메뉴 건너뛰기




Volumn 119, Issue 29, 2015, Pages 8939-8949

Role of Internal Water on Protein Thermal Stability: The Case of Homologous G Domains

Author keywords

[No Author keywords available]

Indexed keywords

CONFORMATIONS; ESCHERICHIA COLI; FLEXIBLE STRUCTURES; FREE ENERGY; HYDRATION; MOLECULAR DYNAMICS; MOLECULES; STABILITY;

EID: 84937843946     PISSN: 15206106     EISSN: 15205207     Source Type: Journal    
DOI: 10.1021/jp507571u     Document Type: Article
Times cited : (22)

References (88)
  • 1
    • 0017706821 scopus 로고
    • Reversible Thermal Unfolding of Thermostable Phosphoglycerate Kinase. Thermostability Associated With Mean Zero Enthalpy Change
    • Nojima, H.; Ikai, A.; Oshima, T.; Noda, H. Reversible Thermal Unfolding of Thermostable Phosphoglycerate Kinase. Thermostability Associated With Mean Zero Enthalpy Change J. Mol. Biol. 1977, 116, 429-442
    • (1977) J. Mol. Biol. , vol.116 , pp. 429-442
    • Nojima, H.1    Ikai, A.2    Oshima, T.3    Noda, H.4
  • 2
    • 0035098779 scopus 로고    scopus 로고
    • Hyperthermophilic Enzymes: Sources, Uses, and Molecular Mechanisms for Thermostability
    • Vieille, C.; Zeikus, G. J. Hyperthermophilic Enzymes: Sources, Uses, and Molecular Mechanisms for Thermostability Microbiol. Mol. Biol. Rev. 2001, 65, 1-43
    • (2001) Microbiol. Mol. Biol. Rev. , vol.65 , pp. 1-43
    • Vieille, C.1    Zeikus, G.J.2
  • 3
    • 0034855858 scopus 로고    scopus 로고
    • How do Thermophilic Proteins Deal with Heat?
    • Kumar, S.; Nussinov, R. How do Thermophilic Proteins Deal with Heat? Cell. Mol. Life Sci. 2001, 58, 1216-1233
    • (2001) Cell. Mol. Life Sci. , vol.58 , pp. 1216-1233
    • Kumar, S.1    Nussinov, R.2
  • 4
    • 84856833536 scopus 로고    scopus 로고
    • Thermophilic Proteins: Insight and Perspective from In Silico Experiments
    • Sterpone, F.; Melchionna, S. Thermophilic Proteins: Insight and Perspective from In Silico Experiments Chem. Soc. Rev. 2012, 41, 1665-1676
    • (2012) Chem. Soc. Rev. , vol.41 , pp. 1665-1676
    • Sterpone, F.1    Melchionna, S.2
  • 5
    • 0033994586 scopus 로고    scopus 로고
    • Electrostatic Strengths of Salt Bridges in Thermophilic and Mesophilic Glutamate Dehydrogenase Monomers
    • Kumar, S.; Ma, B.; Tsai, C. J.; Nussinov, R. Electrostatic Strengths of Salt Bridges in Thermophilic and Mesophilic Glutamate Dehydrogenase Monomers Proteins 2000, 38, 368-383
    • (2000) Proteins , vol.38 , pp. 368-383
    • Kumar, S.1    Ma, B.2    Tsai, C.J.3    Nussinov, R.4
  • 6
    • 0035448574 scopus 로고    scopus 로고
    • Ion Pairs and the Thermotolerance of Proteins from Hyperthermophiles: A "Traffic Rule" for Hot Roads
    • Karshikoff, A.; Ladenstein, R. Ion Pairs and the Thermotolerance of Proteins from Hyperthermophiles: a "Traffic Rule" for Hot Roads Trends Biochem. Sci. 2001, 26, 550-556
    • (2001) Trends Biochem. Sci. , vol.26 , pp. 550-556
    • Karshikoff, A.1    Ladenstein, R.2
  • 7
    • 79959612799 scopus 로고    scopus 로고
    • Stabilizing Salt-Bridge Enhances Protein Thermostability by Reducing the Heat Capacity Change of Unfolding
    • Chan, C.-H.; Yu, T.-H.; Wong, K.-B. Stabilizing Salt-Bridge Enhances Protein Thermostability by Reducing the Heat Capacity Change of Unfolding PLoS One 2011, 6, e21624
    • (2011) PLoS One , vol.6
    • Chan, C.-H.1    Yu, T.-H.2    Wong, K.-B.3
  • 8
    • 84881266465 scopus 로고    scopus 로고
    • Role of Loops Connecting Secondary Structure Elements in the Stabilization of Proteins Isolated from Thermophilic Organisms
    • Balasco, N.; Esposito, L.; Simone, A. D.; Vitagliano, L. Role of Loops Connecting Secondary Structure Elements in the Stabilization of Proteins Isolated from Thermophilic Organisms Protein Sci. 2013, 22, 1016-1023
