-
1
-
-
0014958182
-
Stereochemistry of cooperative effects in haemoglobin
-
Perutz MF. Stereochemistry of cooperative effects in haemoglobin. Nature 1970;228:726-739.
-
(1970)
Nature
, vol.228
, pp. 726-739
-
-
Perutz, M.F.1
-
3
-
-
0029588555
-
Complex salt bridges in proteins: Statistical analysis of structure and function
-
Musafia B, Buchner V, Arad D. Complex salt bridges in proteins: statistical analysis of structure and function. J Mol Biol 1995;254: 761-770.
-
(1995)
J Mol Biol
, vol.254
, pp. 761-770
-
-
Musafia, B.1
Buchner, V.2
Arad, D.3
-
4
-
-
0031450506
-
Hydrogen bonds and salt bridges across protein-protein interfaces
-
Xu D, Tsai CJ, Nussinov R. Hydrogen bonds and salt bridges across protein-protein interfaces. Protein Eng 1997a;10:999-1012.
-
(1997)
Protein Eng
, vol.10
, pp. 999-1012
-
-
Xu, D.1
Tsai, C.J.2
Nussinov, R.3
-
5
-
-
0031561809
-
Protein binding versus protein folding: The role of hydrophilic bridges in protein associations
-
Xu D, Lin SL, Nussinov R. Protein binding versus protein folding: the role of hydrophilic bridges in protein associations. J Mol Biol 1997b;265:68-84.
-
(1997)
J Mol Biol
, vol.265
, pp. 68-84
-
-
Xu, D.1
Lin, S.L.2
Nussinov, R.3
-
6
-
-
0026587310
-
Co-operative interactions during protein folding
-
Horovitz A, Fersht AR. Co-operative interactions during protein folding. J Mol Biol 1992;224:733-740.
-
(1992)
J Mol Biol
, vol.224
, pp. 733-740
-
-
Horovitz, A.1
Fersht, A.R.2
-
7
-
-
0028574137
-
Contribution of a hydrogen bond/salt bridge network to the stability of secondary and tertiary structures in lambda repressor
-
Marqusee S, Sauer RT. Contribution of a hydrogen bond/salt bridge network to the stability of secondary and tertiary structures in lambda repressor. Protein Sci 1994;3:2217-2225.
-
(1994)
Protein Sci
, vol.3
, pp. 2217-2225
-
-
Marqusee, S.1
Sauer, R.T.2
-
8
-
-
0030596082
-
Structural role of a buried salt bridge in the 434 repressor DNA-binding domain
-
Pervushin K, Billeter M, Siegal G, Wuthrich K. Structural role of a buried salt bridge in the 434 repressor DNA-binding domain. J Mol Biol 1996;264:1002-1012.
-
(1996)
J Mol Biol
, vol.264
, pp. 1002-1012
-
-
Pervushin, K.1
Billeter, M.2
Siegal, G.3
Wuthrich, K.4
-
9
-
-
0030917740
-
Exceptionally stable salt bridges in cytochrome P450cam have functional roles
-
Lounnas V, Wade RC. Exceptionally stable salt bridges in cytochrome P450cam have functional roles. Biochemistry 1997;36: 5402-5417.
-
(1997)
Biochemistry
, vol.36
, pp. 5402-5417
-
-
Lounnas, V.1
Wade, R.C.2
-
10
-
-
0024026370
-
Probing the salt bridge in the dihydrofolate reductase-methotrexate complex by using the coordinate-coupled free energy perturbation method
-
Singh UC. Probing the salt bridge in the dihydrofolate reductase-methotrexate complex by using the coordinate-coupled free energy perturbation method. Proc Natl Acad Sci USA 1988;85: 4280-4284.
-
(1988)
Proc Natl Acad Sci USA
, vol.85
, pp. 4280-4284
-
-
Singh, U.C.1
-
11
-
-
0025093185
-
Estimating the contribution of engineered surface electrostatic interactions to protein stability by using double mutant cycles
-
Serrano L, Horovitz A, Avron B, Bycroft M, Fersht AR. Estimating the contribution of engineered surface electrostatic interactions to protein stability by using double mutant cycles. Biochemistry 1990;29:9343-9352.
