메뉴 건너뛰기




Volumn 2, Issue 1, 2015, Pages 22-39

The rare two-dimensional materials with Dirac cones

Author keywords

Dirac cone; Dirac materials; Graphene; Graphyne; Silicene; Two dimensional

Indexed keywords


EID: 84938693061     PISSN: 20955138     EISSN: 2053714X     Source Type: Journal    
DOI: 10.1093/nsr/nwu080     Document Type: Review
Times cited : (438)

References (155)
  • 1
    • 7444220645 scopus 로고    scopus 로고
    • Electric field effect in atomically thin carbon films
    • Novoselov, KS, Geim, AK and Morozov, SV et al. Electric field effect in atomically thin carbon films. Science 2004; 306: 666-9.
    • (2004) Science , vol.306 , pp. 666-669
    • Novoselov, K.S.1    Geim, A.K.2    Morozov, S.V.3
  • 3
    • 77955365755 scopus 로고    scopus 로고
    • Properties of graphene: a theoretical perspective
    • Abergel, DSL, Apalkov, V and Berashevich, J et al. Properties of graphene: a theoretical perspective. Adv Phys 2010; 59: 261-482.
    • (2010) Adv Phys , vol.59 , pp. 261-482
    • Abergel, D.S.L.1    Apalkov, V.2    Berashevich, J.3
  • 4
    • 27744534165 scopus 로고    scopus 로고
    • Twodimensional gas of massless Dirac fermions in graphene
    • Novoselov, KS, Geim, AK and Morozov, SV et al. Twodimensional gas of massless Dirac fermions in graphene. Nature 2005; 438: 197-200.
    • (2005) Nature , vol.438 , pp. 197-200
    • Novoselov, K.S.1    Geim, A.K.2    Morozov, S.V.3
  • 5
    • 27744475163 scopus 로고    scopus 로고
    • Experimental observation of the quantum Hall effect and Berry's phase in graphene
    • Zhang, YB, Tan, YW and Stormer, HL et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 2005; 438: 201-4.
    • (2005) Nature , vol.438 , pp. 201-204
    • Zhang, Y.B.1    Tan, Y.W.2    Stormer, H.L.3
  • 6
    • 70449642218 scopus 로고    scopus 로고
    • Observation of the fractional quantum Hall effect in graphene
    • Bolotin, KI, Ghahari, F and Shulman, MD et al. Observation of the fractional quantum Hall effect in graphene. Nature 2009; 462: 196-9.
    • (2009) Nature , vol.462 , pp. 196-199
    • Bolotin, K.I.1    Ghahari, F.2    Shulman, M.D.3
  • 7
    • 70449627005 scopus 로고    scopus 로고
    • Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene
    • Du, X, Skachko, I and Duerr, F et al. Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene. Nature 2009; 462: 192-5.
    • (2009) Nature , vol.462 , pp. 192-195
    • Du, X.1    Skachko, I.2    Duerr, F.3
  • 8
    • 84878398531 scopus 로고    scopus 로고
    • Hofstadter's butterfly and the fractal quantum Hall effect in moire superlattices
    • Dean, CR, Wang, L and Maher, P et al. Hofstadter's butterfly and the fractal quantum Hall effect in moire superlattices. Nature 2013; 497: 598-602.
    • (2013) Nature , vol.497 , pp. 598-602
    • Dean, C.R.1    Wang, L.2    Maher, P.3
  • 9
    • 84878391708 scopus 로고    scopus 로고
    • Cloning of Dirac fermions in graphene superlattices
    • Ponomarenko, LA, Gorbachev, RV and Yu, GL et al. Cloning of Dirac fermions in graphene superlattices. Nature 2013; 497: 594-7.
    • (2013) Nature , vol.497 , pp. 594-597
    • Ponomarenko, L.A.1    Gorbachev, R.V.2    Yu, G.L.3
  • 10
    • 84879269174 scopus 로고    scopus 로고
    • Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure
    • Hunt, B, Sanchez-Yamagishi, JD and Young, AF et al. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 2013; 340: 1427-30.
    • (2013) Science , vol.340 , pp. 1427-1430
    • Hunt, B.1    Sanchez-Yamagishi, J.D.2    Young, A.F.3
  • 11
    • 43049170468 scopus 로고    scopus 로고
    • Ultrahigh electron mobility in suspended graphene
    • Bolotin, KI, Sikes, KJ and Jiang, Z et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun 2008; 146: 351-5.
    • (2008) Solid State Commun , vol.146 , pp. 351-355
    • Bolotin, K.I.1    Sikes, K.J.2    Jiang, Z.3
  • 13
    • 84868699299 scopus 로고    scopus 로고
    • Graphene: an emerging electronic material
    • Weiss, NO, Zhou, H and Liao, L et al. Graphene: an emerging electronic material. Adv Mater 2012; 24: 5782-825.
    • (2012) Adv Mater , vol.24 , pp. 5782-5825
    • Weiss, N.O.1    Zhou, H.2    Liao, L.3
  • 14
    • 84876539655 scopus 로고    scopus 로고
    • Progress, challenges, and opportunities in two-dimensional materials beyond graphene
    • Butler, SZ, Hollen, SM and Cao, LY et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 2013; 7: 2898-926.
    • (2013) ACS Nano , vol.7 , pp. 2898-2926
    • Butler, S.Z.1    Hollen, S.M.2    Cao, L.Y.3
  • 15
    • 84875825798 scopus 로고    scopus 로고
    • Graphene-like twodimensional materials
    • Xu, MS, Liang, T and Shi, MM et al. Graphene-like twodimensional materials. Chem Rev 2013; 113: 3766-98.
    • (2013) Chem Rev , vol.113 , pp. 3766-3798
    • Xu, M.S.1    Liang, T.2    Shi, M.M.3
  • 16
    • 36149007340 scopus 로고
    • The band theory of graphite
    • Wallace, PR. The band theory of graphite. Phys Rev 1947; 71: 622-34.
    • (1947) Phys Rev , vol.71 , pp. 622-634
    • Wallace, P.R.1
  • 17
    • 67249122406 scopus 로고    scopus 로고
    • Two-and onedimensional honeycomb structures of silicon and germanium
    • Cahangirov, S, Topsakal, M and Akturk, E et al. Two-and onedimensional honeycomb structures of silicon and germanium. Phys Rev Lett 2009; 102: 236804.
    • (2009) Phys Rev Lett , vol.102
    • Cahangirov, S.1    Topsakal, M.2    Akturk, E.3
  • 18
    • 84857527175 scopus 로고    scopus 로고
    • Competition for graphene: graphynes with direction-dependent Dirac cones
    • Malko, D, Neiss, C and Vines, F et al. Competition for graphene: graphynes with direction-dependent Dirac cones. Phys Rev Lett 2012; 108: 086804.
    • (2012) Phys Rev Lett , vol.108
    • Malko, D.1    Neiss, C.2    Vines, F.3
  • 19
    • 84874508133 scopus 로고    scopus 로고
    • The existence/absence of Dirac cones in graphynes
    • Huang, HQ, Duan, WH and Liu, ZR. The existence/absence of Dirac cones in graphynes. New J Phys 2013; 15: 023004.
    • (2013) New J Phys , vol.15
    • Huang, H.Q.1    Duan, W.H.2    Liu, Z.R.3
  • 20
    • 79961199700 scopus 로고    scopus 로고
    • Bandgap opening in graphene antidot lattices: the missing half
    • Ouyang, FP, Peng, SL and Liu, ZF et al. Bandgap opening in graphene antidot lattices: the missing half. ACS Nano 2011; 5: 4023-30.
