dependent on blood flow
    • North TE, Goessling W, Peeters M, Li P, Ceol C, et al. (2009) Hematopoietic stem cell development is dependent on blood flow. Cell 137: 736–748. doi: 10.1016/j.cell.2009.04.023 19450519
    • (2009) Cell , vol.137 , pp. 736-748
    • North, T.E.1    Goessling, W.2    Peeters, M.3    Li, P.4    Ceol, C.5
  • 50
    • 0036039827 scopus 로고    scopus 로고
    • In vivo imaging of embryonic vascular development using transgenic zebrafish
    • Lawson ND, Weinstein BM, (2002) In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol 248: 307–318. 12167406
    • (2002) Dev Biol , vol.248 , pp. 307-318
    • Lawson, N.D.1    Weinstein, B.M.2
  • 51
    • 25844493155 scopus 로고    scopus 로고
    • Hematopoietic stem cell fate is established by the Notch-Runx pathway
    • Burns CE, Traver D, Mayhall E, Shepard JL, Zon LI, (2005) Hematopoietic stem cell fate is established by the Notch-Runx pathway. Genes Dev 19: 2331–2342. 16166372
    • (2005) Genes Dev , vol.19 , pp. 2331-2342
    • Burns, C.E.1    Traver, D.2    Mayhall, E.3    Shepard, J.L.4    Zon, L.I.5
  • 52
    • 34250883337 scopus 로고    scopus 로고
    • Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis
    • North TE, Goessling W, Walkley CR, Lengerke C, Kopani KR, et al. (2007) Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature 447: 1007–1011. 17581586
    • (2007) Nature , vol.447 , pp. 1007-1011
    • North, T.E.1    Goessling, W.2    Walkley, C.R.3    Lengerke, C.4    Kopani, K.R.5
  • 53
    • 0031574247 scopus 로고    scopus 로고
    • A DNA-topoisomerase-II-binding protein with eight repeating regions similar to DNA-repair enzymes and to a cell-cycle regulator
    • Yamane K, Kawabata M, Tsuruo T, (1997) A DNA-topoisomerase-II-binding protein with eight repeating regions similar to DNA-repair enzymes and to a cell-cycle regulator. Eur J Biochem 250: 794–799. 9461304
    • (1997) Eur J Biochem , vol.250 , pp. 794-799
    • Yamane, K.1    Kawabata, M.2    Tsuruo, T.3
  • 54
    • 84872387077 scopus 로고    scopus 로고
    • Phospholipase C gamma-1 is required for granulocyte maturation in zebrafish
    • Jing CB, Chen Y, Dong M, Peng XL, Jia XE, et al. (2013) Phospholipase C gamma-1 is required for granulocyte maturation in zebrafish. Dev Biol 374: 24–31. doi: 10.1016/j.ydbio.2012.11.032 23220656
    • (2013) Dev Biol , vol.374 , pp. 24-31
    • Jing, C.B.1    Chen, Y.2    Dong, M.3    Peng, X.L.4    Jia, X.E.5
  • 55
    • 78650724551 scopus 로고    scopus 로고
    • Ubiquitous transgene expression and Cre-based recombination driven by the ubiquitin promoter in zebrafish
    • Mosimann C, Kaufman CK, Li P, Pugach EK, Tamplin OJ, et al. (2011) Ubiquitous transgene expression and Cre-based recombination driven by the ubiquitin promoter in zebrafish. Development 138: 169–177. doi: 10.1242/dev.059345 21138979
    • (2011) Development , vol.138 , pp. 169-177
    • Mosimann, C.1    Kaufman, C.K.2    Li, P.3    Pugach, E.K.4    Tamplin, O.J.5
  • 56
    • 79955707349 scopus 로고    scopus 로고
    • High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice
    • Kim JH, Lee SR, Li LH, Park HJ, Park JH, et al. (2011) High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. Plos One 6: e18556. doi: 10.1371/journal.pone.0018556 21602908
    • (2011) Plos One , vol.6 , pp. e18556
    • Kim, J.H.1    Lee, S.R.2    Li, L.H.3    Park, H.J.4    Park, J.H.5
  • 57
    • 0347413714 scopus 로고    scopus 로고
    • Knockdown of zebrafish Fancd2 causes developmental abnormalities via p53-dependent apoptosis
    • Liu TX, Howlett NG, Deng M, Langenau DM, Hsu K, et al. (2003) Knockdown of zebrafish Fancd2 causes developmental abnormalities via p53-dependent apoptosis. Dev Cell 5: 903–914. 14667412
    • (2003) Dev Cell , vol.5 , pp. 903-914