-
(1990)
Biochemistry
, vol.29
, pp. 9343-9352
-
-
Serrano, L.1
Horovitz, A.2
Avron, B.3
Bycroft, M.4
Fersht, A.R.5
-
12
-
-
84962348955
-
Salt bridge Interactions: Stability of ionic and neutral complexes in the gas phase, in solution and in proteins
-
Barril X, Aleman C, Orozco M, Luque FJ. Salt bridge Interactions: stability of ionic and neutral complexes in the gas phase, in solution and in proteins. Proteins 1998;32:67-79.
-
(1998)
Proteins
, vol.32
, pp. 67-79
-
-
Barril, X.1
Aleman, C.2
Orozco, M.3
Luque, F.J.4
-
13
-
-
0025718955
-
Contributions of engineered surface salt bridges to the stability of T4 lysozyme determined by directed mutagenesis
-
Sun DP, Sauer U, Nicholson H, Matthews BW. Contributions of engineered surface salt bridges to the stability of T4 lysozyme determined by directed mutagenesis. Biochemistry 1991;30: 7142-7153.
-
(1991)
Biochemistry
, vol.30
, pp. 7142-7153
-
-
Sun, D.P.1
Sauer, U.2
Nicholson, H.3
Matthews, B.W.4
-
14
-
-
0026345864
-
Structural and thermodynamic consequences of burying a charged residue within the hydrophobic core of T4 lysozvme
-
Dao-pin S, Anderson DE, Baase WA, Dahlquist FW, Matthews BW. Structural and thermodynamic consequences of burying a charged residue within the hydrophobic core of T4 lysozvme. Biochemistry 1991;30:11521-11529.
-
(1991)
Biochemistry
, vol.30
, pp. 11521-11529
-
-
Dao-Pin, S.1
Anderson, D.E.2
Baase, W.A.3
Dahlquist, F.W.4
Matthews, B.W.5
-
15
-
-
0028204490
-
Do salt bridges stabilize proteins? A continuum electrostatic analysis
-
Hendsch ZS, Tidor B. Do salt bridges stabilize proteins? A continuum electrostatic analysis. Protein Sci 1994;3:211-226.
-
(1994)
Protein Sci
, vol.3
, pp. 211-226
-
-
Hendsch, Z.S.1
Tidor, B.2
-
16
-
-
0029564595
-
Are buried salt bridges important for protein stability and conformational specificity?
-
Waldburger CD, Schildbach JF, Sauer RT. Are buried salt bridges important for protein stability and conformational specificity? Nat Struct Biol 1995;2:122-128.
-
(1995)
Nat Struct Biol
, vol.2
, pp. 122-128
-
-
Waldburger, C.D.1
Schildbach, J.F.2
Sauer, R.T.3
-
17
-
-
0029966342
-
Barriers to protein folding: Formation of buried polar interactions is a slow step in acquisition of structure
-
Waldburger CD, Jonsson T, Sauer RT. Barriers to protein folding: formation of buried polar interactions is a slow step in acquisition of structure. Biochemistry 1996;93:2629-2634.
-
(1996)
Biochemistry
, vol.93
, pp. 2629-2634
-
-
Waldburger, C.D.1
Jonsson, T.2
Sauer, R.T.3
-
18
-
-
0000176654
-
Stability of "salt bridges" in membrane proteins
-
Honig BH, Hubell WL. Stability of "salt bridges" in membrane proteins. Proc Natl Acad Sci USA 1984;81:5412-5416.
-
(1984)
Proc Natl Acad Sci USA
, vol.81
, pp. 5412-5416
-
-
Honig, B.H.1
Hubell, W.L.2
-
19
-
-
0029932580
-
Analysis of protein conformational characteristics related to thermostability
-
Querol E, Perez-Pons JA, Mozo-Villarias A. Analysis of protein conformational characteristics related to thermostability. Protein Eng 996;9:256-271.