    • (2011) ACS Nano , vol.5 , pp. 4023-4030
    • Ouyang, F.P.1    Peng, S.L.2    Liu, Z.F.3
  • 21
    • 84903362832 scopus 로고    scopus 로고
    • Identifying Dirac cones in carbon allotropes with square symmetry
    • Wang, JY, Huang, HQ and Duan, WH et al. Identifying Dirac cones in carbon allotropes with square symmetry. J Chem Phys 2013; 139: 184701.
    • (2013) J Chem Phys , vol.139
    • Wang, J.Y.1    Huang, H.Q.2    Duan, W.H.3
  • 23
    • 84890833688 scopus 로고    scopus 로고
    • Two dimensional Dirac carbon allotropes from graphene
    • Xu, LC, Wang, RZ and Miao, MS et al. Two dimensional Dirac carbon allotropes from graphene. Nanoscale 2014; 6: 1113-8.
    • (2014) Nanoscale , vol.6 , pp. 1113-1118
    • Xu, L.C.1    Wang, R.Z.2    Miao, M.S.3
  • 24
    • 84897734619 scopus 로고    scopus 로고
    • Semimetallic twodimensional boron allotrope with massless Dirac fermions
    • Zhou, XF, Dong, X and Oganov, AR et al. Semimetallic twodimensional boron allotrope with massless Dirac fermions. Phys Rev Lett 2014; 112: 085502.
    • (2014) Phys Rev Lett , vol.112
    • Zhou, X.F.1    Dong, X.2    Oganov, A.R.3
  • 25
    • 84899870429 scopus 로고    scopus 로고
    • 2 allotrope possessing both massless Dirac and heavy fermions
    • 2 allotrope possessing both massless Dirac and heavy fermions. Phys Rev B 2014; 89: 205402.
    • (2014) Phys Rev B , vol.89
    • Li, W.F.1    Guo, M.2    Zhang, G.3
  • 26
    • 84874629738 scopus 로고    scopus 로고
    • Organic topological insulators in organometallic lattices
    • Wang, ZF, Liu, Z and Liu, F. Organic topological insulators in organometallic lattices. Nat Commun 2013; 4: 1471.
    • (2013) Nat Commun , vol.4 , pp. 1471
    • Wang, Z.F.1    Liu, Z.2    Liu, F.3
  • 27
    • 84858244363 scopus 로고    scopus 로고
    • Designer Dirac fermions and topological phases in molecular graphene
    • Gomes, KK, Mar, Wand Ko, Wet al. Designer Dirac fermions and topological phases in molecular graphene. Nature 2012; 483: 306-10.
    • (2012) Nature , vol.483 , pp. 306-310
    • Gomes, K.K.1    Mar, W.2    Ko, W.3
  • 28
    • 33646703099 scopus 로고    scopus 로고
    • Pressure-induced zero-gap semiconducting state in organic conductor alpha-(BEDT-TTF)(2)I-3 salt
    • Katayama, S, Kobayashi, A and Suzumura, Y. Pressure-induced zero-gap semiconducting state in organic conductor alpha-(BEDT-TTF)(2)I-3 salt. J Phys Soc Jpn 2006; 75: 054705.
    • (2006) J Phys Soc Jpn , vol.75
    • Katayama, S.1    Kobayashi, A.2    Suzumura, Y.3
  • 29
    • 34547298111 scopus 로고    scopus 로고
    • Simulation and detection of Dirac fermions with cold atoms in an optical lattice
    • Zhu, SL, Wang, BG and Duan, LM. Simulation and detection of Dirac fermions with cold atoms in an optical lattice. Phys Rev Lett 2007; 98: 260402.
    • (2007) Phys Rev Lett , vol.98
    • Zhu, S.L.1    Wang, B.G.2    Duan, L.M.3
  • 32
    • 84876216037 scopus 로고    scopus 로고
    • Widely tunable carrier mobility of boron nitride-embedded graphene
    • Wang, JY, Zhao, RQ and Liu, ZF et al. Widely tunable carrier mobility of boron nitride-embedded graphene. Small 2013; 9: 1373-8.
    • (2013) Small , vol.9 , pp. 1373-1378
    • Wang, J.Y.1    Zhao, R.Q.2    Liu, Z.F.3
  • 33
    • 35949016807 scopus 로고
    • Self-consistent effective-mass theory for intralayer screening in graphite-intercalation compounds
    • Divincenzo, DP and Mele, EJ. Self-consistent effective-mass theory for intralayer screening in graphite-intercalation compounds. Phys Rev B 1984; 29: 1685-94.
    • (1984) Phys Rev B , vol.29 , pp. 1685-1694
    • Divincenzo, D.P.1    Mele, E.J.2
  • 34
    • 0037098490 scopus 로고    scopus 로고
    • Hall conductivity of a two-dimensional graphite system
    • Zheng, YS and Ando, T. Hall conductivity of a two-dimensional graphite system. Phys Rev B 2002; 65: 245420.
    • (2002) Phys Rev B , vol.65
    • Zheng, Y.S.1    Ando, T.2
  • 35
    • 80052480839 scopus 로고    scopus 로고
    • Multicomponent fractional quantum Hall effect in graphene
    • Dean, CR, Young, AF and Cadden-Zimansky, P et al. Multicomponent fractional quantum Hall effect in graphene. Nat Phys 2011; 7: 693-6.
    • (2011) Nat Phys , vol.7 , pp. 693-696
    • Dean, C.R.1    Young, A.F.2    Cadden-Zimansky, P.3
  • 36
    • 84882570756 scopus 로고    scopus 로고
    • Fractional quantum hall phase transitions and four-flux states in graphene
    • Feldman, BE, Levin, AJ and Krauss, B et al. Fractional quantum hall phase transitions and four-flux states in graphene. Phys Rev Lett 2013; 111: 076802.
    • (2013) Phys Rev Lett , vol.111
    • Feldman, B.E.1    Levin, A.J.2    Krauss, B.3
  • 37
    • 0001032458 scopus 로고
    • Energy-levels and wave-functions of bloch electrons in rational and irrational magnetic-fields
    • Hofstadter, DR. Energy-levels and wave-functions of bloch electrons in rational and irrational magnetic-fields. Phys Rev B 1976; 14: 2239-49.
    • (1976) Phys Rev B , vol.14 , pp. 2239-2249
    • Hofstadter, D.R.1
  • 38
    • 36749055294 scopus 로고    scopus 로고
    • A self-consistent theory for graphene transport
    • Adam, S, Hwang, EH and Galitski, VM et al. A self-consistent theory for graphene transport. Proc Natl Acad Sci USA 2007; 104: 18392-7.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 18392-18397
    • Adam, S.1    Hwang, E.H.2    Galitski, V.M.3
  • 39
    • 77957908617 scopus 로고    scopus 로고
    • Boron nitride substrates for highquality graphene electronics
    • Dean, CR, Young, AF and Meric, I et al. Boron nitride substrates for highquality graphene electronics. Nat Nanotechnol 2010; 5: 722-6.
    • (2010) Nat Nanotechnol , vol.5 , pp. 722-726
    • Dean, C.R.1    Young, A.F.2    Meric, I.3
  • 41
    • 40749140712 scopus 로고    scopus 로고
    • Giant intrinsic carrier mobilities in graphene and its bilayer
    • Morozov, SV, Novoselov, KS and Katsnelson, MI et al. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys Rev Lett 2008; 100: 016602.
    • (2008) Phys Rev Lett , vol.100
    • Morozov, S.V.1    Novoselov, K.S.2    Katsnelson, M.I.3
  • 42
    • 78650444412 scopus 로고    scopus 로고
    • Limits on charge carrier mobility in suspended graphene due to flexural phonons
    • Castro, EV, Ochoa, H and Katsnelson, MI et al. Limits on charge carrier mobility in suspended graphene due to flexural phonons. Phys Rev Lett 2010; 105: 266601.