    • Liu, T.X.1    Howlett, N.G.2    Deng, M.3    Langenau, D.M.4    Hsu, K.5
  • 60
    • 55449091773 scopus 로고    scopus 로고
    • Mutation of the zebrafish nucleoporin elys sensitizes tissue progenitors to replication stress
    • Davuluri G, Gong W, Yusuff S, Lorent K, Muthumani M, et al. (2008) Mutation of the zebrafish nucleoporin elys sensitizes tissue progenitors to replication stress. PLoS Genet 4: e1000240. doi: 10.1371/journal.pgen.1000240 18974873
    • (2008) PLoS Genet , vol.4 , pp. e1000240
    • Davuluri, G.1    Gong, W.2    Yusuff, S.3    Lorent, K.4    Muthumani, M.5
  • 61
    • 34250705797 scopus 로고    scopus 로고
    • The Rad9-Hus1-Rad1 (9-1-1) clamp activates checkpoint signaling via TopBP1
    • Delacroix S, Wagner JM, Kobayashi M, Yamamoto K, Karnitz LM, (2007) The Rad9-Hus1-Rad1 (9-1-1) clamp activates checkpoint signaling via TopBP1. Genes Dev 21: 1472–1477. 17575048
    • (2007) Genes Dev , vol.21 , pp. 1472-1477
    • Delacroix, S.1    Wagner, J.M.2    Kobayashi, M.3    Yamamoto, K.4    Karnitz, L.M.5
  • 62
    • 78651321775 scopus 로고    scopus 로고
    • Structure and function of the Rad9-binding region of the DNA-damage checkpoint adaptor TopBP1
    • Rappas M, Oliver AW, Pearl LH, (2011) Structure and function of the Rad9-binding region of the DNA-damage checkpoint adaptor TopBP1. Nucleic Acids Res 39: 313–324. doi: 10.1093/nar/gkq743 20724438
    • (2011) Nucleic Acids Res , vol.39 , pp. 313-324
    • Rappas, M.1    Oliver, A.W.2    Pearl, L.H.3
  • 63
    • 84876097735 scopus 로고    scopus 로고
    • A role for the MRN complex in ATR activation via TOPBP1 recruitment
    • Duursma AM, Driscoll R, Elias JE, Cimprich KA, (2013) A role for the MRN complex in ATR activation via TOPBP1 recruitment. Mol Cell 50: 116–122. doi: 10.1016/j.molcel.2013.03.006 23582259
    • (2013) Mol Cell , vol.50 , pp. 116-122
    • Duursma, A.M.1    Driscoll, R.2    Elias, J.E.3    Cimprich, K.A.4
  • 64
    • 0035930537 scopus 로고    scopus 로고
    • Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress
    • Ward IM, Chen J, (2001) Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress. J Biol Chem 276: 47759–47762. 11673449
    • (2001) J Biol Chem , vol.276 , pp. 47759-47762
    • Ward, I.M.1    Chen, J.2
  • 65
    • 84882788354 scopus 로고    scopus 로고
    • Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system
    • Jao LE, Wente SR, Chen W, (2013) Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci U S A 110: 13904–13909. doi: 10.1073/pnas.1308335110 23918387
    • (2013) Proc Natl Acad Sci U S A , vol.110 , pp. 13904-13909
    • Jao, L.E.1    Wente, S.R.2    Chen, W.3
  • 66
    • 84893651502 scopus 로고    scopus 로고
    • Efficient gene targeting in zebrafish mediated by a zebrafish-codon-optimized cas9 and evaluation of off-targeting effect
    • Liu D, Wang Z, Xiao A, Zhang Y, Li W, et al. (2014) Efficient gene targeting in zebrafish mediated by a zebrafish-codon-optimized cas9 and evaluation of off-targeting effect. J Genet Genomics 41: 43–46. doi: 10.1016/j.jgg.2013.11.004 24480746
    • (2014) J Genet Genomics , vol.41 , pp. 43-46
    • Liu, D.1    Wang, Z.2    Xiao, A.3    Zhang, Y.4    Li, W.5
  • 67
    • 84875330103 scopus 로고    scopus 로고
    • Control of hematopoietic stem cell emergence by antagonistic functions of ribosomal protein paralogs
    • Zhang Y, Duc AC, Rao S, Sun XL, Bilbee AN, et al. (2013) Control of hematopoietic stem cell emergence by antagonistic functions of ribosomal protein paralogs. Dev Cell 24: 411–425. doi: 10.1016/j.devcel.2013.01.018 23449473
    • (2013) Dev Cell , vol.24 , pp. 411-425
    • Zhang, Y.1    Duc, A.C.2    Rao, S.3    Sun, X.L.4    Bilbee, A.N.5
  • 68
    • 79960472251 scopus 로고    scopus 로고
