-
1
-
-
84892805789
-
Recruitment and retention: factors that affect pericyte migration
-
COI: 1:CAS:528:DC%2BC3sXht1WhtL3E, PID: 23912898
-
Aguilera, K. Y., and R. A. Brekken. Recruitment and retention: factors that affect pericyte migration. Cell. Mol. Life Sci. 71:299–309, 2014.
-
(2014)
Cell. Mol. Life Sci.
, vol.71
, pp. 299-309
-
-
Aguilera, K.Y.1
Brekken, R.A.2
-
2
-
-
0035761416
-
Response to hypoxia involves transforming growth factor-beta2 and smad proteins in human endothelial cells
-
COI: 1:CAS:528:DC%2BD3MXovVSgsL0%3D, PID: 11719370
-
Akman, H. O., H. Zhang, M. A. Siddiqui, W. Solomon, E. L. Smith, and O. A. Batuman. Response to hypoxia involves transforming growth factor-beta2 and smad proteins in human endothelial cells. Blood 98:3324–3331, 2001.
-
(2001)
Blood
, vol.98
, pp. 3324-3331
-
-
Akman, H.O.1
Zhang, H.2
Siddiqui, M.A.3
Solomon, W.4
Smith, E.L.5
Batuman, O.A.6
-
3
-
-
25444463573
-
Endothelial/pericyte interactions
-
COI: 1:CAS:528:DC%2BD2MXpvFGrtLg%3D, PID: 16166562
-
Armulik, A., A. Abramsson, and C. Betsholtz. Endothelial/pericyte interactions. Circ. Res. 97:512–523, 2005.
-
(2005)
Circ. Res.
, vol.97
, pp. 512-523
-
-
Armulik, A.1
Abramsson, A.2
Betsholtz, C.3
-
4
-
-
0031019745
-
Isolation of putative progenitor endothelial cells for angiogenesis
-
COI: 1:CAS:528:DyaK2sXht1Clu7k%3D, PID: 9020076
-
Asahara, T., T. Murohara, A. Sullivan, M. Silver, R. van der Zee, T. Li, B. Witzenbichler, G. Schatteman, and J. M. Isner. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967, 1997.
-
(1997)
Science
, vol.275
, pp. 964-967
-
-
Asahara, T.1
Murohara, T.2
Sullivan, A.3
Silver, M.4
van der Zee, R.5
Li, T.6
Witzenbichler, B.7
Schatteman, G.8
Isner, J.M.9
-
5
-
-
33646706801
-
Differential healing activities of CD34+ and CD14+ endothelial cell progenitors
-
COI: 1:CAS:528:DC%2BD28XitlKmtrw%3D, PID: 16410458
-
Awad, O., E. I. Dedkov, C. Jiao, S. Bloomer, R. J. Tomanek, and G. C. Schatteman. Differential healing activities of CD34+ and CD14+ endothelial cell progenitors. Arterioscler. Thromb. Vasc. Biol. 26:758–764, 2006.
-
(2006)
Arterioscler. Thromb. Vasc. Biol.
, vol.26
, pp. 758-764
-
-
Awad, O.1
Dedkov, E.I.2
Jiao, C.3
Bloomer, S.4
Tomanek, R.J.5
Schatteman, G.C.6
-
6
-
-
84901490360
-
The role of endothelial progenitor cells in postnatal vasculogenesis: implications for therapeutic neovascularization and wound healing
-
Balaji, S., A. King, T. M. Crombleholme, and S. G. Keswani. The role of endothelial progenitor cells in postnatal vasculogenesis: implications for therapeutic neovascularization and wound healing. Adv. Wound Care (New Rochelle) 2:283–295, 2013.
-
(2013)
Adv. Wound Care (New Rochelle)
, vol.2
, pp. 283-295
-
-
Balaji, S.1
King, A.2
Crombleholme, T.M.3
Keswani, S.G.4
-
7
-
-
84858797742
-
Inducing healing-like human primary macrophage phenotypes by 3d hydrogel coated nanofibres
-
COI: 1:CAS:528:DC%2BC38Xjslemt7Y%3D, PID: 22417617
-
Bartneck, M., K. H. Heffels, Y. Pan, M. Bovi, G. Zwadlo-Klarwasser, and J. Groll. Inducing healing-like human primary macrophage phenotypes by 3d hydrogel coated nanofibres. Biomaterials 33:4136–4146, 2012.
-
(2012)
Biomaterials
, vol.33
, pp. 4136-4146
-
-
Bartneck, M.1
Heffels, K.H.2
Pan, Y.3
Bovi, M.4
Zwadlo-Klarwasser, G.5
Groll, J.6
-
8
-
-
84887521005
-
Circulating and tissue resident endothelial progenitor cells
-
COI: 1:CAS:528:DC%2BC3sXhsFalurbE, PID: 23794280
-
Basile, D. P., and M. C. Yoder. Circulating and tissue resident endothelial progenitor cells. J. Cell. Physiol. 229:10–16, 2014.
-
(2014)
J. Cell. Physiol.
, vol.229
, pp. 10-16
-
-
Basile, D.P.1
Yoder, M.C.2
-
9
-
-
0036479785
-
Neutrophils as a key cellular target for angiostatin: implications for regulation of angiogenesis and inflammation
-
COI: 1:CAS:528:DC%2BD38XhsVCjsb4%3D, PID: 11772950
-
Benelli, R., M. Morini, F. Carrozzino, N. Ferrari, S. Minghelli, L. Santi, M. Cassatella, D. M. Noonan, and A. Albini. Neutrophils as a key cellular target for angiostatin: implications for regulation of angiogenesis and inflammation. FASEB J. 16:267–269, 2002.
-
(2002)
FASEB J.
, vol.16
, pp. 267-269
-
-
Benelli, R.1
Morini, M.2
Carrozzino, F.3
Ferrari, N.4
Minghelli, S.5
Santi, L.6
Cassatella, M.7
Noonan, D.M.8
Albini, A.9
-
10
-
-
79251479406
-
Wound macrophages as key regulators of repair: origin, phenotype, and function
-
COI: 1:CAS:528:DC%2BC3MXitFCqu7Y%3D, PID: 21224038
-
Brancato, S. K., and J. E. Albina. Wound macrophages as key regulators of repair: origin, phenotype, and function. Am. J. Pathol. 178:19–25, 2011.
-
(2011)
Am. J. Pathol.
, vol.178
, pp. 19-25
-
-
Brancato, S.K.1
Albina, J.E.2
-
11
-
-
84856530367
-
Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials
-
COI: 1:CAS:528:DC%2BC38XhvFKltLc%3D, PID: 22166681
-
Brown, B. N., R. Londono, S. Tottey, L. Zhang, K. A. Kukla, M. T. Wolf, K. A. Daly, J. E. Reing, and S. F. Badylak. Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials. Acta Biomater. 8:978–987, 2012.
-
(2012)
Acta Biomater.
, vol.8
, pp. 978-987
-
-
Brown, B.N.1
Londono, R.2
Tottey, S.3
Zhang, L.4
Kukla, K.A.5
Wolf, M.T.6
Daly, K.A.7
Reing, J.E.8
Badylak, S.F.9
-
12
-
-
84865206466
-
Cotransplantation of adipose-derived mesenchymal stromal cells and endothelial cells in a modular construct drives vascularization in SCID/bg mice
-
COI: 1:CAS:528:DC%2BC38Xht1alur3F, PID: 22655687
-
Butler, M. J., and M. V. Sefton. Cotransplantation of adipose-derived mesenchymal stromal cells and endothelial cells in a modular construct drives vascularization in SCID/bg mice. Tissue Eng. Part A 18:1628–1641, 2012.
-
(2012)
Tissue Eng. Part A
, vol.18
, pp. 1628-1641
-
-
Butler, M.J.1
Sefton, M.V.2
-
13
-
-
0034648765
-
Angiogenesis in cancer and other diseases
-
COI: 1:CAS:528:DC%2BD3cXmvVSls74%3D, PID: 11001068
-
Carmeliet, P., and R. K. Jain. Angiogenesis in cancer and other diseases. Nature 407:249–257, 2000.
-
(2000)
Nature
, vol.407
, pp. 249-257
-
-
Carmeliet, P.1
Jain, R.K.2
-
14
-
-
4043184065
-
Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1
-
COI: 1:CAS:528:DC%2BD2cXmtFWrtr0%3D, PID: 15235597
-
Ceradini, D. J., A. R. Kulkarni, M. J. Callaghan, O. M. Tepper, N. Bastidas, M. E. Kleinman, J. M. Capla, R. D. Galiano, J. P. Levine, and G. C. Gurtner. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat. Med. 10:858–864, 2004.
-
(2004)
Nat. Med.