-
(1996)
Protein Eng
, vol.9
, pp. 256-271
-
-
Querol, E.1
Perez-Pons, J.A.2
Mozo-Villarias, A.3
-
21
-
-
13244249836
-
The structure of Pyrococcus furiosus glutamate dehydrogenase reveals a key role for ion-pair networks in maintaining enzyme stability at extreme temperatures
-
Yip KSP, Stillman TJ, Britton KL, et al. The structure of Pyrococcus furiosus glutamate dehydrogenase reveals a key role for ion-pair networks in maintaining enzyme stability at extreme temperatures. Structure 1995;3:1147-1158.
-
(1995)
Structure
, vol.3
, pp. 1147-1158
-
-
Yip, K.S.P.1
Stillman, T.J.2
Britton, K.L.3
-
22
-
-
0031273621
-
Continuum solvation model for studying protein hydration thermodynamics at high temperatures
-
Elcock AH, McCammon JA. Continuum solvation model for studying protein hydration thermodynamics at high temperatures. J Phys Chem B 1997;101:9624-9634.
-
(1997)
J Phys Chem B
, vol.101
, pp. 9624-9634
-
-
Elcock, A.H.1
McCammon, J.A.2
-
23
-
-
0032573431
-
The stability of salt bridges at high temperatures: Implications for hyperthermophilic proteins
-
Elcock AH. The stability of salt bridges at high temperatures: implications for hyperthermophilic proteins. J Mol Biol 1998;284: 489-502.
-
(1998)
J Mol Biol
, vol.284
, pp. 489-502
-
-
Elcock, A.H.1
-
24
-
-
0033603392
-
Electrostatic contributions to the stability of hyperthermophilic proteins
-
Xiao L, Honig B. Electrostatic contributions to the stability of hyperthermophilic proteins. J Mol Biol 1999;289:1435-1444.
-
(1999)
J Mol Biol
, vol.289
, pp. 1435-1444
-
-
Xiao, L.1
Honig, B.2
-
25
-
-
0032528267
-
Insights into the molecular basis of thermal stability from the analysis of ion pair networks in the glutamate dehydrogenase family
-
Yip KSP, Britton KL, Stillman TJ, et al. Insights into the molecular basis of thermal stability from the analysis of ion pair networks in the glutamate dehydrogenase family. Eur J Biochem 1998;255:336-346.
-
(1998)
Eur J Biochem
, vol.255
, pp. 336-346
-
-
Yip, K.S.P.1
Britton, K.L.2
Stillman, T.J.3
-
26
-
-
0026589218
-
Characterization of an extremely thermostable glutamate dehydrogenase: A key enzyme in the primary metabolism of hyperthermophilic archaebacterium Pyrococcus furiosus
-
Robb FT, Park JB, Adams MWW. Characterization of an extremely thermostable glutamate dehydrogenase: a key enzyme in the primary metabolism of hyperthermophilic archaebacterium Pyrococcus furiosus. Biochim Biophys Acta 1992;1120:267-272.
-
(1992)
Biochim Biophys Acta
, vol.1120
, pp. 267-272
-
-
Robb, F.T.1
Park, J.B.2
Adams, M.W.W.3
-
27
-
-
0026566944
-
Glutamate dehydrogenase from the hyperthermophile Pyrococcus furiosus. Thermal denaturation and activation
-
1992
-
Klump H, DiRuggiero J, Kessel M, Park JB, Adams MWW, Robb FT. 1992. Glutamate dehydrogenase from the hyperthermophile Pyrococcus furiosus. Thermal denaturation and activation. J Biol Chem 1992;267:22681-22685.
-
(1992)
J Biol Chem
, vol.267
, pp. 22681-22685
-
-
Klump, H.1
Diruggiero, J.2
Kessel, M.3
Park, J.B.4
Adams, M.W.W.5
Robb, F.T.6
-
28
-
-
0026557303
-
Subunit assembly and active site location in the structure of glutamate dehydrogenase
-
Baker PJ, Britton LK, Engel PC, et al. Subunit assembly and active site location in the structure of glutamate dehydrogenase. Proteins 1992;12:75-86.