    • (2010) Phys Rev Lett , vol.105
    • Castro, E.V.1    Ochoa, H.2    Katsnelson, M.I.3
  • 43
    • 84896348346 scopus 로고    scopus 로고
    • Electron-phonon interactions and the intrinsic electrical resistivity of graphene
    • Park, CH, Bonini, N and Sohier, T et al. Electron-phonon interactions and the intrinsic electrical resistivity of graphene. Nano Lett 2014; 14: 1113-9.
    • (2014) Nano Lett , vol.14 , pp. 1113-1119
    • Park, C.H.1    Bonini, N.2    Sohier, T.3
  • 44
    • 84907998429 scopus 로고    scopus 로고
    • Intrinsic carrier mobility of Dirac cones: the limitations of deformation potential theory
    • Li, ZZ, Wang, JY and Liu, ZR. Intrinsic carrier mobility of Dirac cones: the limitations of deformation potential theory. J Chem Phys 2014; 141: 144107.
    • (2014) J Chem Phys , vol.141
    • Li, Z.Z.1    Wang, J.Y.2    Liu, Z.R.3
  • 45
    • 33847364563 scopus 로고    scopus 로고
    • The structure of suspended graphene sheets
    • Meyer, JC, Geim, AK and Katsnelson, MI et al. The structure of suspended graphene sheets. Nature 2007; 446: 60-3.
    • (2007) Nature , vol.446 , pp. 60-63
    • Meyer, J.C.1    Geim, A.K.2    Katsnelson, M.I.3
  • 46
    • 84899660494 scopus 로고    scopus 로고
    • Unusual ultra-low-frequency fluctuations in freestanding graphene
    • Xu, P, Neek-Amal, M and Barber, SD et al. Unusual ultra-low-frequency fluctuations in freestanding graphene. Nat Commun 2014; 5: 3720.
    • (2014) Nat Commun , vol.5 , pp. 3720
    • Xu, P.1    Neek-Amal, M.2    Barber, S.D.3
  • 47
    • 40949146890 scopus 로고    scopus 로고
    • Midgap states and charge inhomogeneities in corrugated graphene
    • Guinea, F, Katsnelson, MI and Vozmediano, MAH. Midgap states and charge inhomogeneities in corrugated graphene. Phys Rev B 2008; 77: 075422.
    • (2008) Phys Rev B , vol.77
    • Guinea, F.1    Katsnelson, M.I.2    Vozmediano, M.A.H.3
  • 48
    • 70450208851 scopus 로고    scopus 로고
    • Ultraflat graphene
    • Lui, CH, Liu, L and Mak, KF et al. Ultraflat graphene. Nature 2009; 462: 339-41.
    • (2009) Nature , vol.462 , pp. 339-341
    • Lui, C.H.1    Liu, L.2    Mak, K.F.3
  • 49
    • 70350131106 scopus 로고    scopus 로고
    • Origin of spatial charge inhomogeneity in graphene
    • Zhang, YB, Brar, VW and Girit, C et al. Origin of spatial charge inhomogeneity in graphene. Nat Phys 2009; 5: 722-6.
    • (2009) Nat Phys , vol.5 , pp. 722-726
    • Zhang, Y.B.1    Brar, V.W.2    Girit, C.3
  • 50
    • 84881593348 scopus 로고    scopus 로고
    • Direct imaging of charged impurity density in common graphene substrates
    • Burson, KM, Cullen, WGand Adam, S et al. Direct imaging of charged impurity density in common graphene substrates. Nano Lett 2013; 13: 3576-80.
    • (2013) Nano Lett , vol.13 , pp. 3576-3580
    • Burson, K.M.1    Cullen, W.G.2    Adam, S.3
  • 51
    • 68949135918 scopus 로고    scopus 로고
    • Tight-binding approach to uniaxial strain in graphene
    • Pereira, VM, Neto, AHC and Peres, NMR. Tight-binding approach to uniaxial strain in graphene. Phys Rev B 2009; 80: 045401.
    • (2009) Phys Rev B , vol.80
    • Pereira, V.M.1    Neto, A.H.C.2    Peres, N.M.R.3
  • 52
    • 77955585046 scopus 로고    scopus 로고
    • Strain effects in graphene and graphene nanoribbons: the underlying mechanism
    • Li, Y, Jiang, XW and Liu, ZF et al. Strain effects in graphene and graphene nanoribbons: the underlying mechanism. Nano Res 2010; 3: 545-56.
    • (2010) Nano Res , vol.3 , pp. 545-556
    • Li, Y.1    Jiang, X.W.2    Liu, Z.F.3
  • 53
    • 77954936453 scopus 로고    scopus 로고
    • Effects of strain on electronic properties of graphene
    • Choi, SM, Jhi, SH and Son, YW. Effects of strain on electronic properties of graphene. Phys Rev B 2010; 81: 081407(R).
    • (2010) Phys Rev B , vol.81
    • Choi, S.M.1    Jhi, S.H.2    Son, Y.W.3
  • 54
    • 68649099010 scopus 로고    scopus 로고
    • Strain engineering of graphene's electronic structure
    • Pereira, VM and Neto, AHC. Strain engineering of graphene's electronic structure. Phys Rev Lett 2009; 103: 046801.
    • (2009) Phys Rev Lett , vol.103
    • Pereira, V.M.1    Neto, A.H.C.2
  • 55
    • 73549103610 scopus 로고    scopus 로고
    • Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering
    • Guinea, F, Katsnelson, MI and Geim, AK. Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nat Phys 2010; 6: 30-3.
    • (2010) Nat Phys , vol.6 , pp. 30-33
    • Guinea, F.1    Katsnelson, M.I.2    Geim, A.K.3
  • 56
    • 77955099911 scopus 로고    scopus 로고
    • Strain-induced pseudo-magnetic fields greater than 300 Tesla in graphene nanobubbles
    • Levy, N, Burke, SA and Meaker, KL et al. Strain-induced pseudo-magnetic fields greater than 300 Tesla in graphene nanobubbles. Science 2010; 329: 544-7.
    • (2010) Science , vol.329 , pp. 544-547
    • Levy, N.1    Burke, S.A.2    Meaker, K.L.3
  • 57
    • 67649414628 scopus 로고    scopus 로고
    • First-principles study of the interaction and charge transfer between graphene and metals
    • Khomyakov, PA, Giovannetti, G and Rusu, PC et al. First-principles study of the interaction and charge transfer between graphene and metals. Phys Rev B 2009; 79: 195425.
    • (2009) Phys Rev B , vol.79
    • Khomyakov, P.A.1    Giovannetti, G.2    Rusu, P.C.3
  • 58
    • 80051498457 scopus 로고    scopus 로고
    • Quantum spin Hall effect in silicene and twodimensional germanium
    • Liu, CC, Feng, WX and Yao, YG. Quantum spin Hall effect in silicene and twodimensional germanium. Phys Rev Lett 2011; 107: 076802.
    • (2011) Phys Rev Lett , vol.107
    • Liu, C.C.1    Feng, W.X.2    Yao, Y.G.3
  • 59
    • 84855800482 scopus 로고    scopus 로고
    • Tunable bandgap in silicene and germanene
    • Ni, Z, Liu, Q and Tang, K et al. Tunable bandgap in silicene and germanene. Nano Lett 2012; 12: 113-8.
    • (2012) Nano Lett , vol.12 , pp. 113-118
    • Ni, Z.1    Liu, Q.2    Tang, K.3
  • 61
    • 84858131927 scopus 로고    scopus 로고
    • A topological insulator and helical zero mode in silicene under an inhomogeneous electric field
    • Ezawa, M. A topological insulator and helical zero mode in silicene under an inhomogeneous electric field. New J Phys 2012; 14: 033003.