, vol.10
, pp. 858-864
-
-
Ceradini, D.J.1
Kulkarni, A.R.2
Callaghan, M.J.3
Tepper, O.M.4
Bastidas, N.5
Kleinman, M.E.6
Capla, J.M.7
Galiano, R.D.8
Levine, J.P.9
Gurtner, G.C.10
-
15
-
-
78650894760
-
Chimeric vessel tissue engineering driven by endothelialized modules in immunosuppressed sprague-dawley rats
-
COI: 1:CAS:528:DC%2BC3MXhvVCrtg%3D%3D, PID: 20695789
-
Chamberlain, M. D., R. Gupta, and M. V. Sefton. Chimeric vessel tissue engineering driven by endothelialized modules in immunosuppressed sprague-dawley rats. Tissue Eng. Part A 17:151–160, 2011.
-
(2011)
Tissue Eng. Part A
, vol.17
, pp. 151-160
-
-
Chamberlain, M.D.1
Gupta, R.2
Sefton, M.V.3
-
16
-
-
84856272963
-
Bone marrow-derived mesenchymal stromal cells enhance chimeric vessel development driven by endothelial cell-coated microtissues
-
COI: 1:CAS:528:DC%2BC38XhslGhtL0%3D, PID: 21861779
-
Chamberlain, M. D., R. Gupta, and M. V. Sefton. Bone marrow-derived mesenchymal stromal cells enhance chimeric vessel development driven by endothelial cell-coated microtissues. Tissue Eng. Part A 18:285–294, 2012.
-
(2012)
Tissue Eng. Part A
, vol.18
, pp. 285-294
-
-
Chamberlain, M.D.1
Gupta, R.2
Sefton, M.V.3
-
17
-
-
1642300508
-
Stromal matrix metalloproteinase-9 regulates the vascular architecture in neuroblastoma by promoting pericyte recruitment
-
COI: 1:CAS:528:DC%2BD2cXhslekur0%3D, PID: 14996727
-
Chantrain, C. F., H. Shimada, S. Jodele, S. Groshen, W. Ye, D. R. Shalinsky, Z. Werb, L. M. Coussens, and Y. A. DeClerck. Stromal matrix metalloproteinase-9 regulates the vascular architecture in neuroblastoma by promoting pericyte recruitment. Cancer Res. 64:1675–1686, 2004.
-
(2004)
Cancer Res.
, vol.64
, pp. 1675-1686
-
-
Chantrain, C.F.1
Shimada, H.2
Jodele, S.3
Groshen, S.4
Ye, W.5
Shalinsky, D.R.6
Werb, Z.7
Coussens, L.M.8
DeClerck, Y.A.9
-
18
-
-
77049126246
-
Rapid anastomosis of endothelial progenitor cell-derived vessels with host vasculature is promoted by a high density of cotransplanted fibroblasts
-
COI: 1:CAS:528:DC%2BC3cXhs1Gqtr8%3D, PID: 19737050
-
Chen, X., A. S. Aledia, S. A. Popson, L. Him, C. C. Hughes, and S. C. George. Rapid anastomosis of endothelial progenitor cell-derived vessels with host vasculature is promoted by a high density of cotransplanted fibroblasts. Tissue Eng. Part A 16:585–594, 2010.
-
(2010)
Tissue Eng. Part A
, vol.16
, pp. 585-594
-
-
Chen, X.1
Aledia, A.S.2
Popson, S.A.3
Him, L.4
Hughes, C.C.5
George, S.C.6
-
19
-
-
44849121129
-
Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing
-
PID: 18382669
-
Chen, L., E. E. Tredget, P. Y. G. Wu, and Y. Wu. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS ONE 3:e1886, 2008.
-
(2008)
PLoS ONE
, vol.3
, pp. e1886
-
-
Chen, L.1
Tredget, E.E.2
Wu, P.Y.G.3
Wu, Y.4
-
20
-
-
9444274032
-
MT1-MMP-dependent neovessel formation within the confines of the three-dimensional extracellular matrix
-
COI: 1:CAS:528:DC%2BD2cXhtVaqtb3I, PID: 15545316
-
Chun, T. H., F. Sabeh, I. Ota, H. Murphy, K. T. McDonagh, K. Holmbeck, H. Birkedal-Hansen, E. D. Allen, and S. J. Weiss. MT1-MMP-dependent neovessel formation within the confines of the three-dimensional extracellular matrix. J. Cell. Biol. 167:757–767, 2004.
-
(2004)
J. Cell. Biol.
, vol.167
, pp. 757-767
-
-
Chun, T.H.1
Sabeh, F.2
Ota, I.3
Murphy, H.4
McDonagh, K.T.5
Holmbeck, K.6
Birkedal-Hansen, H.7
Allen, E.D.8
Weiss, S.J.9
-
21
-
-
84902038201
-
The modular approach. In Biofabrication: Micro- and Nano-fabrication, Printing, Patterning and Assemblies, edited by G. Forgacs and W. Sun
-
Ciucurel, E. C., M. D. Chamberlain, and M. V. Sefton. The modular approach. In Biofabrication: Micro- and Nano-fabrication, Printing, Patterning and Assemblies, edited by G. Forgacs and W. Sun. Oxford: Elsevier Inc., 2013, pp. 119–148.
-
Oxford: Elsevier Inc.
, vol.2013
, pp. 119-148
-
-
Ciucurel, E.C.1
Chamberlain, M.D.2
Sefton, M.V.3
-
22
-
-
84898492240
-
DEL-1 overexpression in endothelial cells increases vascular density in tissue-engineered implants containing endothelial cells and adipose-derived mesenchymal stromal cells
-
COI: 1:CAS:528:DC%2BC2cXlsl2kur8%3D, PID: 24151812
-
Ciucurel, E. C., and M. V. Sefton. DEL-1 overexpression in endothelial cells increases vascular density in tissue-engineered implants containing endothelial cells and adipose-derived mesenchymal stromal cells. Tissue Eng. Part A 20:1235–1252, 2014.
-
(2014)
Tissue Eng. Part A
, vol.20
, pp. 1235-1252
-
-
Ciucurel, E.C.1
Sefton, M.V.2
-
23
-
-
84898422657
-
Using del-1 to tip the angiogenic balance in endothelial cells in modular constructs
-
COI: 1:CAS:528:DC%2BC2cXlsl2ktbs%3D, PID: 24138448
-
Ciucurel, E. C., A. E. Vlahos, and M. V. Sefton. Using del-1 to tip the angiogenic balance in endothelial cells in modular constructs. Tissue Eng. Part A 20:1222–1234, 2014.
-
(2014)
Tissue Eng. Part A
, vol.20
, pp. 1222-1234
-
-
Ciucurel, E.C.1
Vlahos, A.E.2
Sefton, M.V.3
-
24
-
-
79251641103
-
Fibronectin coating of collagen modules increases in vivo HUVEC survival and vessel formation in SCID mice
-
COI: 1:CAS:528:DC%2BC3MXht12hsL0%3D, PID: 21059413
-
Cooper, T. P., and M. V. Sefton. Fibronectin coating of collagen modules increases in vivo HUVEC survival and vessel formation in SCID mice. Acta Biomater. 7:1072–1083, 2011.
-
(2011)
Acta Biomater.
, vol.7
, pp. 1072-1083
-
-
Cooper, T.P.1
Sefton, M.V.2
-
25
-
-
44449096726
-
Il-10: the master regulator of immunity to infection
-
COI: 1:CAS:528:DC%2BD1cXkvVequ7o%3D, PID: 18424693
-
Couper, K. N., D. G. Blount, and E. M. Riley. Il-10: the master regulator of immunity to infection. J. Immunol. 180:5771–5777, 2008.
-
(2008)
J. Immunol.
, vol.180
, pp. 5771-5777
-
-
Couper, K.N.1
Blount, D.G.2
Riley, E.M.3
-
26
-
-
11144355004
-
VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment
-
COI: 1:CAS:528:DC%2BD2cXivFCqsLs%3D, PID: 15057311
-
Cursiefen, C., L. Chen, L. P. Borges, D. Jackson, J. Cao, C. Radziejewski, P. A. D’Amore, M. R. Dana, S. J. Wiegand, and J. W. Streilein. VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J. Clin. Investig. 113:1040–1050, 2004.
-
(2004)
J. Clin. Investig.
, vol.113
, pp. 1040-1050
-
-
Cursiefen, C.1
Chen, L.2
Borges, L.P.3
Jackson, D.4
Cao, J.5
Radziejewski, C.6
D’Amore, P.A.7
Dana, M.R.8
Wiegand, S.J.9
Streilein, J.W.10
-
27
-
-
84886654275
-
Tissue-resident macrophages
-
COI: 1:CAS:528:DC%2BC3sXhsVKgur3F, PID: 24048120
-
Davies, L. C., S. J. Jenkins, J. E. Allen, and P. R. Taylor. Tissue-resident macrophages. Nat. Immunol. 14:986–995, 2013.
-
(2013)
Nat. Immunol.