    • (2013) Protein Sci. , vol.22 , pp. 1016-1023
    • Balasco, N.1    Esposito, L.2    Simone, A.D.3    Vitagliano, L.4
  • 9
    • 84887752230 scopus 로고    scopus 로고
    • How Conformational Flexibility Stabilizes the Hyperthermophilic Elongation Factor G-Domain
    • Kalimeri, M.; Rahaman, O.; Melchionna, S.; Sterpone, F. How Conformational Flexibility Stabilizes the Hyperthermophilic Elongation Factor G-Domain J. Phys. Chem. B 2013, 117, 13775-13785
    • (2013) J. Phys. Chem. B , vol.117 , pp. 13775-13785
    • Kalimeri, M.1    Rahaman, O.2    Melchionna, S.3    Sterpone, F.4
  • 10
    • 84894666815 scopus 로고    scopus 로고
    • Quality Matters: Extension of Clusters of Residues with Good Hydrophobic Contacts Stabilize (Hyper)Thermophilic Proteins
    • Rathi, P. C.; Höffken, H. W.; Gohlke, H. Quality Matters: Extension of Clusters of Residues with Good Hydrophobic Contacts Stabilize (Hyper)Thermophilic Proteins J. Chem. Inf. Model. 2014, 54, 355-361
    • (2014) J. Chem. Inf. Model. , vol.54 , pp. 355-361
    • Rathi, P.C.1    Höffken, H.W.2    Gohlke, H.3
  • 13
    • 0033603392 scopus 로고    scopus 로고
    • Electrostatic Contributions to the Stability of Hyperthermophilic Proteins
    • Xiao, L.; Honig, B. Electrostatic Contributions to the Stability of Hyperthermophilic Proteins J. Mol. Biol. 1999, 289, 1435-1444
    • (1999) J. Mol. Biol. , vol.289 , pp. 1435-1444
    • Xiao, L.1    Honig, B.2
  • 14
    • 67650340734 scopus 로고    scopus 로고
    • Localized Thermodynamic Coupling between Hydrogen Bonding and Microenvironment Polarity Substantially Stabilizes Proteins
    • Gao, J.; Bosco, D.; Powers, E.; Kelly, J. Localized Thermodynamic Coupling between Hydrogen Bonding and Microenvironment Polarity Substantially Stabilizes Proteins Nat. Struct. Mol. Biol. 2009, 16, 684-691
    • (2009) Nat. Struct. Mol. Biol. , vol.16 , pp. 684-691
    • Gao, J.1    Bosco, D.2    Powers, E.3    Kelly, J.4
  • 15
    • 0036099192 scopus 로고    scopus 로고
    • Experimental pKa Values of Buried Residues: Analysis with Continuum Methods and Role of Water Penetration
    • Fitch, C.; Karp, D.; Lee, K.; Stites, W.; Lattmanand, E. E.; Garcia-Moreno, E. Experimental pKa Values of Buried Residues: Analysis with Continuum Methods and Role of Water Penetration Biophys. J. 2002, 82, 3289-3304
    • (2002) Biophys. J. , vol.82 , pp. 3289-3304
    • Fitch, C.1    Karp, D.2    Lee, K.3    Stites, W.4    Lattmanand, E.E.5    Garcia-Moreno, E.6
  • 16
    • 84857725792 scopus 로고    scopus 로고
    • Effects of High Temperature on Desolvation Costs of Salt Bridges Across Protein Binding Interfaces: Similarities and Differences between Implicit and Explicit Solvent Models
    • Salari, R.; Chong, L. T. Effects of High Temperature on Desolvation Costs of Salt Bridges Across Protein Binding Interfaces: Similarities and Differences between Implicit and Explicit Solvent Models J. Phys. Chem. B 2012, 116, 2561-2567
    • (2012) J. Phys. Chem. B , vol.116 , pp. 2561-2567
    • Salari, R.1    Chong, L.T.2
  • 17
    • 4444362321 scopus 로고    scopus 로고
    • An Electrostatic Basis for the Stability of Thermophilic Proteins
    • Dominy, B. N.; Minoux, H.; Brooks, C. L., 3rd An Electrostatic Basis for the Stability of Thermophilic Proteins Proteins 2004, 57, 128-141
    • (2004) Proteins , vol.57 , pp. 128-141
    • Dominy, B.N.1    Minoux, H.2    Brooks, C.L.3
  • 18
    • 47049084664 scopus 로고    scopus 로고
    • Thermostable Bacillus Subtilis Lipases: In Vitro Evolution and Structural Insight
    • Ahmad, S.; Kamal, M. Z.; Sankaranarayanan, R.; Rao, N. M. Thermostable Bacillus Subtilis Lipases: In Vitro Evolution and Structural Insight J. Mol. Biol. 2008, 381, 324-340
