-
1
-
-
52649136162
-
Physiological and transcriptional responses to high concentrations of lactic acid in anaerobic chemostat cultures of Saccharomyces cerevisiae
-
Abbott DA, Suir E, van Maris AJ, Pronk JT (2008) Physiological and transcriptional responses to high concentrations of lactic acid in anaerobic chemostat cultures of Saccharomyces cerevisiae. Appl Environ Microbiol 74(18):5759–5768. doi: 10.1128/AEM.01030-08
-
(2008)
Appl Environ Microbiol
, vol.74
, Issue.18
, pp. 5759-5768
-
-
Abbott, D.A.1
Suir, E.2
Van Maris, A.J.3
Pronk, J.T.4
-
2
-
-
64749093393
-
Catalase overexpression reduces lactic acid-induced oxidative stress in Saccharomyces cerevisiae
-
Abbott DA, Suir E, Duong GH, de Hulster E, Pronk JT, van Maris AJ (2009) Catalase overexpression reduces lactic acid-induced oxidative stress in Saccharomyces cerevisiae. Appl Environ Microbiol 75(8):2320–2325. doi: 10.1128/AEM.00009-09
-
(2009)
Appl Environ Microbiol
, vol.75
, Issue.8
, pp. 2320-2325
-
-
Abbott, D.A.1
Suir, E.2
Duong, G.H.3
De Hulster, E.4
Pronk, J.T.5
Van Maris, A.J.6
-
3
-
-
0041767568
-
Weak organic acid stress inhibits aromatic amino acid uptake by yeast, causing a strong infl uence of amino acid auxotrophies on the phenotypes of membrane transporter mutants
-
Bauer BE, Rossington D, Mollapour M, Mamnun Y, Kuchler K, Piper PW (2003) Weak organic acid stress inhibits aromatic amino acid uptake by yeast, causing a strong infl uence of amino acid auxotrophies on the phenotypes of membrane transporter mutants. Eur J Biochem 270(15):3189–3195
-
(2003)
Eur J Biochem
, vol.270
, Issue.15
, pp. 3189-3195
-
-
Bauer, B.E.1
Rossington, D.2
Mollapour, M.3
Mamnun, Y.4
Kuchler, K.5
Piper, P.W.6
-
4
-
-
0031551022
-
Effect of extracellular acidification on the activity of plasma membrane ATPase and on the cytosolic and vacuolar pH of Saccharomyces cerevisiae
-
Carmelo V, Santos H, Sa-Correia I (1997) Effect of extracellular acidification on the activity of plasma membrane ATPase and on the cytosolic and vacuolar pH of Saccharomyces cerevisiae. Biochim Biophys Acta 1325(1):63–70
-
(1997)
Biochim Biophys Acta
, vol.1325
, Issue.1
, pp. 63-70
-
-
Carmelo, V.1
Santos, H.2
Sa-Correia, I.3
-
5
-
-
77955405903
-
Cytosolic pH is a second messenger for glucose and regulates the PKA pathway through V-ATPase
-
Dechant R, Binda M, Lee SS, Pelet S, Winderickx J, Peter M (2010) Cytosolic pH is a second messenger for glucose and regulates the PKA pathway through V-ATPase. EMBO J 29(15):2515–2526. doi: 10.1038/emboj.2010.138
-
(2010)
EMBO J
, vol.29
, Issue.15
, pp. 2515-2526
-
-
Dechant, R.1
Binda, M.2
Lee, S.S.3
Pelet, S.4
Winderickx, J.5
Peter, M.6
-
6
-
-
14744294675
-
Mixed lactic acid-alcoholic fermentation by Saccharomyces cerevisiae expressing the Lactobacillus casei L(+)-LDH
-
Dequin S, Barre P (1994) Mixed lactic acid-alcoholic fermentation by Saccharomyces cerevisiae expressing the Lactobacillus casei L(+)-LDH. Biotechnology 12(2):173–177
-
(1994)
Biotechnology
, vol.12
, Issue.2
, pp. 173-177
-
-
Dequin, S.1
Barre, P.2
-
7
-
-
84881220384
-
Acetic acid inhibits nutrient uptake in Saccharomyces cerevisiae: Auxotrophy confounds the use of yeast deletion libraries for strain improvement
-
Ding J, Bierma J, Smith MR, Poliner E, Wolfe C, Hadduck AN, Zara S, Jirikovic M, van Zee K, Penner MH, Patton-Vogt J, Bakalinsky AT (2013) Acetic acid inhibits nutrient uptake in Saccharomyces cerevisiae: auxotrophy confounds the use of yeast deletion libraries for strain improvement. Appl Microbiol Biotechnol 97(16):7405–7416. doi: 10.1007/s00253-013-5071-y