, vol.14
, pp. 986-995
-
-
Davies, L.C.1
Jenkins, S.J.2
Allen, J.E.3
Taylor, P.R.4
-
28
-
-
84878738380
-
Distinct bone marrow-derived and tissue-resident macrophage lineages proliferate at key stages during inflammation
-
PID: 23695680
-
Davies, L. C., M. Rosas, S. J. Jenkins, C.-T. Liao, M. J. Scurr, F. Brombacher, D. J. Fraser, J. E. Allen, S. A. Jones, and P. R. Taylor. Distinct bone marrow-derived and tissue-resident macrophage lineages proliferate at key stages during inflammation. Nat. Commun. 4:1886, 2013.
-
(2013)
Nat. Commun.
, vol.4
, pp. 1886
-
-
Davies, L.C.1
Rosas, M.2
Jenkins, S.J.3
Liao, C.-T.4
Scurr, M.J.5
Brombacher, F.6
Fraser, D.J.7
Allen, J.E.8
Jones, S.A.9
Taylor, P.R.10
-
29
-
-
84889787171
-
Macrophages play a key role in angiogenesis and adipogenesis in a mouse tissue engineering model
-
COI: 1:CAS:528:DC%2BC3sXhvV2hs7%2FP, PID: 23844978
-
Debels, H., L. Galea, X. L. Han, J. Palmer, N. van Rooijen, W. Morrison, and K. Abberton. Macrophages play a key role in angiogenesis and adipogenesis in a mouse tissue engineering model. Tissue Eng. Part A 19:2615–2625, 2013.
-
(2013)
Tissue Eng. Part A
, vol.19
, pp. 2615-2625
-
-
Debels, H.1
Galea, L.2
Han, X.L.3
Palmer, J.4
van Rooijen, N.5
Morrison, W.6
Abberton, K.7
-
30
-
-
0027212686
-
Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts
-
COI: 1:CAS:528:DyaK3sXksVWrtLY%3D, PID: 8314838
-
Desmouliere, A., A. Geinoz, F. Gabbiani, and G. Gabbiani. Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J. Cell Biol. 122:103–111, 1993.
-
(1993)
J. Cell Biol.
, vol.122
, pp. 103-111
-
-
Desmouliere, A.1
Geinoz, A.2
Gabbiani, F.3
Gabbiani, G.4
-
31
-
-
0025943515
-
Hypoxia upregulates the synthesis of TGF-beta 1 by human dermal fibroblasts
-
COI: 1:CAS:528:DyaK3MXmt1Ckt70%3D, PID: 1940433
-
Falanga, V., S. W. Qian, D. Danielpour, M. H. Katz, A. B. Roberts, and M. B. Sporn. Hypoxia upregulates the synthesis of TGF-beta 1 by human dermal fibroblasts. J. Invest. Dermatol. 97:634–637, 1991.
-
(1991)
J. Invest. Dermatol.
, vol.97
, pp. 634-637
-
-
Falanga, V.1
Qian, S.W.2
Danielpour, D.3
Katz, M.H.4
Roberts, A.B.5
Sporn, M.B.6
-
32
-
-
77956273530
-
Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction
-
COI: 1:CAS:528:DC%2BC3cXhtVCku73L, PID: 20404134
-
Fantin, A., J. M. Vieira, G. Gestri, L. Denti, Q. Schwarz, S. Prykhozhij, F. Peri, S. W. Wilson, and C. Ruhrberg. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116:829–840, 2010.
-
(2010)
Blood
, vol.116
, pp. 829-840
-
-
Fantin, A.1
Vieira, J.M.2
Gestri, G.3
Denti, L.4
Schwarz, Q.5
Prykhozhij, S.6
Peri, F.7
Wilson, S.W.8
Ruhrberg, C.9
-
33
-
-
84974603487
-
Bioogical Design, Materials and Fabrications, edited by C. Migliaresi and A
-
Fitzpatrick, L. E., A. Lisovsky, E. C. Ciucurel, and M. V. Sefton. Scaffold vascularization. In Scaffolds for Tissue Engineering: Bioogical Design, Materials and Fabrications, edited by C. Migliaresi and A. Motta: Pan Stanford, 2014, pp. 173–217.
-
Motta: Pan Stanford
, vol.2014
, pp. 173-217
-
-
Fitzpatrick, L.E.1
Lisovsky, A.2
Ciucurel, E.C.3
-
34
-
-
84875576213
-
Macrophage functional polarization (M1/M2) in response to varying fiber and pore dimensions of electrospun scaffolds
-
COI: 1:CAS:528:DC%2BC3sXktFejuro%3D, PID: 23515178
-
Garg, K., N. A. Pullen, C. A. Oskeritzian, J. J. Ryan, and G. L. Bowlin. Macrophage functional polarization (M1/M2) in response to varying fiber and pore dimensions of electrospun scaffolds. Biomaterials 34:4439–4451, 2013.
-
(2013)
Biomaterials
, vol.34
, pp. 4439-4451
-
-
Garg, K.1
Pullen, N.A.2
Oskeritzian, C.A.3
Ryan, J.J.4
Bowlin, G.L.5
-
35
-
-
76749127910
-
Mesenchymal cells stimulate capillary morphogenesis via distinct proteolytic mechanisms
-
COI: 1:CAS:528:DC%2BC3cXitlWjs74%3D, PID: 20067788
-
Ghajar, C. M., S. Kachgal, E. Kniazeva, H. Mori, S. V. Costes, S. C. George, and A. J. Putnam. Mesenchymal cells stimulate capillary morphogenesis via distinct proteolytic mechanisms. Exp. Cell Res. 316:813–825, 2010.
-
(2010)
Exp. Cell Res.
, vol.316
, pp. 813-825
-
-
Ghajar, C.M.1
Kachgal, S.2
Kniazeva, E.3
Mori, H.4
Costes, S.V.5
George, S.C.6
Putnam, A.J.7
-
36
-
-
84901358607
-
Monocytes and macrophages: developmental pathways and tissue homeostasis
-
COI: 1:CAS:528:DC%2BC2cXosFartbY%3D, PID: 24854589
-
Ginhoux, F., and S. Jung. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat. Rev. Immunol. 14:392–404, 2014.
-
(2014)
Nat. Rev. Immunol.
, vol.14
, pp. 392-404
-
-
Ginhoux, F.1
Jung, S.2
-
37
-
-
77949272759
-
Neutrophils promote inflammatory angiogenesis via release of preformed VEGF in an in vivo corneal model
-
PID: 20012648
-
Gong, Y., and D.-R. Koh. Neutrophils promote inflammatory angiogenesis via release of preformed VEGF in an in vivo corneal model. Cell Tissue Res. 339:437–448, 2010.
-
(2010)
Cell Tissue Res.
, vol.339
, pp. 437-448
-
-
Gong, Y.1
Koh, D.-R.2
-
38
-
-
84862180623
-
Tgfbeta signaling plays a critical role in promoting alternative macrophage activation
-
COI: 1:CAS:528:DC%2BC38XhslKjtLzP, PID: 22703233
-
Gong, D., W. Shi, S. J. Yi, H. Chen, J. Groffen, and N. Heisterkamp. Tgfbeta signaling plays a critical role in promoting alternative macrophage activation. BMC Immunol. 13:31, 2012.
-
(2012)
BMC Immunol.
, vol.13
, pp. 31
-
-
Gong, D.1
Shi, W.2
Yi, S.J.3
Chen, H.4
Groffen, J.5
Heisterkamp, N.6
-
39
-
-
30344437303
-
Vegf-induced adult neovascularization: recruitment, retention, and role of accessory cells
-
COI: 1:CAS:528:DC%2BD28XntVGkug%3D%3D, PID: 16413490
-
Grunewald, M., I. Avraham, Y. Dor, E. Bachar-Lustig, A. Itin, S. Jung, S. Chimenti, L. Landsman, R. Abramovitch, and E. Keshet. Vegf-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 124:175–189, 2006.
-
(2006)
Cell
, vol.124
, pp. 175-189
-
-
Grunewald, M.1
Avraham, I.2
Dor, Y.3
Bachar-Lustig, E.4
Itin, A.5
Jung, S.6
Chimenti, S.7
Landsman, L.8
Abramovitch, R.9
Keshet, E.10
-
40
-
-
84877138671
-
The role of semaphorins and their receptors in vascular development and cancer
-
COI: 1:CAS:528:DC%2BC3sXjsFyhs70%3D, PID: 23422037
-
Gu, C., and E. Giraudo. The role of semaphorins and their receptors in vascular development and cancer. Exp. Cell Res. 319:1306–1316, 2013.
-
(2013)
Exp. Cell Res.
, vol.319
, pp. 1306-1316
-
-
Gu, C.1
Giraudo, E.2
-
41
-
-
55549089640
-
Detection of different hypoxic cell subpopulations in human melanoma xenografts by pimonidazole immunohistochemistry
-
COI: 1:CAS:528:DC%2BD1cXhtlCnt7zF, PID: 18959463
-
Gulliksrud, K., I. K. Vestvik, K. Galappathi, B. Mathiesen, and E. K. Rofstad. Detection of different hypoxic cell subpopulations in human melanoma xenografts by pimonidazole immunohistochemistry. Radiat. Res. 170:638–650, 2008.