    • (2008) J. Mol. Biol. , vol.381 , pp. 324-340
    • Ahmad, S.1    Kamal, M.Z.2    Sankaranarayanan, R.3    Rao, N.M.4
  • 20
    • 84866847054 scopus 로고    scopus 로고
    • Key Stabilizing Elements of Protein Structure Identified through Pressure and Temperature Perturbation of its Hydrogen Bond Network
    • Nisius, L.; Grzesiek, S. Key Stabilizing Elements of Protein Structure Identified through Pressure and Temperature Perturbation of its Hydrogen Bond Network Nat. Chem. 2012, 4, 711-717
    • (2012) Nat. Chem. , vol.4 , pp. 711-717
    • Nisius, L.1    Grzesiek, S.2
  • 21
    • 33745032291 scopus 로고    scopus 로고
    • Water Mediation in Protein Folding and Molecular Recognition
    • Levy, Y.; Onuchic, J. N. Water Mediation in Protein Folding and Molecular Recognition Annu. Rev. Biophys. Biomol. Struct. 2006, 35, 389-415
    • (2006) Annu. Rev. Biophys. Biomol. Struct. , vol.35 , pp. 389-415
    • Levy, Y.1    Onuchic, J.N.2
  • 22
    • 43049122273 scopus 로고    scopus 로고
    • Water in Nonpolar Confinement: From Nanotubes to Proteins and beyond
    • Rasaiah, J. C.; Garde, S.; Hummer, G. Water in Nonpolar Confinement: from Nanotubes to Proteins and beyond Annu. Rev. Phys. Chem. 2008, 59, 713-740
    • (2008) Annu. Rev. Phys. Chem. , vol.59 , pp. 713-740
    • Rasaiah, J.C.1    Garde, S.2    Hummer, G.3
  • 23
    • 4344602172 scopus 로고    scopus 로고
    • Protein Hydration Dynamics in Solution: A Critical Survey
    • Halle, B. Protein Hydration Dynamics in Solution: a Critical Survey Philos. Trans. R. Soc. London, Ser. B 2004, 359, 1207-1223
    • (2004) Philos. Trans. R. Soc. London, Ser. B , vol.359 , pp. 1207-1223
    • Halle, B.1
  • 24
    • 38849196324 scopus 로고    scopus 로고
    • Water as an Active Constituent in Cell Biology
    • Ball, P. Water as an Active Constituent in Cell Biology Chem. Rev. 2008, 108, 74-108
    • (2008) Chem. Rev. , vol.108 , pp. 74-108
    • Ball, P.1
  • 26
    • 34548633585 scopus 로고    scopus 로고
    • Protein Thermal Stability: The Role of Protein Structure and Aqueous Environment
    • Pechkova, E.; Sivozhelezov, V.; Nicolini, C. Protein Thermal Stability: the Role of Protein Structure and Aqueous Environment Arch. Biochem. Biophys. 2007, 466, 40-48
    • (2007) Arch. Biochem. Biophys. , vol.466 , pp. 40-48
    • Pechkova, E.1    Sivozhelezov, V.2    Nicolini, C.3
  • 28
    • 80054703699 scopus 로고    scopus 로고
    • Comparative Void-Volume Analysis of Psychrophilic and Mesophilic Enzymes: Structural Bioinformatics of Psychrophilic Enzymes Reveals Sources of Core Flexibility
    • Paredes, D.; Watters, K.; Pitman, D.; Bystroff, C.; Dordick, J. Comparative Void-Volume Analysis of Psychrophilic and Mesophilic Enzymes: Structural Bioinformatics of Psychrophilic Enzymes Reveals Sources of Core Flexibility BMC Struct. Biol. 2011, 11, 42
    • (2011) BMC Struct. Biol. , vol.11 , pp. 42
    • Paredes, D.1    Watters, K.2    Pitman, D.3    Bystroff, C.4    Dordick, J.5
  • 30
    • 34250845103 scopus 로고    scopus 로고
    • Metastable Water Clusters in the Nonpolar Cavities of the Thermostable Protein Tetrabrachion
    • Yin, H.; Hummer, G.; Rasaiah, J. C. Metastable Water Clusters in the Nonpolar Cavities of the Thermostable Protein Tetrabrachion J. Am. Chem. Soc. 2007, 129, 7369-7377
    • (2007) J. Am. Chem. Soc. , vol.129 , pp. 7369-7377
    • Yin, H.1    Hummer, G.2    Rasaiah, J.C.3
  • 31
    • 84897652756 scopus 로고    scopus 로고
    • An Experimental Point of View on Hydration/Solvation in Halophilic Proteins
    • Talon, R.; Coquelle, N.; Madern, D.; Girard, E. An Experimental Point of View on Hydration/Solvation in Halophilic Proteins. Front. Microbiol. 2014, 5, 1-8.