    • The identification and characterization of zebrafish hematopoietic stem cells
    • Ma D, Zhang J, Lin HF, Italiano J, Handin RI, (2011) The identification and characterization of zebrafish hematopoietic stem cells. Blood 118: 289–297. doi: 10.1182/blood-2010-12-327403 21586750
    • (2011) Blood , vol.118 , pp. 289-297
    • Ma, D.1    Zhang, J.2    Lin, H.F.3    Italiano, J.4    Handin, R.I.5
  • 69
    • 49449098992 scopus 로고    scopus 로고
    • Functional characterization of Lmo2-Cre transgenic zebrafish
    • Wang L, Zhang Y, Zhou T, Fu YF, Du TT, et al. (2008) Functional characterization of Lmo2-Cre transgenic zebrafish. Dev Dyn 237: 2139–2146. doi: 10.1002/dvdy.21630 18627109
    • (2008) Dev Dyn , vol.237 , pp. 2139-2146
    • Wang, L.1    Zhang, Y.2    Zhou, T.3    Fu, Y.F.4    Du, T.T.5
  • 70
    • 79951528511 scopus 로고    scopus 로고
    • Rumba and Haus3 are essential factors for the maintenance of hematopoietic stem/progenitor cells during zebrafish hematopoiesis
    • Du L, Xu J, Li X, Ma N, Liu Y, et al. (2011) Rumba and Haus3 are essential factors for the maintenance of hematopoietic stem/progenitor cells during zebrafish hematopoiesis. Development 138: 619–629. doi: 10.1242/dev.054536 21228005
    • (2011) Development , vol.138 , pp. 619-629
    • Du, L.1    Xu, J.2    Li, X.3    Ma, N.4    Liu, Y.5
  • 71
    • 84868582722 scopus 로고    scopus 로고
    • SUMO1-activating enzyme subunit 1 is essential for the survival of hematopoietic stem/progenitor cells in zebrafish
    • Li X, Lan Y, Xu J, Zhang W, Wen Z, (2012) SUMO1-activating enzyme subunit 1 is essential for the survival of hematopoietic stem/progenitor cells in zebrafish. Development 139: 4321–4329. doi: 10.1242/dev.081869 23132242
    • (2012) Development , vol.139 , pp. 4321-4329
    • Li, X.1    Lan, Y.2    Xu, J.3    Zhang, W.4    Wen, Z.5
  • 72
    • 84864752056 scopus 로고    scopus 로고
    • Heightened DNA damage response impairs hematopoiesis in Fanconi anemia
    • Dokal I, (2012) Heightened DNA damage response impairs hematopoiesis in Fanconi anemia. Haematologica 97: 1117. doi: 10.3324/haematol.2012.073643 22855843
    • (2012) Haematologica , vol.97 , pp. 1117
    • Dokal, I.1
  • 73
    • 84863625900 scopus 로고    scopus 로고
    • Bone marrow failure in Fanconi anemia is triggered by an exacerbated p53/p21 DNA damage response that impairs hematopoietic stem and progenitor cells
    • Ceccaldi R, Parmar K, Mouly E, Delord M, Kim JM, et al. (2012) Bone marrow failure in Fanconi anemia is triggered by an exacerbated p53/p21 DNA damage response that impairs hematopoietic stem and progenitor cells. Cell Stem Cell 11: 36–49. doi: 10.1016/j.stem.2012.05.013 22683204
    • (2012) Cell Stem Cell , vol.11 , pp. 36-49
    • Ceccaldi, R.1    Parmar, K.2    Mouly, E.3    Delord, M.4    Kim, J.M.5
  • 74
    • 70350543573 scopus 로고    scopus 로고
    • Emi1 maintains genomic integrity during zebrafish embryogenesis and cooperates with p53 in tumor suppression
    • Rhodes J, Amsterdam A, Sanda T, Moreau LA, McKenna K, et al. (2009) Emi1 maintains genomic integrity during zebrafish embryogenesis and cooperates with p53 in tumor suppression. Mol Cell Biol 29: 5911–5922. doi: 10.1128/MCB.00558-09 19704007
    • (2009) Mol Cell Biol , vol.29 , pp. 5911-5922
    • Rhodes, J.1    Amsterdam, A.2    Sanda, T.3    Moreau, L.A.4    McKenna, K.5
  • 75
    • 84901244617 scopus 로고    scopus 로고
    • Targeting poly(ADP-ribose) polymerase and the c-Myb-regulated DNA damage response pathway in castration-resistant prostate cancer
    • Li L, Chang W, Yang G, Ren C, Park S, et al. (2014) Targeting poly(ADP-ribose) polymerase and the c-Myb-regulated DNA damage response pathway in castration-resistant prostate cancer. Science signaling 7: ra47.