-
(2008)
Radiat. Res.
, vol.170
, pp. 638-650
-
-
Gulliksrud, K.1
Vestvik, I.K.2
Galappathi, K.3
Mathiesen, B.4
Rofstad, E.K.5
-
42
-
-
0030576517
-
Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis
-
COI: 1:CAS:528:DyaK28XltVSks7s%3D, PID: 8756718
-
Hanahan, D., and J. Folkman. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364, 1996.
-
(1996)
Cell
, vol.86
, pp. 353-364
-
-
Hanahan, D.1
Folkman, J.2
-
43
-
-
51649099800
-
Assessing identity, phenotype, and fate of endothelial progenitor cells
-
COI: 1:CAS:528:DC%2BD1cXpvFKhurs%3D, PID: 18669889
-
Hirschi, K. K., D. A. Ingram, and M. C. Yoder. Assessing identity, phenotype, and fate of endothelial progenitor cells. Arterioscler. Thromb. Vasc. Biol. 28:1584–1595, 2008.
-
(2008)
Arterioscler. Thromb. Vasc. Biol.
, vol.28
, pp. 1584-1595
-
-
Hirschi, K.K.1
Ingram, D.A.2
Yoder, M.C.3
-
44
-
-
84894502726
-
Improved wound healing of postischemic cutaneous flaps with the use of bone marrow-derived stem cells
-
COI: 1:CAS:528:DC%2BC2cXjtVCitLs%3D, PID: 23818296
-
Hu, M., D. Ludlow, J. S. Alexander, J. McLarty, and T. Lian. Improved wound healing of postischemic cutaneous flaps with the use of bone marrow-derived stem cells. Laryngoscope 124:642–648, 2014.
-
(2014)
Laryngoscope
, vol.124
, pp. 642-648
-
-
Hu, M.1
Ludlow, D.2
Alexander, J.S.3
McLarty, J.4
Lian, T.5
-
45
-
-
40949085086
-
Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis
-
COI: 1:CAS:528:DC%2BD1cXlsVehtb4%3D, PID: 18374759
-
Hu, X., S. P. Yu, J. L. Fraser, Z. Lu, M. E. Ogle, J. A. Wang, and L. Wei. Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis. J. Thorac. Cardiovasc. Surg. 135:799–808, 2008.
-
(2008)
J. Thorac. Cardiovasc. Surg.
, vol.135
, pp. 799-808
-
-
Hu, X.1
Yu, S.P.2
Fraser, J.L.3
Lu, Z.4
Ogle, M.E.5
Wang, J.A.6
Wei, L.7
-
46
-
-
34748845732
-
Angiogenic effects of human multipotent stromal cell conditioned medium activate the PI3K-Akt pathway in hypoxic endothelial cells to inhibit apoptosis, increase survival, and stimulate angiogenesis
-
COI: 1:CAS:528:DC%2BD2sXhtFSisLbO, PID: 17540857
-
Hung, S. C., R. R. Pochampally, S. C. Chen, S. C. Hsu, and D. J. Prockop. Angiogenic effects of human multipotent stromal cell conditioned medium activate the PI3K-Akt pathway in hypoxic endothelial cells to inhibit apoptosis, increase survival, and stimulate angiogenesis. Stem Cells 25:2363–2370, 2007.
-
(2007)
Stem Cells
, vol.25
, pp. 2363-2370
-
-
Hung, S.C.1
Pochampally, R.R.2
Chen, S.C.3
Hsu, S.C.4
Prockop, D.J.5
-
47
-
-
15444342958
-
2 homeostasis by hypoxia-inducible factor 1 alpha
-
COI: 1:CAS:528:DyaK1cXnsVOqsQ%3D%3D, PID: 9436976
-
2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev. 12:149–162, 1998.
-
(1998)
Genes Dev.
, vol.12
, pp. 149-162
-
-
Iyer, N.V.1
Kotch, L.E.2
Agani, F.3
Leung, S.W.4
Laughner, E.5
Wenger, R.H.6
Gassmann, M.7
Gearhart, J.D.8
Lawler, A.M.9
Yu, A.Y.10
Semenza, G.L.11
-
48
-
-
33644884451
-
Comparison between pimonidazole binding, oxygen electrode measurements, and expression of endogenous hypoxia markers in cancer of the uterine cervix
-
COI: 1:STN:280:DC%2BD287itVGjtg%3D%3D, PID: 16456867
-
Jankovic, B., C. Aquino-Parsons, J. A. Raleigh, E. J. Stanbridge, R. E. Durand, J. P. Banath, S. H. MacPhail, and P. L. Olive. Comparison between pimonidazole binding, oxygen electrode measurements, and expression of endogenous hypoxia markers in cancer of the uterine cervix. Cytometry B Clin. Cytom. 70:45–55, 2006.
-
(2006)
Cytometry B Clin. Cytom.
, vol.70
, pp. 45-55
-
-
Jankovic, B.1
Aquino-Parsons, C.2
Raleigh, J.A.3
Stanbridge, E.J.4
Durand, R.E.5
Banath, J.P.6
MacPhail, S.H.7
Olive, P.L.8
-
49
-
-
84892832431
-
Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo
-
PID: 24013945
-
Jetten, N., S. Verbruggen, M. J. Gijbels, M. J. Post, M. P. De Winther, and M. M. Donners. Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo. Angiogenesis 17:109–118, 2013.
-
(2013)
Angiogenesis
, vol.17
, pp. 109-118
-
-
Jetten, N.1
Verbruggen, S.2
Gijbels, M.J.3
Post, M.J.4
De Winther, M.P.5
Donners, M.M.6
-
50
-
-
36849062661
-
Strategic directions in tissue engineering
-
PID: 18052823
-
Johnson, P. C., A. G. Mikos, J. P. Fisher, and J. A. Jansen. Strategic directions in tissue engineering. Tissue Eng. 13:2827–2837, 2007.
-
(2007)
Tissue Eng.
, vol.13
, pp. 2827-2837
-
-
Johnson, P.C.1
Mikos, A.G.2
Fisher, J.P.3
Jansen, J.A.4
-
51
-
-
84055218883
-
Bioengineered human vascular networks transplanted into secondary mice reconnect with the host vasculature and re-establish perfusion
-
COI: 1:CAS:528:DC%2BC38XjtVCntA%3D%3D, PID: 22039257
-
Kang, K. T., P. Allen, and J. Bischoff. Bioengineered human vascular networks transplanted into secondary mice reconnect with the host vasculature and re-establish perfusion. Blood 118:6718–6721, 2011.
-
(2011)
Blood
, vol.118
, pp. 6718-6721
-
-
Kang, K.T.1
Allen, P.2
Bischoff, J.3
-
52
-
-
77957157551
-
The multiple faces of CXCL12 (SDF-1) in the regulation of immunity during health and disease
-
COI: 1:CAS:528:DC%2BC3cXhtFertrnE, PID: 20501749
-
Karin, N. The multiple faces of CXCL12 (SDF-1) in the regulation of immunity during health and disease. J. Leukoc. Biol. 88:463–473, 2010.
-
(2010)
J. Leukoc. Biol.
, vol.88
, pp. 463-473
-
-
Karin, N.1
-
53
-
-
84655161946
-
HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression
-
COI: 1:CAS:528:DC%2BC3MXhs1aisbzM
-
Keith, B., R. S. Johnson, and M. C. Simon. HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nat. Rev. Cancer 12:9–22, 2012.
-
(2012)
Nat. Rev. Cancer
, vol.12
, pp. 9-22
-
-
Keith, B.1
Johnson, R.S.2
Simon, M.C.3
-
54
-
-
0037026951
-
Determination of oxygen gradients in engineered tissue using a fluorescent sensor
-
COI: 1:CAS:528:DC%2BD38XntlCqsr8%3D, PID: 12209788
-
Kellner, K., G. Liebsch, I. Klimant, O. S. Wolfbeis, T. Blunk, M. B. Schulz, and A. Gopferich. Determination of oxygen gradients in engineered tissue using a fluorescent sensor. Biotechnol. Bioeng. 80:73–83, 2002.
-
(2002)
Biotechnol. Bioeng.
, vol.80
, pp. 73-83
-
-
Kellner, K.1
Liebsch, G.2
Klimant, I.3
Wolfbeis, O.S.4
Blunk, T.5
Schulz, M.B.6
Gopferich, A.7
-
55
-
-
33644614520
-
HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia
-
PID: 16517405
-
Kim, J. W., I. Tchernyshyov, G. L. Semenza, and C. V. Dang. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 3:177–185, 2006.
-
(2006)
Cell Metab.