    • (2014) Front. Microbiol. , vol.5 , pp. 1-8
    • Talon, R.1    Coquelle, N.2    Madern, D.3    Girard, E.4
  • 32
    • 84858317534 scopus 로고    scopus 로고
    • Hydration Dynamics of a Halophilic Protein in Folded and Unfolded States
    • Qvist, J.; Ortega, G.; Tadeo, X.; Millet, O.; Halle, B. Hydration Dynamics of a Halophilic Protein in Folded and Unfolded States J. Phys. Chem. B 2012, 116, 3436-3444
    • (2012) J. Phys. Chem. B , vol.116 , pp. 3436-3444
    • Qvist, J.1    Ortega, G.2    Tadeo, X.3    Millet, O.4    Halle, B.5
  • 33
    • 33744925655 scopus 로고    scopus 로고
    • Explanation of the Stability of Thermophilic Proteins Based on Unique Micromorphology
    • Melchionna, S.; Sinibaldi, R.; Briganti, G. Explanation of the Stability of Thermophilic Proteins Based on Unique Micromorphology Biophys. J. 2006, 90, 4204-4212
    • (2006) Biophys. J. , vol.90 , pp. 4204-4212
    • Melchionna, S.1    Sinibaldi, R.2    Briganti, G.3
  • 34
    • 77955930229 scopus 로고    scopus 로고
    • Water Around Thermophilic Proteins: The Role of Charged and Apolar Atoms
    • Sterpone, F.; Bertonati, C.; Melchionna, S. Water Around Thermophilic Proteins: The Role of Charged and Apolar Atoms J. Phys.: Condens. Matter 2010, 22, 284113
    • (2010) J. Phys.: Condens. Matter , vol.22
    • Sterpone, F.1    Bertonati, C.2    Melchionna, S.3
  • 35
    • 0032982023 scopus 로고    scopus 로고
    • Crystal Structure of the Beta-Glycosidase from the Hyperthermophile Thermosphaera Aggregans: Insights into its Activity and Thermostability
    • Chi, Y. I.; Martinez-Cruz, L. A.; Jancarik, J.; Swanson, R. V.; Robertson, D. E.; Kim, S. H. Crystal Structure of the Beta-Glycosidase from the Hyperthermophile Thermosphaera Aggregans: Insights into its Activity and Thermostability FEBS Lett. 1999, 445, 375-383
    • (1999) FEBS Lett. , vol.445 , pp. 375-383
    • Chi, Y.I.1    Martinez-Cruz, L.A.2    Jancarik, J.3    Swanson, R.V.4    Robertson, D.E.5    Kim, S.H.6
  • 36
    • 84857817727 scopus 로고    scopus 로고
    • Magnitude and Molecular Origin of Water Slowdown Next to a Protein
    • Sterpone, F.; Stirnemann, G.; Laage, D. Magnitude and Molecular Origin of Water Slowdown Next to a Protein J. Am. Chem. Soc. 2012, 134, 4116-4119
    • (2012) J. Am. Chem. Soc. , vol.134 , pp. 4116-4119
    • Sterpone, F.1    Stirnemann, G.2    Laage, D.3
  • 38
    • 55749086402 scopus 로고    scopus 로고
    • Use of Experimental Crystallographic Phases to Examine the Hydration of Polar and Nonpolar Cavities in T4 Lysozyme
    • Liu, L.; Quillin, M. L.; Matthews, B. W. Use of Experimental Crystallographic Phases to Examine the Hydration of Polar and Nonpolar Cavities in T4 Lysozyme Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 14406-14411
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 14406-14411
    • Liu, L.1    Quillin, M.L.2    Matthews, B.W.3
  • 39
    • 38149026393 scopus 로고    scopus 로고
    • The Structure of the Yeast Plasma Membrane SNARE Complex Reveals Destabilizing Water-Filled Cavities
    • Strop, P.; Kaiser, S. E.; Vrljic, M.; Brunger, A. T. The Structure of the Yeast Plasma Membrane SNARE Complex Reveals Destabilizing Water-Filled Cavities J. Biol. Chem. 2008, 283, 1113-1119
    • (2008) J. Biol. Chem. , vol.283 , pp. 1113-1119
    • Strop, P.1    Kaiser, S.E.2    Vrljic, M.3    Brunger, A.T.4
  • 40
    • 43649085217 scopus 로고    scopus 로고
    • Interactions between Neuronal Fusion Proteins Explored by Molecular Dynamics
    • Durrieu, M.-P.; Lavery, R.; Baaden, M. Interactions between Neuronal Fusion Proteins Explored by Molecular Dynamics Biophys. J. 2008, 94, 3436-3446
    • (2008) Biophys. J. , vol.94 , pp. 3436-3446
    • Durrieu, M.-P.1    Lavery, R.2    Baaden, M.3
  • 41
    • 0027164289 scopus 로고
    • Designed Replacement of an Internal Hydration Water Molecule in BPTI: Structural and Functional Implications of a Glycine-to-Serine Mutation