    • (2012) New J Phys , vol.14
    • Ezawa, M.1
  • 62
    • 84864475146 scopus 로고    scopus 로고
    • Valley-polarized metals and quantum anomalous Hall effect in silicene
    • Ezawa, M. Valley-polarized metals and quantum anomalous Hall effect in silicene. Phys Rev Lett 2012; 109: 055502.
    • (2012) Phys Rev Lett , vol.109
    • Ezawa, M.1
  • 63
    • 84872233325 scopus 로고    scopus 로고
    • Photoinduced topological phase transition and a single Dirac-cone state in silicene
    • Ezawa, M. Photoinduced topological phase transition and a single Dirac-cone state in silicene. Phys Rev Lett 2013; 110: 026603.
    • (2013) Phys Rev Lett , vol.110
    • Ezawa, M.1
  • 64
    • 84896337773 scopus 로고    scopus 로고
    • Valley-polarized quantum anomalous Hall effect in silicene
    • Pan, H, Li, ZS and Liu, CC et al. Valley-polarized quantum anomalous Hall effect in silicene. Phys Rev Lett 2014; 112: 106802.
    • (2014) Phys Rev Lett , vol.112
    • Pan, H.1    Li, Z.S.2    Liu, C.C.3
  • 65
    • 84884924123 scopus 로고    scopus 로고
    • First-principles calculation of intrinsic carrier mobility of silicene
    • Shao, ZG, Ye, XS and Yang, L et al. First-principles calculation of intrinsic carrier mobility of silicene. J Appl Phys 2013; 114: 093712.
    • (2013) J Appl Phys , vol.114
    • Shao, Z.G.1    Ye, X.S.2    Yang, L.3
  • 66
    • 84901628216 scopus 로고    scopus 로고
    • Intrinsic carrier mobility of germanene is larger than graphene's: first-principle calculations
    • Ye, X-S, Shao, Z-G and Zhao, H et al. Intrinsic carrier mobility of germanene is larger than graphene's: first-principle calculations. RSC Adv 2014; 4: 21216-20.
    • (2014) RSC Adv , vol.4 , pp. 21216-21220
    • Ye, X.-S.1    Shao, Z.-G.2    Zhao, H.3
  • 67
    • 84901660687 scopus 로고    scopus 로고
    • Beyond graphene: stable elemental monolayers of silicene and germanene
    • Roome, NJ and Carey, JD. Beyond graphene: stable elemental monolayers of silicene and germanene. ACS Appl Mater Interfaces 2014; 6: 7743-50.
    • (2014) ACS Appl Mater Interfaces , vol.6 , pp. 7743-7750
    • Roome, N.J.1    Carey, J.D.2
  • 68
    • 84874585234 scopus 로고    scopus 로고
    • Gated silicene as a tunable source of nearly 100% spin-polarized electrons
    • Tsai, WF, Huang, CY and Chang, TR et al. Gated silicene as a tunable source of nearly 100% spin-polarized electrons. Nat Commun 2013; 4: 1500.
    • (2013) Nat Commun , vol.4 , pp. 1500
    • Tsai, W.F.1    Huang, C.Y.2    Chang, T.R.3
  • 69
    • 84901408185 scopus 로고    scopus 로고
    • Valley and spin thermoelectric transport in ferromagnetic silicene junctions
    • Niu, ZP and Dong, SH. Valley and spin thermoelectric transport in ferromagnetic silicene junctions. Appl Phys Lett 2014; 104: 202401.
    • (2014) Appl Phys Lett , vol.104
    • Niu, Z.P.1    Dong, S.H.2
  • 71
    • 84863821551 scopus 로고    scopus 로고
    • Evidence of silicene in honeycomb structures of silicon on Ag(111)
    • Feng, BJ, Ding, ZJ and Meng, S et al. Evidence of silicene in honeycomb structures of silicon on Ag(111). Nano Lett 2012; 12: 3507-11.
    • (2012) Nano Lett , vol.12 , pp. 3507-3511
    • Feng, B.J.1    Ding, Z.J.2    Meng, S.3
  • 72
    • 84859619173 scopus 로고    scopus 로고
    • Growth of silicene layers on Ag(111): unexpected effect of the substrate temperature
    • Jamgotchian, H, Colignon, Y and Hamzaoui, N et al. Growth of silicene layers on Ag(111): unexpected effect of the substrate temperature. J Phys-Condens Mat 2012; 24: 172001.
    • (2012) J Phys-Condens Mat , vol.24
    • Jamgotchian, H.1    Colignon, Y.2    Hamzaoui, N.3
  • 73
    • 84904193838 scopus 로고    scopus 로고
    • Various atomic structures of monolayer silicene fabricated on Ag(111)
    • Liu, Z-L, Wang, M-X and Xu, J-P et al. Various atomic structures of monolayer silicene fabricated on Ag(111). New J Phys 2014; 16: 075006.
    • (2014) New J Phys , vol.16
    • Liu, Z.-L.1    Wang, M.-X.2    Xu, J.-P.3
  • 75
    • 84864588398 scopus 로고    scopus 로고
    • Evidence for Dirac fermions in a honeycomb lattice based on silicon
    • Chen, L, Liu, CC and Feng, BJ et al. Evidence for Dirac fermions in a honeycomb lattice based on silicon. Phys Rev Lett 2012; 109: 056804.
    • (2012) Phys Rev Lett , vol.109
    • Chen, L.1    Liu, C.C.2    Feng, B.J.3
  • 76
    • 84859790102 scopus 로고    scopus 로고
    • Silicene: compelling experimental evidence for graphenelike two-dimensional silicon
    • Vogt, P, DePadova, P and Quaresima, C et al. Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys Rev Lett 2012; 108: 155501.
    • (2012) Phys Rev Lett , vol.108
    • Vogt, P.1    DePadova, P.2    Quaresima, C.3
  • 77
    • 84878344841 scopus 로고    scopus 로고
    • Comment on 'Evidence for Dirac fermions in a honeycomb lattice based on silicon'
    • Arafune, R, Lin, CL and Nagao, R et al. Comment on 'Evidence for Dirac fermions in a honeycomb lattice based on silicon'. Phys Rev Lett 2013; 110: 229701.
    • (2013) Phys Rev Lett , vol.110
    • Arafune, R.1    Lin, C.L.2    Nagao, R.3
  • 78
    • 84874035445 scopus 로고    scopus 로고
    • Substrate-induced symmetry breaking in silicene
    • Lin, CL, Arafune, R and Kawahara, K et al. Substrate-induced symmetry breaking in silicene. Phys Rev Lett 2013; 110: 076801.
    • (2013) Phys Rev Lett , vol.110
    • Lin, C.L.1    Arafune, R.2    Kawahara, K.3
  • 79
    • 84880768369 scopus 로고    scopus 로고
    • Electronic structure of silicene on Ag(111): strong hybridization effects
    • Cahangirov, S, Audiffred, M and Tang, P et al. Electronic structure of silicene on Ag(111): strong hybridization effects. Phys Rev B 2013; 88: 035432.
    • (2013) Phys Rev B , vol.88
    • Cahangirov, S.1    Audiffred, M.2    Tang, P.3
  • 80
    • 84878954751 scopus 로고    scopus 로고
    • Absence of Dirac electrons in silicene on Ag(111) surfaces
    • Guo, ZX, Furuya, S and Iwata, J et al. Absence of Dirac electrons in silicene on Ag(111) surfaces. J Phys Soc Jpn 2013; 82: 063714.