, vol.3
, pp. 177-185
-
-
Kim, J.W.1
Tchernyshyov, I.2
Semenza, G.L.3
Dang, C.V.4
-
56
-
-
84865429409
-
Passing the baton: the HIF switch
-
COI: 1:CAS:528:DC%2BC38XhtVOlsrfI, PID: 22818162
-
Koh, M. Y., and G. Powis. Passing the baton: the HIF switch. Trends Biochem. Sci. 37:364–372, 2012.
-
(2012)
Trends Biochem. Sci.
, vol.37
, pp. 364-372
-
-
Koh, M.Y.1
Powis, G.2
-
57
-
-
84870528464
-
Angiogenic neutrophils: a novel subpopulation paradigm
-
COI: 1:CAS:528:DC%2BC38XhvVWgtb7N, PID: 23197582
-
Kolaczkowska, E., and P. Kubes. Angiogenic neutrophils: a novel subpopulation paradigm. Blood 120:4455–4457, 2012.
-
(2012)
Blood
, vol.120
, pp. 4455-4457
-
-
Kolaczkowska, E.1
Kubes, P.2
-
58
-
-
33845767868
-
Macrophages regulate the angiogenic switch in a mouse model of breast cancer
-
COI: 1:CAS:528:DC%2BD28Xht1KnsL%2FI, PID: 17114237
-
Lin, E. Y., J. F. Li, L. Gnatovskiy, Y. Deng, L. Zhu, D. A. Grzesik, H. Qian, X. N. Xue, and J. W. Pollard. Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res. 66:11238–11246, 2006.
-
(2006)
Cancer Res.
, vol.66
, pp. 11238-11246
-
-
Lin, E.Y.1
Li, J.F.2
Gnatovskiy, L.3
Deng, Y.4
Zhu, L.5
Grzesik, D.A.6
Qian, H.7
Xue, X.N.8
Pollard, J.W.9
-
59
-
-
84862832883
-
Hypoxia-inducible factor-1alpha is essential for hypoxia-induced mesenchymal stem cell mobilization into the peripheral blood
-
COI: 1:CAS:528:DC%2BC3MXhtlygtrfO, PID: 21275821
-
Liu, L., Q. Yu, J. Lin, X. Lai, W. Cao, K. Du, Y. Wang, K. Wu, Y. Hu, L. Zhang, H. Xiao, Y. Duan, and H. Huang. Hypoxia-inducible factor-1alpha is essential for hypoxia-induced mesenchymal stem cell mobilization into the peripheral blood. Stem Cells Dev. 20:1961–1971, 2011.
-
(2011)
Stem Cells Dev.
, vol.20
, pp. 1961-1971
-
-
Liu, L.1
Yu, Q.2
Lin, J.3
Lai, X.4
Cao, W.5
Du, K.6
Wang, Y.7
Wu, K.8
Hu, Y.9
Zhang, L.10
Xiao, H.11
Duan, Y.12
Huang, H.13
-
60
-
-
77951631929
-
Differential roles of macrophages in diverse phases of skin repair
-
COI: 1:CAS:528:DC%2BC3cXjs1Wqsrg%3D, PID: 20176743
-
Lucas, T., A. Waisman, R. Ranjan, J. Roes, T. Krieg, W. Muller, A. Roers, and S. A. Eming. Differential roles of macrophages in diverse phases of skin repair. J. Immunol. 184:3964–3977, 2010.
-
(2010)
J. Immunol.
, vol.184
, pp. 3964-3977
-
-
Lucas, T.1
Waisman, A.2
Ranjan, R.3
Roes, J.4
Krieg, T.5
Muller, W.6
Roers, A.7
Eming, S.A.8
-
61
-
-
84892433295
-
Immunobiology of mesenchymal stem cells
-
PID: 24185619
-
Ma, S., N. Xie, W. Li, B. Yuan, Y. Shi, and Y. Wang. Immunobiology of mesenchymal stem cells. Cell Death Differ. 21:216–225, 2013.
-
(2013)
Cell Death Differ.
, vol.21
, pp. 216-225
-
-
Ma, S.1
Xie, N.2
Li, W.3
Yuan, B.4
Shi, Y.5
Wang, Y.6
-
62
-
-
1542510685
-
Oxygen gradients in tissue-engineered PEGT/PBT cartilaginous constructs: measurement and modeling
-
COI: 1:CAS:528:DC%2BD2cXis1aksrk%3D, PID: 15007836
-
Malda, J., J. Rouwkema, D. E. Martens, E. P. Le Comte, F. K. Kooy, J. Tramper, C. A. van Blitterswijk, and J. Riesle. Oxygen gradients in tissue-engineered PEGT/PBT cartilaginous constructs: measurement and modeling. Biotechnol. Bioeng. 86:9–18, 2004.
-
(2004)
Biotechnol. Bioeng.
, vol.86
, pp. 9-18
-
-
Malda, J.1
Rouwkema, J.2
Martens, D.E.3
Le Comte, E.P.4
Kooy, F.K.5
Tramper, J.6
van Blitterswijk, C.A.7
Riesle, J.8
-
63
-
-
7644231561
-
The chemokine system in diverse forms of macrophage activation and polarization
-
COI: 1:CAS:528:DC%2BD2cXptl2ktbs%3D, PID: 15530839
-
Mantovani, A., A. Sica, S. Sozzani, P. Allavena, A. Vecchi, and M. Locati. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25:677–686, 2004.
-
(2004)
Trends Immunol.
, vol.25
, pp. 677-686
-
-
Mantovani, A.1
Sica, A.2
Sozzani, S.3
Allavena, P.4
Vecchi, A.5
Locati, M.6
-
64
-
-
67650485985
-
Alternative activation of macrophages: an immunologic functional perspective
-
COI: 1:CAS:528:DC%2BD1MXlsFSltrk%3D, PID: 19105661
-
Martinez, F. O., L. Helming, and S. Gordon. Alternative activation of macrophages: an immunologic functional perspective. Annu. Rev. Immunol. 27:451–483, 2009.
-
(2009)
Annu. Rev. Immunol.
, vol.27
, pp. 451-483
-
-
Martinez, F.O.1
Helming, L.2
Gordon, S.3
-
65
-
-
84896718460
-
Chemokines and their receptors are key players in the orchestra that regulates wound healing
-
Martins-Green, M., M. Petreaca, and L. Wang. Chemokines and their receptors are key players in the orchestra that regulates wound healing. Adv. Wound Care (New Rochelle) 2:327–347, 2013.
-
(2013)
Adv. Wound Care (New Rochelle)
, vol.2
, pp. 327-347
-
-
Martins-Green, M.1
Petreaca, M.2
Wang, L.3
-
66
-
-
0035370253
-
Activation of the HIF pathway in cancer
-
COI: 1:CAS:528:DC%2BD3MXktFyju7g%3D, PID: 11377966
-
Maxwell, P. H., C. W. Pugh, and P. J. Ratcliffe. Activation of the HIF pathway in cancer. Curr. Opin. Genet. Dev. 11:293–299, 2001.
-
(2001)
Curr. Opin. Genet. Dev.
, vol.11
, pp. 293-299
-
-
Maxwell, P.H.1
Pugh, C.W.2
Ratcliffe, P.J.3
-
67
-
-
34249066312
-
Chemokines as mediators of angiogenesis
-
COI: 1:CAS:528:DC%2BD2sXlvVGrt7c%3D, PID: 17479186
-
Mehrad, B., M. P. Keane, and R. M. Strieter. Chemokines as mediators of angiogenesis. Thromb. Haemost. 97:755–762, 2007.
-
(2007)
Thromb. Haemost.
, vol.97
, pp. 755-762
-
-
Mehrad, B.1
Keane, M.P.2
Strieter, R.M.3
-
68
-
-
0023814896
-
Adenosine and hypoxia stimulate proliferation and migration of endothelial cells
-
COI: 1:CAS:528:DyaL1cXls1Cisr4%3D, PID: 3414822
-
Meininger, C. J., M. E. Schelling, and H. J. Granger. Adenosine and hypoxia stimulate proliferation and migration of endothelial cells. Am. J. Physiol. 255:H554–H562, 1988.
-
(1988)
Am. J. Physiol.
, vol.255
, pp. H554-H562
-
-
Meininger, C.J.1
Schelling, M.E.2
Granger, H.J.3
-
69
-
-
77956069554
-
Host myeloid cells are necessary for creating bioengineered human vascular networks in vivo
-
COI: 1:CAS:528:DC%2BC3cXpvVWit7c%3D, PID: 20218762
-
Melero-Martin, J. M., M. E. De Obaldia, P. Allen, A. C. Dudley, M. Klagsbrun, and J. Bischoff. Host myeloid cells are necessary for creating bioengineered human vascular networks in vivo. Tissue Eng Part A 16:2457–2466, 2010.