    • Berndt, K.; Beunink, J.; Schroder, W.; Wuthrich, K. Designed Replacement of an Internal Hydration Water Molecule in BPTI: Structural and Functional Implications of a Glycine-to-Serine Mutation Biochemistry 1993, 32, 4564-4570
    • (1993) Biochemistry , vol.32 , pp. 4564-4570
    • Berndt, K.1    Beunink, J.2    Schroder, W.3    Wuthrich, K.4
  • 42
    • 0028168463 scopus 로고
    • Cavity Mutants of Savinase: Crystal Structures and Differential Scanning Calorimetry Experiments Give Hints of the Function of the Buried Water Molecules in Subtilisins
    • Pedersen, J. T.; Olsen, O. H.; Betzel, C.; Eschenburg, S.; Branner, S.; Hastrup, S. Cavity Mutants of Savinase: Crystal Structures and Differential Scanning Calorimetry Experiments Give Hints of the Function of the Buried Water Molecules in Subtilisins J. Mol. Biol. 1994, 242, 193-202
    • (1994) J. Mol. Biol. , vol.242 , pp. 193-202
    • Pedersen, J.T.1    Olsen, O.H.2    Betzel, C.3    Eschenburg, S.4    Branner, S.5    Hastrup, S.6
  • 43
    • 0030696285 scopus 로고    scopus 로고
    • Contribution of Water Molecules in the Interior of a Protein to the Conformational Stability
    • Takano, K.; Funahashi, J.; Yamagata, Y.; Fujii, S.; Yutani, K. Contribution of Water Molecules in the Interior of a Protein to the Conformational Stability J. Mol. Biol. 1997, 274, 132-142
    • (1997) J. Mol. Biol. , vol.274 , pp. 132-142
    • Takano, K.1    Funahashi, J.2    Yamagata, Y.3    Fujii, S.4    Yutani, K.5
  • 45
    • 0026352064 scopus 로고
    • Stabilization of the Neutral Protease of Bacillus Stearothermophilus by Removal of a Buried Water Molecule
    • Vriend, G.; Berendsen, H.; van der Zee, J.; van den Burg, B.; Venema, G.; Eijsink, V. Stabilization of the Neutral Protease of Bacillus Stearothermophilus by Removal of a Buried Water Molecule Protein Eng. 1991, 4, 941-945
    • (1991) Protein Eng. , vol.4 , pp. 941-945
    • Vriend, G.1    Berendsen, H.2    Van Der Zee, J.3    Van Den Burg, B.4    Venema, G.5    Eijsink, V.6
  • 46
    • 0035059356 scopus 로고    scopus 로고
    • Structural and Thermodynamic Analysis of the Binding of Solvent at Internal Sites in T4 Lysozyme
    • Xu, J.; Baase, W.; Quillin, M.; Baldwin, E.; Matthews, B. Structural and Thermodynamic Analysis of the Binding of Solvent at Internal Sites in T4 Lysozyme Protein Sci. 2001, 10, 1067-1078
    • (2001) Protein Sci. , vol.10 , pp. 1067-1078
    • Xu, J.1    Baase, W.2    Quillin, M.3    Baldwin, E.4    Matthews, B.5
  • 47
    • 0026189146 scopus 로고
    • A Molecular Dynamics Study of Thermodynamic and Structural Aspects of the Hydration of Cavities in Proteins
    • Wade, R. C.; Mazor, M. H.; McCammon, J. A.; Quiocho, F. A. A Molecular Dynamics Study of Thermodynamic and Structural Aspects of the Hydration of Cavities in Proteins Biopolymers 1991, 31, 919-931
    • (1991) Biopolymers , vol.31 , pp. 919-931
    • Wade, R.C.1    Mazor, M.H.2    McCammon, J.A.3    Quiocho, F.A.4
  • 48
    • 0029757992 scopus 로고    scopus 로고
    • Thermodynamic Stability of Water Molecules in the Bacteriorhodopsin Proton Channel: A Molecular Dynamics Free Energy Perturbation Study
    • Roux, B.; Nina, M.; Pomes, R.; Smith, J. Thermodynamic Stability of Water Molecules in the Bacteriorhodopsin Proton Channel: a Molecular Dynamics Free Energy Perturbation Study Biophys. J. 1996, 71, 670-681
    • (1996) Biophys. J. , vol.71 , pp. 670-681
    • Roux, B.1    Nina, M.2    Pomes, R.3    Smith, J.4
  • 49
    • 0035839052 scopus 로고    scopus 로고
    • Dynamics of Hydration in Hen Egg White Lysozyme
    • Sterpone, F.; Ceccarelli, M.; Marchi, M. Dynamics of Hydration in Hen Egg White Lysozyme J. Mol. Biol. 2001, 311, 409-419
    • (2001) J. Mol. Biol. , vol.311 , pp. 409-419
    • Sterpone, F.1    Ceccarelli, M.2    Marchi, M.3
  • 50
    • 3042592839 scopus 로고    scopus 로고
    • Hydration Free Energies and Entropies for Water in Protein Interiors