    • (2013) J Phys Soc Jpn , vol.82
    • Guo, Z.X.1    Furuya, S.2    Iwata, J.3
  • 81
    • 84879855819 scopus 로고    scopus 로고
    • Absence and presence of Dirac electrons in silicene on substrates
    • Guo, ZX, Furuya, S and Iwata, J et al. Absence and presence of Dirac electrons in silicene on substrates. Phys Rev B 2013; 87: 235435.
    • (2013) Phys Rev B , vol.87
    • Guo, Z.X.1    Furuya, S.2    Iwata, J.3
  • 82
    • 84911403134 scopus 로고    scopus 로고
    • Revealing the substrate origin of the linear dispersion of silicene/Ag(111)
    • Chen, MX and Weinert, M. Revealing the substrate origin of the linear dispersion of silicene/Ag(111). Nano Lett 2014; 14: 5189-93.
    • (2014) Nano Lett , vol.14 , pp. 5189-5193
    • Chen, M.X.1    Weinert, M.2
  • 83
    • 84890279691 scopus 로고    scopus 로고
    • Strong band hybridization between silicene and Ag(111) substrate
    • Yuan, Y, Quhe, R and Zheng, J et al. Strong band hybridization between silicene and Ag(111) substrate. Phys E 2014; 58: 38-42.
    • (2014) Phys E , vol.58 , pp. 38-42
    • Yuan, Y.1    Quhe, R.2    Zheng, J.3
  • 84
    • 84862189529 scopus 로고    scopus 로고
    • Experimental evidence for epitaxial silicene on diboride thin films
    • Fleurence, A, Friedlein, R and Ozaki, T et al. Experimental evidence for epitaxial silicene on diboride thin films. Phys Rev Lett 2012; 108: 245501.
    • (2012) Phys Rev Lett , vol.108
    • Fleurence, A.1    Friedlein, R.2    Ozaki, T.3
  • 85
    • 84873689451 scopus 로고    scopus 로고
    • Buckled silicene formation on Ir(111)
    • Meng, L, Wang, YL and Zhang, LZ et al. Buckled silicene formation on Ir(111). Nano Lett 2013; 13: 685-90.
    • (2013) Nano Lett , vol.13 , pp. 685-690
    • Meng, L.1    Wang, Y.L.2    Zhang, L.Z.3
  • 87
    • 84903638149 scopus 로고    scopus 로고
    • Does the Dirac cone exist in silicene on metal substrates?
    • Quhe, R, Yuan, YK and Zheng, JX et al. Does the Dirac cone exist in silicene on metal substrates? Sci Rep 2014; 4: 5476.
    • (2014) Sci Rep , vol.4 , pp. 5476
    • Quhe, R.1    Yuan, Y.K.2    Zheng, J.X.3
  • 88
    • 84921272036 scopus 로고    scopus 로고
    • Engineering the electronic properties of silicene by tuning the composition of MoX2 and GaX (X = S, Se, Te) chalchogenide templates
    • Scalise, E, Houssa, Mand Cinquanta, E et al. Engineering the electronic properties of silicene by tuning the composition of MoX2 and GaX (X = S, Se, Te) chalchogenide templates. 2D Mater 2014; 1: 011010.
    • (2014) 2D Mater , vol.1
    • Scalise, E.1    Houssa, M.2    Cinquanta, E.3
  • 89
    • 84878121257 scopus 로고    scopus 로고
    • Silicene on substrates: a way to preserve or tune its electronic properties
    • Liu, H, Gao, J and Zhao, J. Silicene on substrates: a way to preserve or tune its electronic properties. J Phys Chem C 2013; 117: 10353-9.
    • (2013) J Phys Chem C , vol.117 , pp. 10353-10359
    • Liu, H.1    Gao, J.2    Zhao, J.3
  • 90
    • 84904639997 scopus 로고    scopus 로고
    • Buckled germanene formation on Pt(111)
    • Li, LF, Lu, SZ and Pan, JB et al. Buckled germanene formation on Pt(111). Adv Mater 2014; 26: 4820-4.
    • (2014) Adv Mater , vol.26 , pp. 4820-4824
    • Li, L.F.1    Lu, S.Z.2    Pan, J.B.3
  • 91
    • 84884304505 scopus 로고    scopus 로고
    • First-principles identifications of superstructures of germanene on Ag(111) surface and h-BN substrate
    • Li, L and Zhao, M. First-principles identifications of superstructures of germanene on Ag(111) surface and h-BN substrate. Phys Chem Chem Phys 2013; 15: 16853-63.
    • (2013) Phys Chem Chem Phys , vol.15 , pp. 16853-16863
    • Li, L.1    Zhao, M.2
  • 93
    • 82655178877 scopus 로고    scopus 로고
    • Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin
    • Liu, CC, Jiang, H and Yao, YG. Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin. Phys Rev B 2011; 84:195430.
    • (2011) Phys Rev B , vol.84
    • Liu, C.C.1    Jiang, H.2    Yao, Y.G.3
  • 94
    • 80053606779 scopus 로고    scopus 로고
    • Group IV graphene-and graphane-like nanosheets
    • Garcia, JC, de Lima, DB and Assali, LVC et al. Group IV graphene-and graphane-like nanosheets. J Phys Chem C 2011; 115: 13242-6.
    • (2011) J Phys Chem C , vol.115 , pp. 13242-13246
    • Garcia, J.C.1    de Lima, D.B.2    Assali, L.V.C.3
  • 95
    • 84884692935 scopus 로고    scopus 로고
    • Large-gap quantum spin Hall insulators in tin films
    • Xu, Y, Yan, BH and Zhang, HJ et al. Large-gap quantum spin Hall insulators in tin films. Phys Rev Lett 2013; 111: 136804.
    • (2013) Phys Rev Lett , vol.111
    • Xu, Y.1    Yan, B.H.2    Zhang, H.J.3
  • 98
    • 0000946635 scopus 로고    scopus 로고
    • Optimized geometries and electronic structures of graphyne and its family
    • Narita, N, Nagai, S and Suzuki, S et al. Optimized geometries and electronic structures of graphyne and its family. Phys Rev B 1998; 58: 11009-14.
    • (1998) Phys Rev B , vol.58 , pp. 11009-11014
    • Narita, N.1    Nagai, S.2    Suzuki, S.3
  • 99
    • 84875831846 scopus 로고    scopus 로고
    • R-graphyne: a new two-dimensional carbon allotrope with versatile Dirac-like point in nanoribbons
    • Yin, WJ, Xie, YE and Liu, LM et al. R-graphyne: a new two-dimensional carbon allotrope with versatile Dirac-like point in nanoribbons. JMater Chem A 2013; 1: 5341-6.
    • (2013) JMater Chem A , vol.1 , pp. 5341-5346
    • Yin, W.J.1    Xie, Y.E.2    Liu, L.M.3
  • 100
    • 84867007526 scopus 로고    scopus 로고
    • Graphyne: hexagonal network of carbon with versatile Dirac cones
    • Kim, BG and Choi, HJ. Graphyne: hexagonal network of carbon with versatile Dirac cones. Phys Rev B 2012; 86: 115435.
    • (2012) Phys Rev B , vol.86
    • Kim, B.G.1    Choi, H.J.2
  • 101
    • 84870423032 scopus 로고    scopus 로고
    • A simple tight-binding model for typical graphyne structures
    • Liu, Z, Yu, GD and Yao, HB et al. A simple tight-binding model for typical graphyne structures. New J Phys 2012; 14: 113007.
    • (2012) New J Phys , vol.14
    • Liu, Z.1    Yu, G.D.2    Yao, H.B.3
  • 102
    • 84904878074 scopus 로고    scopus 로고
    • Crystal momentum-dependent anisotropy of the Dirac cone in the rectangular carbon allotropes
    • Yang, DZ, Si, MS and Zhang, GP et al. Crystal momentum-dependent anisotropy of the Dirac cone in the rectangular carbon allotropes. Europhys Lett 2014; 107: 20003.