-
(2010)
Tissue Eng Part A
, vol.16
, pp. 2457-2466
-
-
Melero-Martin, J.M.1
De Obaldia, M.E.2
Allen, P.3
Dudley, A.C.4
Klagsbrun, M.5
Bischoff, J.6
-
70
-
-
10744229527
-
An integrated approach to measuring tumor oxygen status using human melanoma xenografts as a model
-
COI: 1:CAS:528:DC%2BD3sXovVGltrs%3D, PID: 14612518
-
Menon, C., G. M. Polin, I. Prabakaran, A. Hsi, C. Cheung, J. P. Culver, J. F. Pingpank, C. S. Sehgal, A. G. Yodh, D. G. Buerk, and D. L. Fraker. An integrated approach to measuring tumor oxygen status using human melanoma xenografts as a model. Cancer Res. 63:7232–7240, 2003.
-
(2003)
Cancer Res.
, vol.63
, pp. 7232-7240
-
-
Menon, C.1
Polin, G.M.2
Prabakaran, I.3
Hsi, A.4
Cheung, C.5
Culver, J.P.6
Pingpank, J.F.7
Sehgal, C.S.8
Yodh, A.G.9
Buerk, D.G.10
Fraker, D.L.11
-
71
-
-
84879818960
-
Autologous bone-marrow mesenchymal stem cell implantation and endothelial function in a rabbit ischemic limb model
-
COI: 1:CAS:528:DC%2BC3sXhtFKkt7jN, PID: 23861797
-
Mikami, S., A. Nakashima, K. Nakagawa, T. Maruhashi, Y. Iwamoto, M. Kajikawa, T. Matsumoto, Y. Kihara, K. Chayama, K. Noma, M. Ochi, M. Nishimura, K. Tsuji, Y. Kato, C. Goto, and Y. Higashi. Autologous bone-marrow mesenchymal stem cell implantation and endothelial function in a rabbit ischemic limb model. PLoS One 8:e67739, 2013.
-
(2013)
PLoS One
, vol.8
, pp. e67739
-
-
Mikami, S.1
Nakashima, A.2
Nakagawa, K.3
Maruhashi, T.4
Iwamoto, Y.5
Kajikawa, M.6
Matsumoto, T.7
Kihara, Y.8
Chayama, K.9
Noma, K.10
Ochi, M.11
Nishimura, M.12
Tsuji, K.13
Kato, Y.14
Goto, C.15
Higashi, Y.16
-
72
-
-
34249660052
-
Hypoxia-inducible factor-1 (HIF-1) is involved in the regulation of hypoxia-stimulated expression of monocyte chemoattractant protein-1 (MCP-1/CCl2) and mcp-5 (CCL12) in astrocytes
-
Mojsilovic-Petrovic, J., D. Callaghan, H. Cui, C. Dean, D. B. Stanimirovic, and W. Zhang. Hypoxia-inducible factor-1 (HIF-1) is involved in the regulation of hypoxia-stimulated expression of monocyte chemoattractant protein-1 (MCP-1/CCl2) and mcp-5 (CCL12) in astrocytes. J. Neuroinflamm. 4:12, 2007.
-
(2007)
J. Neuroinflamm.
, vol.4
, pp. 12
-
-
Mojsilovic-Petrovic, J.1
Callaghan, D.2
Cui, H.3
Dean, C.4
Stanimirovic, D.B.5
Zhang, W.6
-
73
-
-
56749174940
-
Exploring the full spectrum of macrophage activation
-
COI: 1:CAS:528:DC%2BD1cXhsVWlsLfI, PID: 19029990
-
Mosser, D. M., and J. P. Edwards. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8:958–969, 2008.
-
(2008)
Nat. Rev. Immunol.
, vol.8
, pp. 958-969
-
-
Mosser, D.M.1
Edwards, J.P.2
-
74
-
-
4944244259
-
Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues
-
COI: 1:CAS:528:DC%2BD2cXovVegsbs%3D, PID: 15231578
-
Murdoch, C. Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood 104:2224–2234, 2004.
-
(2004)
Blood
, vol.104
, pp. 2224-2234
-
-
Murdoch, C.1
-
75
-
-
47949090079
-
The role of myeloid cells in the promotion of tumour angiogenesis
-
COI: 1:CAS:528:DC%2BD1cXovV2lsrY%3D, PID: 18633355
-
Murdoch, C., M. Muthana, S. B. Coffelt, and C. E. Lewis. The role of myeloid cells in the promotion of tumour angiogenesis. Nat. Rev. Cancer 8:618–631, 2008.
-
(2008)
Nat. Rev. Cancer
, vol.8
, pp. 618-631
-
-
Murdoch, C.1
Muthana, M.2
Coffelt, S.B.3
Lewis, C.E.4
-
76
-
-
80054712998
-
The requirement for fibroblasts in angiogenesis: fibroblast-derived matrix proteins are essential for endothelial cell lumen formation
-
COI: 1:CAS:528:DC%2BC3MXhtl2ns7zN, PID: 21865599
-
Newman, A. C., M. N. Nakatsu, W. Chou, P. D. Gershon, and C. C. Hughes. The requirement for fibroblasts in angiogenesis: fibroblast-derived matrix proteins are essential for endothelial cell lumen formation. Mol. Biol. Cell 22:3791–3800, 2011.
-
(2011)
Mol. Biol. Cell
, vol.22
, pp. 3791-3800
-
-
Newman, A.C.1
Nakatsu, M.N.2
Chou, W.3
Gershon, P.D.4
Hughes, C.C.5
-
77
-
-
79960997061
-
The interplay between macrophages and angiogenesis in development, tissue injury and regeneration
-
COI: 1:CAS:528:DC%2BC3MXhsVahs7fE, PID: 21732273
-
Nucera, S., D. Biziato, and M. De Palma. The interplay between macrophages and angiogenesis in development, tissue injury and regeneration. Int. J. Dev. Biol. 55:495–503, 2011.
-
(2011)
Int. J. Dev. Biol.
, vol.55
, pp. 495-503
-
-
Nucera, S.1
Biziato, D.2
De Palma, M.3
-
78
-
-
34247619261
-
Effect of hypoxia on gene expression of bone marrow-derived mesenchymal stem cells and mononuclear cells
-
COI: 1:CAS:528:DC%2BD2sXlvFyqu7w%3D, PID: 17289933
-
Ohnishi, S., T. Yasuda, S. Kitamura, and N. Nagaya. Effect of hypoxia on gene expression of bone marrow-derived mesenchymal stem cells and mononuclear cells. Stem Cells 25:1166–1177, 2007.
-
(2007)
Stem Cells
, vol.25
, pp. 1166-1177
-
-
Ohnishi, S.1
Yasuda, T.2
Kitamura, S.3
Nagaya, N.4
-
79
-
-
84878560866
-
Transplantation of bone-marrow-derived mesenchymal and epidermal stem cells contribute to wound healing with different regenerative features
-
COI: 1:CAS:528:DC%2BC3sXoslWitL0%3D, PID: 23568655
-
Peng, L. H., Z. Y. Mao, X. T. Qi, X. Chen, N. Li, Y. Tabata, and J. Q. Gao. Transplantation of bone-marrow-derived mesenchymal and epidermal stem cells contribute to wound healing with different regenerative features. Cell Tissue Res. 352:573–583, 2013.
-
(2013)
Cell Tissue Res.
, vol.352
, pp. 573-583
-
-
Peng, L.H.1
Mao, Z.Y.2
Qi, X.T.3
Chen, X.4
Li, N.5
Tabata, Y.6
Gao, J.Q.7
-
80
-
-
84888639681
-
The roles of TGFbeta in the tumour microenvironment
-
Pickup, M., S. Novitskiy, and H. L. Moses. The roles of TGFbeta in the tumour microenvironment. Nat. Rev. Cancer 13:788–799, 2014.
-
(2014)
Nat. Rev. Cancer
, vol.13
, pp. 788-799
-
-
Pickup, M.1
Novitskiy, S.2
Moses, H.L.3
-
81
-
-
63149088164
-
Trophic macrophages in development and disease
-
COI: 1:CAS:528:DC%2BD1MXjtFCisbc%3D, PID: 19282852
-
Pollard, J. W. Trophic macrophages in development and disease. Nat. Rev. Immunol. 9:259–270, 2009.
-
(2009)
Nat. Rev. Immunol.
, vol.9
, pp. 259-270
-
-
Pollard, J.W.1
-
82
-
-
67651111095
-
A distinguishing gene signature shared by tumor-infiltrating Tie2-expressing monocytes, blood “Resident” Monocytes, and embryonic macrophages suggests common functions and developmental relationships
-
COI: 1:CAS:528:DC%2BD1MXpsVGjsro%3D, PID: 19383967
-
Pucci, F., M. A. Venneri, D. Biziato, A. Nonis, D. Moi, A. Sica, C. Di Serio, L. Naldini, and M. De Palma. A distinguishing gene signature shared by tumor-infiltrating Tie2-expressing monocytes, blood “Resident” Monocytes, and embryonic macrophages suggests common functions and developmental relationships. Blood 114:901–914, 2009.