    • Olano, L. R.; Rick, S. W. Hydration Free Energies and Entropies for Water in Protein Interiors J. Am. Chem. Soc. 2004, 126, 7991-8000
    • (2004) J. Am. Chem. Soc. , vol.126 , pp. 7991-8000
    • Olano, L.R.1    Rick, S.W.2
  • 51
    • 35349013541 scopus 로고    scopus 로고
    • Role of Flexibility and Polarity as Determinants of the Hydration of Internal Cavities and Pockets in Proteins
    • Damjanovi, A.; Schlessman, J.; Fitch, C.; Garcia, A.; Garcia-Moreno, E. Role of Flexibility and Polarity as Determinants of the Hydration of Internal Cavities and Pockets in Proteins Biophys. J. 2007, 93, 2791-2804
    • (2007) Biophys. J. , vol.93 , pp. 2791-2804
    • Damjanovi, A.1    Schlessman, J.2    Fitch, C.3    Garcia, A.4    Garcia-Moreno, E.5
  • 52
    • 84871081593 scopus 로고    scopus 로고
    • Capturing the Energetics of Water Insertion in Biological Systems: The Water Flooding Approach
    • Chakrabarty, S.; Warshel, A. Capturing the Energetics of Water Insertion in Biological Systems: The Water Flooding Approach Proteins 2013, 81, 93-106
    • (2013) Proteins , vol.81 , pp. 93-106
    • Chakrabarty, S.1    Warshel, A.2
  • 53
    • 77953574626 scopus 로고    scopus 로고
    • Molecular Dynamics Free Energy Calculations to Assess the Possibility of Water Existence in Protein Nonpolar Cavities
    • Oikawa, M.; Yonetani, Y. Molecular Dynamics Free Energy Calculations to Assess the Possibility of Water Existence in Protein Nonpolar Cavities Biophys. J. 2010, 98, 2974-2983
    • (2010) Biophys. J. , vol.98 , pp. 2974-2983
    • Oikawa, M.1    Yonetani, Y.2
  • 55
    • 13244260957 scopus 로고    scopus 로고
    • Thermodynamic Properties of Internal Water Molecules in the Hydrophobic Cavity around the Catalytic Center of Cytochrome c Oxidase
    • Tashiro, M.; Stuchebrukhov, A. A. Thermodynamic Properties of Internal Water Molecules in the Hydrophobic Cavity around the Catalytic Center of Cytochrome c Oxidase J. Phys. Chem. B 2005, 109, 1015-1022
    • (2005) J. Phys. Chem. B , vol.109 , pp. 1015-1022
    • Tashiro, M.1    Stuchebrukhov, A.A.2
  • 56
    • 45549107077 scopus 로고    scopus 로고
    • Electrostatic Basis for the Unidirectionality of the Primary Proton Transfer in Cytochrome C Oxidase
    • Pisliakov, A. V.; Sharma, P. K.; Chu, Z. T.; Haranczyk, M.; Warshel, A. Electrostatic Basis for the Unidirectionality of the Primary Proton Transfer in Cytochrome C Oxidase Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 7726-7731
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 7726-7731
    • Pisliakov, A.V.1    Sharma, P.K.2    Chu, Z.T.3    Haranczyk, M.4    Warshel, A.5
  • 58
    • 0029160249 scopus 로고
    • Thermodynamics of Water Mediating Protein-Ligand Interactions in Cytochrome P450cam: A Molecular Dynamics Study
    • Helms, V.; Wade, R. Thermodynamics of Water Mediating Protein-Ligand Interactions in Cytochrome P450cam: a Molecular Dynamics Study Biophys. J. 1995, 69, 810-824
    • (1995) Biophys. J. , vol.69 , pp. 810-824
    • Helms, V.1    Wade, R.2
  • 59
    • 0037533880 scopus 로고    scopus 로고
    • Thermodynamic Contributions of the Ordered Water Molecule in HIV-1 Protease
    • Li, Z.; Lazaridis, T. Thermodynamic Contributions of the Ordered Water Molecule in HIV-1 Protease J. Am. Chem. Soc. 2003, 125, 6636-6637
    • (2003) J. Am. Chem. Soc. , vol.125 , pp. 6636-6637
    • Li, Z.1    Lazaridis, T.2
  • 60
  • 61
  • 62
    • 84861179773 scopus 로고    scopus 로고
    • The Role of Conserved Waters in Conformational Transitions of Q61H K-ras
    • Prakash, P.; Sayyed-Ahmad, A.; Gorfe, A. A. The Role of Conserved Waters in Conformational Transitions of Q61H K-ras PLoS Comput. Biol. 2012, 8, e1002394
    • (2012) PLoS Comput. Biol. , vol.8
    • Prakash, P.1    Sayyed-Ahmad, A.2    Gorfe, A.A.3
  • 63
    • 19644385843 scopus 로고    scopus 로고
    • Prion and Water: Tight and Dynamical Hydration Sites Have a Key Role in Structural Stability