    • (2014) Europhys Lett , vol.107 , pp. 20003
    • Yang, D.Z.1    Si, M.S.2    Zhang, G.P.3
  • 103
    • 84905864215 scopus 로고    scopus 로고
    • Two-dimensional carbon topological insulators superior to graphene
    • Zhao, MW, Dong, WZ and Wang, AZ. Two-dimensional carbon topological insulators superior to graphene. Sci Rep 2013; 3: 03532.
    • (2013) Sci Rep , vol.3 , pp. 03532
    • Zhao, M.W.1    Dong, W.Z.2    Wang, A.Z.3
  • 104
    • 84911427728 scopus 로고    scopus 로고
    • Tight-binding theory of spin-orbit coupling in graphynes
    • van Miert, G, Juricic, V and Smith, CM. Tight-binding theory of spin-orbit coupling in graphynes. Phys Rev B 2014; 90: 195414.
    • (2014) Phys Rev B , vol.90
    • van Miert, G.1    Juricic, V.2    Smith, C.M.3
  • 105
    • 84911375608 scopus 로고    scopus 로고
    • High-Chern-number bands and tunable Dirac cones in beta-graphyne
    • van Miert, G, Smith, CM and Juricic, V. High-Chern-number bands and tunable Dirac cones in beta-graphyne. Phys Rev B 2014; 90: 081406.
    • (2014) Phys Rev B , vol.90
    • van Miert, G.1    Smith, C.M.2    Juricic, V.3
  • 106
    • 84877709671 scopus 로고    scopus 로고
    • Strain-induced Dirac cone-like electronic structures and semiconductor-semimetal transition in graphdiyne
    • Cui, HJ, Sheng, XL and Yan, QB et al. Strain-induced Dirac cone-like electronic structures and semiconductor-semimetal transition in graphdiyne. Phys Chem Chem Phys 2013; 15: 8179-85.
    • (2013) Phys Chem Chem Phys , vol.15 , pp. 8179-8185
    • Cui, H.J.1    Sheng, X.L.2    Yan, Q.B.3
  • 107
    • 84901770978 scopus 로고    scopus 로고
    • Strain engineering of Dirac cones in graphyne
    • Wang, GX, Si, MS and Kumar, A et al. Strain engineering of Dirac cones in graphyne. Appl Phys Lett 2014; 104: 213107.
    • (2014) Appl Phys Lett , vol.104
    • Wang, G.X.1    Si, M.S.2    Kumar, A.3
  • 108
    • 84877131542 scopus 로고    scopus 로고
    • Carrier mobility in graphyne should be even larger than that in graphene: a theoretical prediction
    • Chen, JM, Xi, JY and Wang, D et al. Carrier mobility in graphyne should be even larger than that in graphene: a theoretical prediction. J Phys Chem Lett 2013; 4: 1443-8.
    • (2013) J Phys Chem Lett , vol.4 , pp. 1443-1448
    • Chen, J.M.1    Xi, J.Y.2    Wang, D.3
  • 109
    • 84904683955 scopus 로고    scopus 로고
    • Electron-phonon couplings and carrier mobility in graphynes sheet calculated using the Wannier-interpolation approach
    • Xi, JY, Wang, D and Yi, YP et al. Electron-phonon couplings and carrier mobility in graphynes sheet calculated using the Wannier-interpolation approach. J Chem Phys 2014; 141: 034704.
    • (2014) J Chem Phys , vol.141
    • Xi, J.Y.1    Wang, D.2    Yi, Y.P.3
  • 110
    • 84906213339 scopus 로고    scopus 로고
    • Directional control of the electronic and transport properties of graphynes
    • Padilha, JE, Fazzio, A and da Silva, AJR. Directional control of the electronic and transport properties of graphynes. J Phys Chem C 2014; 118: 18793-8.
    • (2014) J Phys Chem C , vol.118 , pp. 18793-18798
    • Padilha, J.E.1    Fazzio, A.2    da Silva, A.J.R.3
  • 112
    • 77952000803 scopus 로고    scopus 로고
    • Architecture of graphdiyne nanoscale films
    • Li, GX, Li, YL and Liu, HB et al. Architecture of graphdiyne nanoscale films. Chem Commun 2010; 46: 3256-8.
    • (2010) Chem Commun , vol.46 , pp. 3256-3258
    • Li, G.X.1    Li, Y.L.2    Liu, H.B.3
  • 113
    • 84884177803 scopus 로고    scopus 로고
    • Effect ofmetal surfaces in on-surface glaser coupling
    • Gao, HY, Franke, JH and Wagner, H et al. Effect ofmetal surfaces in on-surface glaser coupling. J Phys Chem C 2013; 117: 18595-602.
    • (2013) J Phys Chem C , vol.117 , pp. 18595-18602
    • Gao, H.Y.1    Franke, J.H.2    Wagner, H.3
  • 114
    • 84871753057 scopus 로고    scopus 로고
    • Homo-coupling of terminal alkynes on a noble metal surface
    • Zhang, YQ, Kepcija, N and Kleinschrodt, M et al. Homo-coupling of terminal alkynes on a noble metal surface. Nat Commun 2012; 3: 1286.
    • (2012) Nat Commun , vol.3 , pp. 1286
    • Zhang, Y.Q.1    Kepcija, N.2    Kleinschrodt, M.3
  • 115
    • 84901272236 scopus 로고    scopus 로고
    • Identifying sp-sp2 carbon materials by Raman and infrared spectroscopies
    • Wang, JY, Zhang, SH and Zhou, JY et al. Identifying sp-sp2 carbon materials by Raman and infrared spectroscopies. Phys Chem Chem Phys 2014; 16: 11303-9.
    • (2014) Phys Chem Chem Phys , vol.16 , pp. 11303-11309
    • Wang, J.Y.1    Zhang, S.H.2    Zhou, J.Y.3
  • 116
    • 84861795264 scopus 로고    scopus 로고
    • Structural and electronic properties of t graphene: a two-dimensional carbon allotrope with tetrarings
    • Liu, Y, Wang, G and Huang, QS et al. Structural and electronic properties of t graphene: a two-dimensional carbon allotrope with tetrarings. Phys Rev Lett 2012; 108: 225505.
    • (2012) Phys Rev Lett , vol.108
    • Liu, Y.1    Wang, G.2    Huang, Q.S.3
  • 117
    • 84872153836 scopus 로고    scopus 로고
    • Comment on 'Structural and electronic properties of t graphene: a two-dimensional carbon allotrope with tetrarings'
    • Huang, HQ, Li, YC and Liu, ZR et al. Comment on 'Structural and electronic properties of t graphene: a two-dimensional carbon allotrope with tetrarings'. Phys Rev Lett 2013; 110: 029603.
    • (2013) Phys Rev Lett , vol.110
    • Huang, H.Q.1    Li, Y.C.2    Liu, Z.R.3
  • 118
    • 79960626248 scopus 로고    scopus 로고
    • Energy landscape of fullerene materials: a comparison of boron to boron nitride and carbon
    • De, S, Willand, A and Amsler, M et al. Energy landscape of fullerene materials: a comparison of boron to boron nitride and carbon. Phys Rev Lett 2011; 106: 225502.
    • (2011) Phys Rev Lett , vol.106
    • De, S.1    Willand, A.2    Amsler, M.3
  • 119
    • 84865603261 scopus 로고    scopus 로고
    • Two-dimensional boron monolayer sheets
    • Wu, X, Dai, J and Zhao, Y et al. Two-dimensional boron monolayer sheets. ACS Nano 2012; 6: 7443-53.