-
(2009)
Blood
, vol.114
, pp. 901-914
-
-
Pucci, F.1
Venneri, M.A.2
Biziato, D.3
Nonis, A.4
Moi, D.5
Sica, A.6
Di Serio, C.7
Naldini, L.8
De Palma, M.9
-
83
-
-
79955837932
-
Metabolic markers in relation to hypoxia; staining patterns and colocalization of pimonidazole, HIF-1alpha, CAIX, LDH-5, GLUT-1, MCT1 and MCT4
-
PID: 21569415
-
Rademakers, S. E., J. Lok, A. J. van der Kogel, J. Bussink, and J. H. Kaanders. Metabolic markers in relation to hypoxia; staining patterns and colocalization of pimonidazole, HIF-1alpha, CAIX, LDH-5, GLUT-1, MCT1 and MCT4. BMC Cancer 11:167, 2011.
-
(2011)
BMC Cancer
, vol.11
, pp. 167
-
-
Rademakers, S.E.1
Lok, J.2
van der Kogel, A.J.3
Bussink, J.4
Kaanders, J.H.5
-
84
-
-
78649872095
-
Endothelial progenitor cells: quo vadis?
-
COI: 1:CAS:528:DC%2BC3MXhtlarsbo%3D, PID: 20673769
-
Richardson, M. R., and M. C. Yoder. Endothelial progenitor cells: quo vadis? J. Mol. Cell. Cardiol. 50:266–272, 2011.
-
(2011)
J. Mol. Cell. Cardiol.
, vol.50
, pp. 266-272
-
-
Richardson, M.R.1
Yoder, M.C.2
-
85
-
-
0030061765
-
Dopamine secretion by PC12 cells microencapsulated in a hydroxyethyl methacrylate–methyl methacrylate copolymer
-
COI: 1:CAS:528:DyaK28XovVSntw%3D%3D, PID: 8745323
-
Roberts, T., U. De Boni, and M. V. Sefton. Dopamine secretion by PC12 cells microencapsulated in a hydroxyethyl methacrylate–methyl methacrylate copolymer. Biomaterials 17:267–275, 1996.
-
(1996)
Biomaterials
, vol.17
, pp. 267-275
-
-
Roberts, T.1
De Boni, U.2
Sefton, M.V.3
-
86
-
-
84858794257
-
A novel Ly6C/Ly6G-based strategy to analyze the mouse splenic myeloid compartment
-
COI: 1:CAS:528:DC%2BC38Xkt1Cmsb8%3D
-
Rose, S., A. Misharin, and H. Perlman. A novel Ly6C/Ly6G-based strategy to analyze the mouse splenic myeloid compartment. Cytometry Part A 81A:343–350, 2012.
-
(2012)
Cytometry Part A
, vol.81A
, pp. 343-350
-
-
Rose, S.1
Misharin, A.2
Perlman, H.3
-
87
-
-
78650969682
-
The chemokine CXCL12 regulates monocyte-macrophage differentiation and runx3 expression
-
COI: 1:CAS:528:DC%2BC3MXhtFGrsLc%3D, PID: 20930067
-
Sanchez-Martin, L., A. Estecha, R. Samaniego, S. Sanchez-Ramon, M. A. Vega, and P. Sanchez-Mateos. The chemokine CXCL12 regulates monocyte-macrophage differentiation and runx3 expression. Blood 117:88–97, 2011.
-
(2011)
Blood
, vol.117
, pp. 88-97
-
-
Sanchez-Martin, L.1
Estecha, A.2
Samaniego, R.3
Sanchez-Ramon, S.4
Vega, M.A.5
Sanchez-Mateos, P.6
-
88
-
-
33749542764
-
Coregulation of vascular tube stabilization by endothelial cell timp-2 and pericyte timp-3
-
COI: 1:CAS:528:DC%2BD28XhtFSisLnO, PID: 17030988
-
Saunders, W. B., B. L. Bohnsack, J. B. Faske, N. J. Anthis, K. J. Bayless, K. K. Hirschi, and G. E. Davis. Coregulation of vascular tube stabilization by endothelial cell timp-2 and pericyte timp-3. J. Cell Biol. 175:179–191, 2006.
-
(2006)
J. Cell Biol.
, vol.175
, pp. 179-191
-
-
Saunders, W.B.1
Bohnsack, B.L.2
Faske, J.B.3
Anthis, N.J.4
Bayless, K.J.5
Hirschi, K.K.6
Davis, G.E.7
-
89
-
-
0035027828
-
Transcription factor HIF-1 is a necessary mediator of the pasteur effect in mammalian cells
-
COI: 1:CAS:528:DC%2BD3MXjtF2jsb0%3D, PID: 11313469
-
Seagroves, T. N., H. E. Ryan, H. Lu, B. G. Wouters, M. Knapp, P. Thibault, K. Laderoute, and R. S. Johnson. Transcription factor HIF-1 is a necessary mediator of the pasteur effect in mammalian cells. Mol. Cell. Biol. 21:3436–3444, 2001.
-
(2001)
Mol. Cell. Biol.
, vol.21
, pp. 3436-3444
-
-
Seagroves, T.N.1
Ryan, H.E.2
Lu, H.3
Wouters, B.G.4
Knapp, M.5
Thibault, P.6
Laderoute, K.7
Johnson, R.S.8
-
90
-
-
84856739946
-
Hypoxia-inducible factors in physiology and medicine
-
COI: 1:CAS:528:DC%2BC38XhvFaqsrY%3D, PID: 22304911
-
Semenza, G. L. Hypoxia-inducible factors in physiology and medicine. Cell 148:399–408, 2012.
-
(2012)
Cell
, vol.148
, pp. 399-408
-
-
Semenza, G.L.1
-
91
-
-
38749090588
-
Strikingly different angiogenic properties of endothelial progenitor cell subpopulations: insights from a novel human angiogenesis assay
-
COI: 1:CAS:528:DC%2BD1cXhslGrtbw%3D, PID: 18261686
-
Sieveking, D. P., A. Buckle, D. S. Celermajer, and M. K. Ng. Strikingly different angiogenic properties of endothelial progenitor cell subpopulations: insights from a novel human angiogenesis assay. J. Am. Coll. Cardiol. 51:660–668, 2008.
-
(2008)
J. Am. Coll. Cardiol.
, vol.51
, pp. 660-668
-
-
Sieveking, D.P.1
Buckle, A.2
Celermajer, D.S.3
Ng, M.K.4
-
92
-
-
79751504754
-
Mesenchymal stem cells: mechanisms of inflammation
-
COI: 1:CAS:528:DC%2BC3MXjtVWrs7g%3D, PID: 21073342
-
Singer, N. G., and A. I. Caplan. Mesenchymal stem cells: mechanisms of inflammation. Annu. Rev. Pathol. 6:457–478, 2011.
-
(2011)
Annu. Rev. Pathol.
, vol.6
, pp. 457-478
-
-
Singer, N.G.1
Caplan, A.I.2
-
93
-
-
0033517356
-
Cutaneous wound healing
-
COI: 1:CAS:528:DyaK1MXmtVyrurY%3D, PID: 10471461
-
Singer, A. J., and R. A. Clark. Cutaneous wound healing. N. Engl. J. Med. 341:738–746, 1999.
-
(1999)
N. Engl. J. Med.
, vol.341
, pp. 738-746
-
-
Singer, A.J.1
Clark, R.A.2
-
94
-
-
84859700702
-
Endothelial HIF-2alpha regulates murine pathological angiogenesis and revascularization processes
-
COI: 1:CAS:528:DC%2BC38Xlt1egurg%3D, PID: 22426208
-
Skuli, N., A. J. Majmundar, B. L. Krock, R. C. Mesquita, L. K. Mathew, Z. L. Quinn, A. Runge, L. Liu, M. N. Kim, J. Liang, S. Schenkel, A. G. Yodh, B. Keith, and M. C. Simon. Endothelial HIF-2alpha regulates murine pathological angiogenesis and revascularization processes. J. Clin. Investig. 122:1427–1443, 2012.
-
(2012)
J. Clin. Investig.
, vol.122
, pp. 1427-1443
-
-
Skuli, N.1
Majmundar, A.J.2
Krock, B.L.3
Mesquita, R.C.4
Mathew, L.K.5
Quinn, Z.L.6
Runge, A.7
Liu, L.8
Kim, M.N.9
Liang, J.10
Schenkel, S.11
Yodh, A.G.12
Keith, B.13
Simon, M.C.14
-
95
-
-
84896055839
-
The role of macrophage phenotype in vascularization of tissue engineering scaffolds
-
COI: 1:CAS:528:DC%2BC2cXjtl2gtrg%3D, PID: 24589361
-
Spiller, K. L., R. R. Anfang, K. J. Spiller, J. Ng, K. R. Nakazawa, J. W. Daulton, and G. Vunjak-Novakovic. The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials 35:4477–4488, 2014.