-
(1992)
Proteins
, vol.12
, pp. 75-86
-
-
Baker, P.J.1
Britton, L.K.2
Engel, P.C.3
-
29
-
-
0027769953
-
Conformational flexibility in glutamate dehydrogenase. Role of water in substrate recognition and catalysis
-
Stillman TJ, Baker PJ, Britton LK, Rice DW. Conformational flexibility in glutamate dehydrogenase. Role of water in substrate recognition and catalysis. J Mol Biol 1993;234:1131-1139.
-
(1993)
J Mol Biol
, vol.234
, pp. 1131-1139
-
-
Stillman, T.J.1
Baker, P.J.2
Britton, L.K.3
Rice, D.W.4
-
30
-
-
0017411710
-
The protein data bank: A computer based archival file for macromolecular structures
-
Bernstein F, Koetzle T, Williams G, et al. The Protein data bank: a computer based archival file for macromolecular structures. J Mol Biol 1977;112:535-542.
-
(1977)
J Mol Biol
, vol.112
, pp. 535-542
-
-
Bernstein, F.1
Koetzle, T.2
Williams, G.3
-
31
-
-
0015222647
-
The interpretation of protein structures. Estimation of static accessibility
-
Lee BK, Richards FM. The interpretation of protein structures. Estimation of static accessibility. J Mol Biol 1971;55:379-400.
-
(1971)
J Mol Biol
, vol.55
, pp. 379-400
-
-
Lee, B.K.1
Richards, F.M.2
-
32
-
-
0031012563
-
Hydrophobic folding units derived from dissimilar monomer structures and their interactions
-
Tsai CJ, Nussinov R. Hydrophobic folding units derived from dissimilar monomer structures and their interactions. Protein Sci 1997;6:24-42.
-
(1997)
Protein Sci
, vol.6
, pp. 24-42
-
-
Tsai, C.J.1
Nussinov, R.2
-
33
-
-
0021813940
-
On the calculation of electrostatic interactions in proteins
-
Gilson MK, Rashin A, Fine R, Honig B. On the calculation of electrostatic interactions in proteins. J Mol Biol 1985;183:503-516.
-
(1985)
J Mol Biol
, vol.183
, pp. 503-516
-
-
Gilson, M.K.1
Rashin, A.2
Fine, R.3
Honig, B.4
-
34
-
-
84988087911
-
Calculating the electrostatic potential of molecules in solution: Method and error assessment
-
Gilson MK, Sharp KA, Honig BH. Calculating the electrostatic potential of molecules in solution: method and error assessment. J Comp Chem 1988;9:327-335.
-
(1988)
J Comp Chem
, vol.9
, pp. 327-335
-
-
Gilson, M.K.1
Sharp, K.A.2
Honig, B.H.3
-
35
-
-
0023779259
-
Calculation of the total electrostatic energy of a macromolecular system: Solvation energies, binding energies, and conformational analysis
-
Gilson MK, Honig BH. Calculation of the total electrostatic energy of a macromolecular system: Solvation energies, binding energies, and conformational analysis. Proteins 1988;4:7-18.
-
(1988)
Proteins
, vol.4
, pp. 7-18
-
-
Gilson, M.K.1
Honig, B.H.2
-
36
-
-
0025283002
-
Electrostatic interactions in macromolecules: Theory and applications
-
Sharp KA, Honig B. Electrostatic interactions in macromolecules: theory and applications. Annu Rev Biophys Biophys Chem 1990; 19:301-332.
-
(1990)
Annu Rev Biophys Biophys Chem
, vol.19
, pp. 301-332
-
-
Sharp, K.A.1
Honig, B.2
-
37
-
-
33751385054
-
Macroscopic models of aqueous solutions: Biological and chemical applications
-
Honig B, Sharp K, Yang A. Macroscopic models of aqueous solutions: biological and chemical applications. J Phys Chem 1993;97:1101-1109.
-
(1993)
J Phys Chem
, vol.97
, pp. 1101-1109
-
-
Honig, B.1
Sharp, K.2
Yang, A.3
-
38
-
-
32844457567
-
Accurate calculation of hydration free energies using macroscopic solvent models
-
Sitkoff D, Sharp KA, Honig B. Accurate calculation of hydration free energies using macroscopic solvent models. J Phys Chem 1994;98:1978-1988.