    • (2012) ACS Nano , vol.6 , pp. 7443-7453
    • Wu, X.1    Dai, J.2    Zhao, Y.3
  • 120
    • 34548792831 scopus 로고    scopus 로고
    • Novel precursors for boron nanotubes: the competition of two-center and three-center bonding in boron sheets
    • Tang, H and Ismail-Beigi, S. Novel precursors for boron nanotubes: the competition of two-center and three-center bonding in boron sheets. Phys Rev Lett 2007; 99: 115501.
    • (2007) Phys Rev Lett , vol.99
    • Tang, H.1    Ismail-Beigi, S.2
  • 121
    • 84886920977 scopus 로고    scopus 로고
    • Dirac cones in two-dimensional systems: from hexagonal to square lattices
    • Liu, ZR, Wang, JY and Li, JL. Dirac cones in two-dimensional systems: from hexagonal to square lattices. Phys Chem Chem Phys 2013; 15: 18855-62.
    • (2013) Phys Chem Chem Phys , vol.15 , pp. 18855-18862
    • Liu, Z.R.1    Wang, J.Y.2    Li, J.L.3
  • 122
    • 68649123604 scopus 로고    scopus 로고
    • Tight-binding modeling and lowenergy behavior of the semi-Dirac point
    • Banerjee, S, Singh, RRP and Pardo, V et al. Tight-binding modeling and lowenergy behavior of the semi-Dirac point. Phys Rev Lett 2009; 103: 016402.
    • (2009) Phys Rev Lett , vol.103
    • Banerjee, S.1    Singh, R.R.P.2    Pardo, V.3
  • 123
    • 84893348014 scopus 로고    scopus 로고
    • A semi-Dirac point and an electromagnetic topological transition in a dielectric photonic crystal
    • Wu, Y. A semi-Dirac point and an electromagnetic topological transition in a dielectric photonic crystal. Opt Express 2014; 22: 1906-17.
    • (2014) Opt Express , vol.22 , pp. 1906-1917
    • Wu, Y.1
  • 124
    • 84872287127 scopus 로고    scopus 로고
    • Topological transition of Dirac points in a microwave experiment
    • Bellec, M, Kuhl, U and Montambaux, G et al. Topological transition of Dirac points in a microwave experiment. Phys Rev Lett 2013; 110: 033902.
    • (2013) Phys Rev Lett , vol.110
    • Bellec, M.1    Kuhl, U.2    Montambaux, G.3
  • 125
    • 84923272634 scopus 로고    scopus 로고
    • Superlattice valley engineering for designer topological insulators
    • Li, X, Zhang, F and Niu, Q et al. Superlattice valley engineering for designer topological insulators. Sci. Rep. 2014; 4: 6397.
    • (2014) Sci. Rep , vol.4 , pp. 6397
    • Li, X.1    Zhang, F.2    Niu, Q.3
  • 126
    • 68549121018 scopus 로고    scopus 로고
    • Experimental study of organic zero-gap conductor alpha-(BEDT-TTF)(2)I-3
    • Tajima, N and Kajita, K. Experimental study of organic zero-gap conductor alpha-(BEDT-TTF)(2)I-3. Sci Technol Adv Mat 2009; 10: 024308.
    • (2009) Sci Technol Adv Mat , vol.10
    • Tajima, N.1    Kajita, K.2
  • 127
    • 65549106031 scopus 로고    scopus 로고
    • Effect of the zero-mode Landau level on interlayer magnetoresistance in multilayer massless Dirac fermion systems
    • Tajima, N, Sugawara, S and Kato, R et al. Effect of the zero-mode Landau level on interlayer magnetoresistance in multilayer massless Dirac fermion systems. Phys Rev Lett 2009; 102: 176403.
    • (2009) Phys Rev Lett , vol.102
    • Tajima, N.1    Sugawara, S.2    Kato, R.3
  • 128
    • 80053588939 scopus 로고    scopus 로고
    • Barrier transmission of Dirac-like pseudospin-one particles
    • Urban, DF, Bercioux, D and Wimmer, Met al. Barrier transmission of Dirac-like pseudospin-one particles. Phys Rev B 2011; 84: 115136.
    • (2011) Phys Rev B , vol.84
    • Urban, D.F.1    Bercioux, D.2    Wimmer, M.3
  • 129
    • 77957330225 scopus 로고    scopus 로고
    • Isolated flat bands and spin-1 conical bands in two-dimensional lattices
    • Green, D, Santos, L and Chamon, C. Isolated flat bands and spin-1 conical bands in two-dimensional lattices. Phys Rev B 2010; 82: 075104.
    • (2010) Phys Rev B , vol.82
    • Green, D.1    Santos, L.2    Chamon, C.3
  • 131
    • 84892524111 scopus 로고    scopus 로고
    • From Dia-to paramagnetic orbital susceptibility of massless fermions
    • Raoux, A, Morigi, M and Fuchs, JN et al. From Dia-to paramagnetic orbital susceptibility of massless fermions. Phys Rev Lett 2014; 112: 026402.
    • (2014) Phys Rev Lett , vol.112
    • Raoux, A.1    Morigi, M.2    Fuchs, J.N.3
  • 132
    • 84883730740 scopus 로고    scopus 로고
    • Artificial honeycomb lattices for electrons, atoms and photons
    • Polini, M, Guinea, F and Lewenstein, Met al. Artificial honeycomb lattices for electrons, atoms and photons. Nat Nanotechnol 2013; 8: 625-33.
    • (2013) Nat Nanotechnol , vol.8 , pp. 625-633
    • Polini, M.1    Guinea, F.2    Lewenstein, M.3
  • 133
    • 34548062340 scopus 로고    scopus 로고
    • Flat bands and Wigner crystallization in the honeycomb optical lattice
    • Wu, CJ, Bergman, D and Balents, L et al. Flat bands and Wigner crystallization in the honeycomb optical lattice. Phys Rev Lett 2007; 99: 070401.
    • (2007) Phys Rev Lett , vol.99
    • Wu, C.J.1    Bergman, D.2    Balents, L.3
  • 134
    • 45249108851 scopus 로고    scopus 로고
    • px, y-orbital counterpart of graphene: cold atoms in the honeycomb optical lattice
    • Wu, CJ and Das Sarma, S. px, y-orbital counterpart of graphene: cold atoms in the honeycomb optical lattice. Phys Rev B 2008; 77: 235107.
    • (2008) Phys Rev B , vol.77
    • Wu, C.J.1    Das Sarma, S.2
  • 135
    • 71449116714 scopus 로고    scopus 로고
    • Massless Dirac-Weyl fermions in a T-3 optical lattice
    • Bercioux, D, Urban, DF and Grabert, H et al. Massless Dirac-Weyl fermions in a T-3 optical lattice. Phys Rev A 2009; 80: 063603.
    • (2009) Phys Rev A , vol.80
    • Bercioux, D.1    Urban, D.F.2    Grabert, H.3
  • 136
    • 77954831971 scopus 로고    scopus 로고
    • Single Dirac cone with a flat band touching on line-centered-square optical lattices
    • Shen, R, Shao, LB and Wang, BG et al. Single Dirac cone with a flat band touching on line-centered-square optical lattices. Phys Rev B 2010; 81: 041410.
    • (2010) Phys Rev B , vol.81
    • Shen, R.1    Shao, L.B.2    Wang, B.G.3
  • 137
    • 84858187821 scopus 로고    scopus 로고
    • Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice
    • Tarruell, L, Greif, D and Uehlinger, T et al. Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice. Nature 2012; 483: 302.