    • De Simone, A.; Dodson, G. G.; Verma, C. S.; Zagari, A.; Fraternali, F. Prion and Water: Tight and Dynamical Hydration Sites Have a Key Role in Structural Stability Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 7535-7540
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 7535-7540
    • De Simone, A.1    Dodson, G.G.2    Verma, C.S.3    Zagari, A.4    Fraternali, F.5
  • 64
    • 0024312593 scopus 로고
    • Structure-function Relationships of Elongation Factor Tu. Isolation and Activity of the Guanine-nucleotide-binding Gomain
    • Jensen, M.; Cool, R.; Mortensen, K.; Clark, B.; Parmeggiani, A. Structure-function Relationships of Elongation Factor Tu. Isolation and Activity of the Guanine-nucleotide-binding Gomain Eur. J. Biochem. 1989, 182, 247-255
    • (1989) Eur. J. Biochem. , vol.182 , pp. 247-255
    • Jensen, M.1    Cool, R.2    Mortensen, K.3    Clark, B.4    Parmeggiani, A.5
  • 66
    • 0033593370 scopus 로고    scopus 로고
    • Crystal Structure of Intact Elongation Factor EF-Tu from Escherichia coli in GDP Conformation at 2.05 Å Resolution
    • Song, H.; Parsons, M. R.; Rowsell, S.; Leonard, G.; Phillips, S. E. Crystal Structure of Intact Elongation Factor EF-Tu from Escherichia coli in GDP Conformation at 2.05 Å Resolution J. Mol. Biol. 1999, 285, 1245-1256
    • (1999) J. Mol. Biol. , vol.285 , pp. 1245-1256
    • Song, H.1    Parsons, M.R.2    Rowsell, S.3    Leonard, G.4    Phillips, S.E.5
  • 67
    • 2542516344 scopus 로고    scopus 로고
    • The Crystal Structure of Sulfolobus Solfataricus Elongation Factor 1a in Complex with Magnesium and GDP
    • Vitagliano, L.; Ruggiero, A.; Masullo, M.; Cantiello, P.; Arcari, P.; Zagari, A. The Crystal Structure of Sulfolobus Solfataricus Elongation Factor 1a in Complex with Magnesium and GDP Biochemistry 2004, 43, 6630-6636
    • (2004) Biochemistry , vol.43 , pp. 6630-6636
    • Vitagliano, L.1    Ruggiero, A.2    Masullo, M.3    Cantiello, P.4    Arcari, P.5    Zagari, A.6
  • 69
    • 3142714765 scopus 로고    scopus 로고
    • Extending the Treatment of Backbone Energetics in Protein Force Fields: Limitations of Gas-phase Quantum Mechanics in Reproducing Protein Conformational Distributions in Molecular Dynamics Simulations
    • MacKerell, A. D.; Feig, M.; Brooks, C. L., III. Extending the Treatment of Backbone Energetics in Protein Force Fields: Limitations of Gas-phase Quantum Mechanics in Reproducing Protein Conformational Distributions in Molecular Dynamics Simulations J. Comput. Chem. 2004, 25, 1400-1415
    • (2004) J. Comput. Chem. , vol.25 , pp. 1400-1415
    • MacKerell, A.D.1    Feig, M.2    Brooks, C.L.3
  • 70
    • 33845551710 scopus 로고
    • Hydration and Mobility of Ions in Solution
    • Impey, R. W.; Madden, P. A.; McDonald, I. R. Hydration and Mobility of Ions in Solution J. Phys. Chem. 1983, 87, 5071-5083
    • (1983) J. Phys. Chem. , vol.87 , pp. 5071-5083
    • Impey, R.W.1    Madden, P.A.2    McDonald, I.R.3
  • 71
    • 0037067102 scopus 로고    scopus 로고
    • Water rotational relaxation and diffusion in hydrated lysozyme
    • Marchi, M.; Sterpone, F.; Ceccarelli, M. Water rotational relaxation and diffusion in hydrated lysozyme J. Am. Chem. Soc. 2002, 124, 6787-6791
    • (2002) J. Am. Chem. Soc. , vol.124 , pp. 6787-6791
    • Marchi, M.1    Sterpone, F.2    Ceccarelli, M.3
  • 73
    • 84889585833 scopus 로고    scopus 로고
    • Using Collective Variables to Drive Molecular Dynamics Simulations
    • Fiorin, G.; Klein, M. L.; Hénin, J. Using Collective Variables to Drive Molecular Dynamics Simulations Mol. Phys. 2013, 111, 3345-3362
    • (2013) Mol. Phys. , vol.111 , pp. 3345-3362
    • Fiorin, G.1    Klein, M.L.2    Hénin, J.3
  • 76
    • 0029994817 scopus 로고    scopus 로고
    • Using Buried Water Molecules to Explore the Energy Landscape of Proteins
    • Denisov, V. P.; Peters, J.; Hörlein, H. D.; Halle, B. Using Buried Water Molecules to Explore the Energy Landscape of Proteins Nat. Struct. Mol. Biol. 1996, 3, 505-509