-
(1994)
J Phys Chem
, vol.98
, pp. 1978-1988
-
-
Sitkoff, D.1
Sharp, K.A.2
Honig, B.3
-
39
-
-
33845280446
-
Comparing the polarities of the amino acids: Side chain distribution coefficients between the vapor phase, cyclohexane, 1-octanol and neutral aqueous solution
-
Radzicka A, Wolfenden R. Comparing the polarities of the amino acids: side chain distribution coefficients between the vapor phase, cyclohexane, 1-octanol and neutral aqueous solution. Biochemistry 1988;27:1664-1670.
-
(1988)
Biochemistry
, vol.27
, pp. 1664-1670
-
-
Radzicka, A.1
Wolfenden, R.2
-
40
-
-
0023280069
-
Calculation of electrostatic potential in an enzyme active site
-
Gilson MK, Honig BH. Calculation of electrostatic potential in an enzyme active site. Nature 1987;330:84-86.
-
(1987)
Nature
, vol.330
, pp. 84-86
-
-
Gilson, M.K.1
Honig, B.H.2
-
41
-
-
0022964504
-
Focusing of electric fields in the active site of Cu-Zn superoxide dismutase: Effects ionic strength and amino acid modification
-
Klapper I, Hagstrom R, Fine R, Sharp K, Honig B. Focusing of electric fields in the active site of Cu-Zn Superoxide dismutase: effects ionic strength and amino acid modification. Proteins 1986;1:47-59.
-
(1986)
Proteins
, vol.1
, pp. 47-59
-
-
Klapper, I.1
Hagstrom, R.2
Fine, R.3
Sharp, K.4
Honig, B.5
-
43
-
-
0030602896
-
A dataset of protein-protein interfaces generated with a sequence order independent comparison technique
-
Tsai CJ, Lin SL, Wolfson H, Nussinov R. A dataset of protein-protein interfaces generated with a sequence order independent comparison technique. J Mol Biol 1996;260:604-620.
-
(1996)
J Mol Biol
, vol.260
, pp. 604-620
-
-
Tsai, C.J.1
Lin, S.L.2
Wolfson, H.3
Nussinov, R.4
-
44
-
-
0344609869
-
Molecular dynamics simulations of the hyperthermophilic protein Sac7d from Sulfolobus acidocaldarius: Contribution of salt bridges to thermostability
-
deBakker PIW, Hunenberger PH, McCammon JA. Molecular dynamics simulations of the hyperthermophilic protein Sac7d from Sulfolobus acidocaldarius: contribution of salt bridges to thermostability. J Mol Biol 1999;285:1811-1830.
-
(1999)
J Mol Biol
, vol.285
, pp. 1811-1830
-
-
DeBakker, P.I.W.1
Hunenberger, P.H.2
McCammon, J.A.3
-
45
-
-
0001348705
-
Parameter dependence in continuum electrostatic calculations: A study using salt bridges
-
Hendsch ZS, Sindelar CV, Tidor B. Parameter dependence in continuum electrostatic calculations: a study using salt bridges. J Phys Chem B 1998;102:4404-4410.
-
(1998)
J Phys Chem B
, vol.102
, pp. 4404-4410
-
-
Hendsch, Z.S.1
Sindelar, C.V.2
Tidor, B.3
-
46
-
-
0031003188
-
Contribution of a salt bridge to the thermostability of DNA binding protein HU from Bacillus stearothermophilus determined by site directed mutagenesis
-
Kawamura S, Tanaka I, Kimura M. Contribution of a salt bridge to the thermostability of DNA binding protein HU from Bacillus stearothermophilus determined by site directed mutagenesis. J Biochem 1997;121:448-455.
-
(1997)
J Biochem
, vol.121
, pp. 448-455
-
-
Kawamura, S.1
Tanaka, I.2
Kimura, M.3
-
47
-
-
0033550299
-
Salt bridge stability in monomeric proteins
-
Kumar S, Nussinov R. Salt bridge stability in monomeric proteins. J Mol Biol 1999;293:1241-1255.
-
(1999)
J Mol Biol
, vol.293
, pp. 1241-1255
-
-
Kumar, S.1
Nussinov, R.2
|