    • (2012) Nature , vol.483 , pp. 302
    • Tarruell, L.1    Greif, D.2    Uehlinger, T.3
  • 138
    • 68949108477 scopus 로고    scopus 로고
    • Engineering artificial graphene in a two-dimensional electron gas
    • Gibertini, M, Singha, A and Pellegrini, V et al. Engineering artificial graphene in a two-dimensional electron gas. Phys Rev B 2009; 79: 241406.
    • (2009) Phys Rev B , vol.79
    • Gibertini, M.1    Singha, A.2    Pellegrini, V.3
  • 139
    • 66449138055 scopus 로고    scopus 로고
    • Making massless dirac fermions from a patterned two-dimensional electron gas
    • Park, CH and Louie, SG. Making massless dirac fermions from a patterned two-dimensional electron gas. Nano Lett 2009; 9: 1793-7.
    • (2009) Nano Lett , vol.9 , pp. 1793-1797
    • Park, C.H.1    Louie, S.G.2
  • 140
    • 84862066123 scopus 로고    scopus 로고
    • From laterally modulated two-dimensional electron gas towards artificial graphene
    • Nadvornik, L, Orlita, M and Goncharuk, NA et al. From laterally modulated two-dimensional electron gas towards artificial graphene. New J Phys 2012; 14: 053002.
    • (2012) New J Phys , vol.14
    • Nadvornik, L.1    Orlita, M.2    Goncharuk, N.A.3
  • 141
    • 2342565657 scopus 로고    scopus 로고
    • Negative refraction and left-handed electromagnetism in microwave photonic crystals
    • Parimi, PV, Lu, WT and Vodo, P et al. Negative refraction and left-handed electromagnetism in microwave photonic crystals. Phys Rev Lett 2004; 92: 127401.
    • (2004) Phys Rev Lett , vol.92
    • Parimi, P.V.1    Lu, W.T.2    Vodo, P.3
  • 142
    • 33847694331 scopus 로고    scopus 로고
    • Conical diffraction and gap solitons in honeycomb photonic lattices
    • Peleg, O, Bartal, G and Freedman, B et al. Conical diffraction and gap solitons in honeycomb photonic lattices. Phys Rev Lett 2007; 98: 103901.
    • (2007) Phys Rev Lett , vol.98
    • Peleg, O.1    Bartal, G.2    Freedman, B.3
  • 143
    • 84908032678 scopus 로고    scopus 로고
    • Prediction of a Dirac state in monolayer TiB2
    • Zhang, LZ, Wang, ZF and Du, SX et al. Prediction of a Dirac state in monolayer TiB2. Phys Rev B 2014; 90: 161402.
    • (2014) Phys Rev B , vol.90
    • Zhang, L.Z.1    Wang, Z.F.2    Du, S.X.3
  • 144
    • 33746521170 scopus 로고    scopus 로고
    • Zero modes of tight-binding electrons on the honeycomb lattice
    • Hasegawa, Y, Konno, R and Nakano, H et al. Zero modes of tight-binding electrons on the honeycomb lattice. Phys Rev B 2006; 74: 033413.
    • (2006) Phys Rev B , vol.74
    • Hasegawa, Y.1    Konno, R.2    Nakano, H.3
  • 145
    • 71449108654 scopus 로고    scopus 로고
    • Merging of Dirac points in a two-dimensional crystal
    • Montambaux, G, Piechon, F and Fuchs, JN et al. Merging of Dirac points in a two-dimensional crystal. Phys Rev B 2009; 80: 153412.
    • (2009) Phys Rev B , vol.80
    • Montambaux, G.1    Piechon, F.2    Fuchs, J.N.3
  • 146
    • 72449152129 scopus 로고    scopus 로고
    • A universal Hamiltonian for motion and merging of Dirac points in a two-dimensional crystal
    • Montambaux, G, Piechon, F and Fuchs, JN et al. A universal Hamiltonian for motion and merging of Dirac points in a two-dimensional crystal. Eur Phys J B 2009; 72: 509-20.
    • (2009) Eur Phys J B , vol.72 , pp. 509-520
    • Montambaux, G.1    Piechon, F.2    Fuchs, J.N.3
  • 147
    • 84892405298 scopus 로고    scopus 로고
    • Merging of Dirac points and Floquet topological transitions in ac-driven graphene
    • Delplace, P, Gomez-Leon, A and Platero, G. Merging of Dirac points and Floquet topological transitions in ac-driven graphene. Phys Rev B 2013; 88: 245422.
    • (2013) Phys Rev B , vol.88
    • Delplace, P.1    Gomez-Leon, A.2    Platero, G.3
  • 148
    • 84865404447 scopus 로고    scopus 로고
    • Singularities, swallowtails and Dirac points. An analysis for families of Hamiltonians and applications to wire networks, especially the Gyroid
    • Kaufmann, RM, Khlebnikov, S and Wehefritz-Kaufmann, B. Singularities, swallowtails and Dirac points. An analysis for families of Hamiltonians and applications to wire networks, especially the Gyroid. Ann Phys-NY 2012; 327: 2865-84.
    • (2012) Ann Phys-NY , vol.327 , pp. 2865-2884
    • Kaufmann, R.M.1    Khlebnikov, S.2    Wehefritz-Kaufmann, B.3
  • 149
    • 84892386510 scopus 로고    scopus 로고
    • Symmetry-protected quantization and bulk-edge correspondence of massless Dirac fermions: application to the fermionic Shastry-Sutherland model
    • Kariyado, T and Hatsugai, Y. Symmetry-protected quantization and bulk-edge correspondence of massless Dirac fermions: application to the fermionic Shastry-Sutherland model. Phys Rev B 2013; 88: 245126.
    • (2013) Phys Rev B , vol.88
    • Kariyado, T.1    Hatsugai, Y.2
  • 150
    • 84856731507 scopus 로고    scopus 로고
    • Topological aspect of graphene physics
    • Hatsugai, Y. Topological aspect of graphene physics. J Phys: Conf Ser 2011; 334: 012004.
    • (2011) J Phys: Conf Ser , vol.334
    • Hatsugai, Y.1
  • 152
    • 79961227040 scopus 로고    scopus 로고
    • Designing Dirac points in two-dimensional lattices
    • Asano, K and Hotta, C. Designing Dirac points in two-dimensional lattices. Phys Rev B 2011; 83: 245125.
    • (2011) Phys Rev B , vol.83
    • Asano, K.1    Hotta, C.2
  • 153
    • 34247363226 scopus 로고    scopus 로고
    • Existence and topological stability of Fermi points in multilayered graphene
    • Manes, JL, Guinea, F and Vozmediano, MAH. Existence and topological stability of Fermi points in multilayered graphene. Phys Rev B 2007; 75: 155424.
    • (2007) Phys Rev B , vol.75
    • Manes, J.L.1    Guinea, F.2    Vozmediano, M.A.H.3
  • 154
    • 84878973119 scopus 로고    scopus 로고
    • Quasi-two-dimensional Dirac fermions and quantum magnetoresistance in LaAgBi2
    • Wang, KF, Graf, D and Petrovic, C. Quasi-two-dimensional Dirac fermions and quantum magnetoresistance in LaAgBi2. Phys Rev B 2013; 87: 235101.
    • (2013) Phys Rev B , vol.87
    • Wang, K.F.1    Graf, D.2    Petrovic, C.3
  • 155
    • 84867175337 scopus 로고    scopus 로고
    • BN-embedded graphene with a ubiquitous gap opening
    • Zhao, RQ, Wang, JY and Yang, MM et al. BN-embedded graphene with a ubiquitous gap opening. J Phys Chem C 2012; 116: 21098-103.
    • (2012) J Phys Chem C , vol.116 , pp. 21098-21103
    • Zhao, R.Q.1    Wang, J.Y.2    Yang, M.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.