    • (1996) Nat. Struct. Mol. Biol. , vol.3 , pp. 505-509
    • Denisov, V.P.1    Peters, J.2    Hörlein, H.D.3    Halle, B.4
  • 77
    • 0034651984 scopus 로고    scopus 로고
    • Water Penetration and Escape in Proteins
    • Garcia, A. E.; Hummer, G. Water Penetration and Escape in Proteins Proteins 2000, 38, 261-272
    • (2000) Proteins , vol.38 , pp. 261-272
    • Garcia, A.E.1    Hummer, G.2
  • 78
    • 84878943828 scopus 로고    scopus 로고
    • Transient Access to the Protein Interior: Simulation versus NMR
    • Persson, F.; Halle, B. Transient Access to the Protein Interior: Simulation versus NMR J. Am. Chem. Soc. 2013, 135, 8735-8748
    • (2013) J. Am. Chem. Soc. , vol.135 , pp. 8735-8748
    • Persson, F.1    Halle, B.2
  • 79
    • 55549086517 scopus 로고    scopus 로고
    • Dynamics at the Protein-Water Interface from 17O Spin Relaxation in Deeply Supercooled Solutions
    • Mattea, C.; Qvist, J.; Halle, B. Dynamics at the Protein-Water Interface from 17O Spin Relaxation in Deeply Supercooled Solutions Biophys. J. 2008, 95, 2951-2963
    • (2008) Biophys. J. , vol.95 , pp. 2951-2963
    • Mattea, C.1    Qvist, J.2    Halle, B.3
  • 80
    • 68049136129 scopus 로고    scopus 로고
    • The Role of Conserved Water Molecules in the Catalytic Domain of Protein Kinases
    • Knight, J. D. R.; Hamelberg, D.; McCammon, J. A.; Kothary, R. The Role of Conserved Water Molecules in the Catalytic Domain of Protein Kinases Proteins 2009, 76, 527-535
    • (2009) Proteins , vol.76 , pp. 527-535
    • Knight, J.D.R.1    Hamelberg, D.2    McCammon, J.A.3    Kothary, R.4
  • 81
    • 33745726737 scopus 로고    scopus 로고
    • Lessons in Stability from Thermophilic Proteins
    • Razvi, A.; Scholtz, J. M. Lessons in Stability from Thermophilic Proteins Protein Sci. 2006, 15, 1569-1578
    • (2006) Protein Sci. , vol.15 , pp. 1569-1578
    • Razvi, A.1    Scholtz, J.M.2
  • 82
    • 84898038119 scopus 로고    scopus 로고
    • The stability of Taq DNA Polymerase Results from a Reduced Entropic Folding Penalty; Identification of other Thermophilic Proteins with Similar Folding Thermodynamics
    • Liu, C.-C.; LiCata, V. J. The stability of Taq DNA Polymerase Results from a Reduced Entropic Folding Penalty; Identification of other Thermophilic Proteins with Similar Folding Thermodynamics Proteins 2014, 82, 785-793
    • (2014) Proteins , vol.82 , pp. 785-793
    • Liu, C.-C.1    LiCata, V.J.2
  • 84
    • 0035980242 scopus 로고    scopus 로고
    • Thermodynamic Basis for the Increased Thermostability of CheY from the Hyperthermophile Thermotoga Maritima
    • Deutschman, W. A.; Dahlquist, F. W. Thermodynamic Basis for the Increased Thermostability of CheY from the Hyperthermophile Thermotoga Maritima Biochemistry 2001, 40, 13107-13113
    • (2001) Biochemistry , vol.40 , pp. 13107-13113
    • Deutschman, W.A.1    Dahlquist, F.W.2
  • 85
    • 84881477817 scopus 로고    scopus 로고
    • Does Water Drive Protein Folding?
    • Maruyama, Y.; Harano, Y. Does Water Drive Protein Folding? Chem. Phys. Lett. 2013, 581, 85-90
    • (2013) Chem. Phys. Lett. , vol.581 , pp. 85-90
    • Maruyama, Y.1    Harano, Y.2
  • 86
    • 84900531692 scopus 로고    scopus 로고
    • Protein Folding Thermodynamics: A New Computational Approach
    • Chong, S.-H.; Ham, S. Protein Folding Thermodynamics: A New Computational Approach J. Phys. Chem. B 2014, 118, 5017-5025
    • (2014) J. Phys. Chem. B , vol.118 , pp. 5017-5025
    • Chong, S.-H.1    Ham, S.2
  • 87
    • 34547485422 scopus 로고    scopus 로고
    • How Protein Surfaces Induce Anomalous Dynamics of Hydration Water
    • Pizzitutti, F.; Marchi, M.; Sterpone, F.; Rossky, P. J. How Protein Surfaces Induce Anomalous Dynamics of Hydration Water J. Phys. Chem. B 2007, 111, 7584-7590
    • (2007) J. Phys. Chem. B , vol.111 , pp. 7584-7590
    • Pizzitutti, F.1    Marchi, M.2    Sterpone, F.3    Rossky, P.J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.