-
(2014)
Biomaterials
, vol.35
, pp. 4477-4488
-
-
Spiller, K.L.1
Anfang, R.R.2
Spiller, K.J.3
Ng, J.4
Nakazawa, K.R.5
Daulton, J.W.6
Vunjak-Novakovic, G.7
-
96
-
-
84900991885
-
The impact of the immune system on tumor: Angiogenesis and vascular remodeling
-
Stockmann, C., D. Schadendorf, R. Klose, and I. Helfrich. The impact of the immune system on tumor: Angiogenesis and vascular remodeling. Front Oncol 4:69, 2014.
-
(2014)
Front Oncol
, vol.4
, pp. 69
-
-
Stockmann, C.1
Schadendorf, D.2
Klose, R.3
Helfrich, I.4
-
97
-
-
84900991885
-
The impact of the immune system on tumor: angiogenesis and vascular remodeling
-
PID: 24782982
-
Stockmann, C., D. Schadendorf, R. Klose, and I. Helfrich. The impact of the immune system on tumor: angiogenesis and vascular remodeling. Front Oncol. 4:69, 2014.
-
(2014)
Front Oncol.
, vol.4
, pp. 69
-
-
Stockmann, C.1
Schadendorf, D.2
Klose, R.3
Helfrich, I.4
-
98
-
-
84892777476
-
Comparing ct perfusion with oxygen partial pressure in a rabbit VX2 soft-tissue tumor model
-
COI: 1:CAS:528:DC%2BC2cXmtl2luw%3D%3D, PID: 24078878
-
Sun, C. J., C. Li, H. B. Lv, C. Zhao, J. M. Yu, G. H. Wang, Y. X. Luo, Y. Li, M. Xiao, J. Yin, and J. Y. Lang. Comparing ct perfusion with oxygen partial pressure in a rabbit VX2 soft-tissue tumor model. J. Radiat. Res. 55:183–190, 2014.
-
(2014)
J. Radiat. Res.
, vol.55
, pp. 183-190
-
-
Sun, C.J.1
Li, C.2
Lv, H.B.3
Zhao, C.4
Yu, J.M.5
Wang, G.H.6
Luo, Y.X.7
Li, Y.8
Xiao, M.9
Yin, J.10
Lang, J.Y.11
-
99
-
-
0032945433
-
Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization
-
COI: 1:CAS:528:DyaK1MXisFOksbs%3D, PID: 10202935
-
Takahashi, T., C. Kalka, H. Masuda, D. Chen, M. Silver, M. Kearney, M. Magner, J. M. Isner, and T. Asahara. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat. Med. 5:434–438, 1999.
-
(1999)
Nat. Med.
, vol.5
, pp. 434-438
-
-
Takahashi, T.1
Kalka, C.2
Masuda, H.3
Chen, D.4
Silver, M.5
Kearney, M.6
Magner, M.7
Isner, J.M.8
Asahara, T.9
-
100
-
-
65549145501
-
Neutrophils: key mediators of tumour angiogenesis: neutrophils in tumour angiogenesis
-
COI: 1:CAS:528:DC%2BD1MXotV2ju7g%3D, PID: 19563607
-
Tazzyman, S., C. E. Lewis, and C. Murdoch. Neutrophils: key mediators of tumour angiogenesis: neutrophils in tumour angiogenesis. Int. J. Exp. Pathol. 90:222–231, 2009.
-
(2009)
Int. J. Exp. Pathol.
, vol.90
, pp. 222-231
-
-
Tazzyman, S.1
Lewis, C.E.2
Murdoch, C.3
-
101
-
-
84874300952
-
Late outgrowth endothelial cells resemble mature endothelial cells and are not derived from bone marrow
-
COI: 1:CAS:528:DC%2BC3sXjvFOiu7Y%3D, PID: 23165527
-
Tura, O., E. M. Skinner, G. R. Barclay, K. Samuel, R. C. Gallagher, M. Brittan, P. W. Hadoke, D. E. Newby, M. L. Turner, and N. L. Mills. Late outgrowth endothelial cells resemble mature endothelial cells and are not derived from bone marrow. Stem Cells 31:338–348, 2013.
-
(2013)
Stem Cells
, vol.31
, pp. 338-348
-
-
Tura, O.1
Skinner, E.M.2
Barclay, G.R.3
Samuel, K.4
Gallagher, R.C.5
Brittan, M.6
Hadoke, P.W.7
Newby, D.E.8
Turner, M.L.9
Mills, N.L.10
-
102
-
-
34247849521
-
Macrophage depletion impairs wound healing and increases left ventricular remodeling after myocardial injury in mice
-
PID: 17322368
-
van Amerongen, M. J., M. C. Harmsen, N. van Rooijen, A. H. Petersen, and M. J. van Luyn. Macrophage depletion impairs wound healing and increases left ventricular remodeling after myocardial injury in mice. Am. J. Pathol. 170:818–829, 2007.
-
(2007)
Am. J. Pathol.
, vol.170
, pp. 818-829
-
-
van Amerongen, M.J.1
Harmsen, M.C.2
van Rooijen, N.3
Petersen, A.H.4
van Luyn, M.J.5
-
103
-
-
0032477844
-
Potentiated angiogenic effect of scatter factor/hepatocyte growth factor via induction of vascular endothelial growth factor: the case for paracrine amplification of angiogenesis
-
PID: 9468212
-
Van Belle, E., B. Witzenbichler, D. Chen, M. Silver, L. Chang, R. Schwall, and J. M. Isner. Potentiated angiogenic effect of scatter factor/hepatocyte growth factor via induction of vascular endothelial growth factor: the case for paracrine amplification of angiogenesis. Circulation 97:381–390, 1998.
-
(1998)
Circulation
, vol.97
, pp. 381-390
-
-
Van Belle, E.1
Witzenbichler, B.2
Chen, D.3
Silver, M.4
Chang, L.5
Schwall, R.6
Isner, J.M.7
-
104
-
-
40949115368
-
Biology of HIF-1alpha
-
COI: 1:CAS:528:DC%2BD1cXjtl2jurc%3D, PID: 18259201
-
Weidemann, A., and R. S. Johnson. Biology of HIF-1alpha. Cell Death Differ. 15:621–627, 2008.
-
(2008)
Cell Death Differ.
, vol.15
, pp. 621-627
-
-
Weidemann, A.1
Johnson, R.S.2
-
105
-
-
84864126835
-
CCR2 recruits an inflammatory macrophage subpopulation critical for angiogenesis in tissue repair
-
COI: 1:CAS:528:DC%2BC38XhtFOntrnL, PID: 22577176
-
Willenborg, S., T. Lucas, G. van Loo, J. A. Knipper, T. Krieg, I. Haase, B. Brachvogel, M. Hammerschmidt, A. Nagy, N. Ferrara, M. Pasparakis, and S. A. Eming. CCR2 recruits an inflammatory macrophage subpopulation critical for angiogenesis in tissue repair. Blood 120:613–625, 2012.
-
(2012)
Blood
, vol.120
, pp. 613-625
-
-
Willenborg, S.1
Lucas, T.2
van Loo, G.3
Knipper, J.A.4
Krieg, T.5
Haase, I.6
Brachvogel, B.7
Hammerschmidt, M.8
Nagy, A.9
Ferrara, N.10
Pasparakis, M.11
Eming, S.A.12
-
106
-
-
33746926292
-
Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approach
-
COI: 1:CAS:528:DC%2BD28Xnsl2iu7o%3D, PID: 16832418
-
Zeisberger, S. M., B. Odermatt, C. Marty, A. H. Zehnder-Fjallman, K. Ballmer-Hofer, and R. A. Schwendener. Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approach. Br. J. Cancer 95:272–281, 2006.
-
(2006)
Br. J. Cancer
, vol.95
, pp. 272-281
-
-
Zeisberger, S.M.1
Odermatt, B.2
Marty, C.3
Zehnder-Fjallman, A.H.4
Ballmer-Hofer, K.5
Schwendener, R.A.6
-
107
-
-
84866463459
-
The mobilization, recruitment and contribution of bone marrow-derived endothelial progenitor cells to the tumor neovascularization occur at an early stage and throughout the entire process of hepatocellular carcinoma growth
-
COI: 1:CAS:528:DC%2BC38XhsFKnu77N, PID: 22858892
-
Zhu, H., Q. Shao, X. Sun, Z. Deng, X. Yuan, D. Yu, X. Zhou, and Y. Ding. The mobilization, recruitment and contribution of bone marrow-derived endothelial progenitor cells to the tumor neovascularization occur at an early stage and throughout the entire process of hepatocellular carcinoma growth. Oncol. Rep. 28:1217–1224, 2012.
-
(2012)
Oncol. Rep.
, vol.28
, pp. 1217-1224
-
-
Zhu, H.1
Shao, Q.2
Sun, X.3
Deng, Z.4
Yuan, X.5
Yu, D.6
Zhou, X.7
Ding, Y.8
|