    • (2014) Science signaling , vol.7
    • Li, L.1    Chang, W.2    Yang, G.3    Ren, C.4    Park, S.5
  • 76
    • 28444462501 scopus 로고    scopus 로고
    • Analysis of thrombocyte development in CD41-GFP transgenic zebrafish
    • Lin HF, Traver D, Zhu H, Dooley K, Paw BH, et al. (2005) Analysis of thrombocyte development in CD41-GFP transgenic zebrafish. Blood 106: 3803–3810. 16099879
    • (2005) Blood , vol.106 , pp. 3803-3810
    • Lin, H.F.1    Traver, D.2    Zhu, H.3    Dooley, K.4    Paw, B.H.5
  • 78
    • 12644303221 scopus 로고    scopus 로고
    • The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio
    • Haffter P, Granato M, Brand M, Mullins MC, Hammerschmidt M, et al. (1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123: 1–36. 9007226
    • (1996) Development , vol.123 , pp. 1-36
    • Haffter, P.1    Granato, M.2    Brand, M.3    Mullins, M.C.4    Hammerschmidt, M.5
  • 81
  • 82
    • 77950505396 scopus 로고    scopus 로고
    • Vangl2 directs the posterior tilting and asymmetric localization of motile primary cilia
    • Borovina A, Superina S, Voskas D, Ciruna B, (2010) Vangl2 directs the posterior tilting and asymmetric localization of motile primary cilia. Nature cell biology 12: 407–412. doi: 10.1038/ncb2042 20305649
    • (2010) Nature cell biology , vol.12 , pp. 407-412
    • Borovina, A.1    Superina, S.2    Voskas, D.3    Ciruna, B.4
  • 83
    • 0022460644 scopus 로고
    • Induction of nuclear transport with a synthetic peptide homologous to the SV40 T antigen transport signal
    • Lanford RE, Kanda P, Kennedy RC, (1986) Induction of nuclear transport with a synthetic peptide homologous to the SV40 T antigen transport signal. Cell 46: 575–582. 3015419
    • (1986) Cell , vol.46 , pp. 575-582
    • Lanford, R.E.1    Kanda, P.2    Kennedy, R.C.3
  • 84
    • 70349243477 scopus 로고    scopus 로고
    • Transgenesis in zebrafish with the tol2 transposon system
    • Suster ML, Kikuta H, Urasaki A, Asakawa K, Kawakami K, (2009) Transgenesis in zebrafish with the tol2 transposon system. Methods Mol Biol 561: 41–63. doi: 10.1007/978-1-60327-019-9_3 19504063
    • (2009) Methods Mol Biol , vol.561 , pp. 41-63
    • Suster, M.L.1    Kikuta, H.2    Urasaki, A.3    Asakawa, K.4    Kawakami, K.5
  • 85
    • 84877260817 scopus 로고    scopus 로고
    • Activated N-Ras signaling regulates arterial-venous specification in zebrafish
    • Ren CG, Wang L, Jia XE, Liu YJ, Dong ZW, et al. (2013) Activated N-Ras signaling regulates arterial-venous specification in zebrafish. J Hematol Oncol 6: 34. doi: 10.1186/1756-8722-6-34 23663822
    • (2013) J Hematol Oncol , vol.6 , pp. 34
    • Ren, C.G.1    Wang, L.2    Jia, X.E.3    Liu, Y.J.4    Dong, Z.W.5
  • 86
    • 84878874617 scopus 로고    scopus 로고
    • miR-34b regulates multiciliogenesis during organ formation in zebrafish
    • Wang L, Fu C, Fan H, Du T, Dong M, et al. (2013) miR-34b regulates multiciliogenesis during organ formation in zebrafish. Development 140: 2755–2764. doi: 10.1242/dev.092825 23698347
    • (2013) Development , vol.140 , pp. 2755-2764
    • Wang, L.1    Fu, C.2    Fan, H.3    Du, T.4    Dong, M.5
  • 87
    • 49449098431 scopus 로고    scopus 로고
    • CD41+ cmyb+ precursors colonize the zebrafish pronephros by a novel migration route to initiate adult hematopoiesis
    • Julien Y. Bertrand, ADK Shutian Teng, David Traver, (2008) CD41+ cmyb+ precursors colonize the zebrafish pronephros by a novel migration route to initiate adult hematopoiesis. Development 135: 1853–1862. doi: 10.1242/dev.015297 18417622
    • (2008) Development , vol.135 , pp. 1853-1862
    • Julien, Y.B.1    Adk2    Shutian, T.3    David, T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.