-
(2013)
Appl Microbiol Biotechnol
, vol.97
, Issue.16
, pp. 7405-7416
-
-
Ding, J.1
Bierma, J.2
Smith, M.R.3
Poliner, E.4
Wolfe, C.5
Hadduck, A.N.6
Zara, S.7
Jirikovic, M.8
Van Zee, K.9
Penner, M.H.10
Patton-Vogt, J.11
Bakalinsky, A.T.12
-
8
-
-
0344495239
-
Activation and significance of vacuolar H + -ATPase in Saccharomyces cerevisiae adaptation and resistance to the herbicide 2,4- dichlorophenoxyacetic acid
-
Fernandes AR, Durao PJ, Santos PM, Sa-Correia I (2003) Activation and significance of vacuolar H + -ATPase in Saccharomyces cerevisiae adaptation and resistance to the herbicide 2,4- dichlorophenoxyacetic acid. Biochem Biophys Res Commun 312(4):1317–1324
-
(2003)
Biochem Biophys Res Commun
, vol.312
, Issue.4
, pp. 1317-1324
-
-
Fernandes, A.R.1
Durao, P.J.2
Santos, P.M.3
Sa-Correia, I.4
-
9
-
-
25844432253
-
Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes
-
Fernandes AR, Mira NP, Vargas RC, Canelhas I, Sa-Correia I (2005) Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes. Biochem Biophys Res Commun 337(1):95–103. doi: 10.1016/j.bbrc.2005.09.010
-
(2005)
Biochem Biophys Res Commun
, vol.337
, Issue.1
, pp. 95-103
-
-
Fernandes, A.R.1
Mira, N.P.2
Vargas, R.C.3
Canelhas, I.4
Sa-Correia, I.5
-
10
-
-
54449085246
-
Weak organic acids trigger conformational changes of the yeast transcription factor War1 in vivo to elicit stress adaptation
-
Gregori C, Schuller C, Frohner IE, Ammerer G, Kuchler K (2008) Weak organic acids trigger conformational changes of the yeast transcription factor War1 in vivo to elicit stress adaptation. J Biol Chem 283(37):25752–25764. doi: 10.1074/jbc.M803095200
-
(2008)
J Biol Chem
, vol.283
, Issue.37
, pp. 25752-25764
-
-
Gregori, C.1
Schuller, C.2
Frohner, I.E.3
Ammerer, G.4
Kuchler, K.5
-
11
-
-
1542329595
-
Adaptative responses in yeast to the herbicide 2-methyl-4-chlorophenoxyacetic acid at the level of intracellular pH homeostasis
-
Guadalupe Cabral M, Sa-Correia I, Viegas CA (2004) Adaptative responses in yeast to the herbicide 2-methyl-4-chlorophenoxyacetic acid at the level of intracellular pH homeostasis. J Appl Microbiol 96(3):603–612
-
(2004)
J Appl Microbiol
, vol.96
, Issue.3
, pp. 603-612
-
-
Guadalupe Cabral, M.1
Sa-Correia, I.2
Viegas, C.A.3
-
12
-
-
2542479729
-
Lactic acid tolerance determined by measurement of intracellular pH of single cells of Candida krusei and Saccharomyces cerevisiae isolated from fermented maize dough
-
Halm M, Hornbaek T, Arneborg N, Sefa-Dedeh S, Jespersen L (2004) Lactic acid tolerance determined by measurement of intracellular pH of single cells of Candida krusei and Saccharomyces cerevisiae isolated from fermented maize dough. Int J Food Microbiol 94(1):97–103. doi: 10.1016/j.ijfoodmicro.2003.12.019
-
(2004)
Int J Food Microbiol
, vol.94
, Issue.1
, pp. 97-103
-
-
Halm, M.1
Hornbaek, T.2
Arneborg, N.3
Sefa-Dedeh, S.4
Jespersen, L.5
-
13
-
-
0038290314
-
Moderately lipophilic carboxylate compounds are the selective inducers of the Saccharomyces cerevisiae Pdr12p ATP-binding cassette transporter
-
Hatzixanthis K, Mollapour M, Seymour I, Bauer BE, Krapf G, Schuller C, Kuchler K, Piper PW (2003) Moderately lipophilic carboxylate compounds are the selective inducers of the Saccharomyces cerevisiae Pdr12p ATP-binding cassette transporter. Yeast 20(7):575–585. doi: 10.1002/yea.981
-
(2003)
Yeast
, vol.20
, Issue.7
, pp. 575-585
-
-
Hatzixanthis, K.1
Mollapour, M.2
Seymour, I.3
Bauer, B.E.4
Krapf, G.5
Schuller, C.6
Kuchler, K.7
Piper, P.W.8
-
14
-
-
4143122202
-
Benzoic acid, a weak organic acid food preservative, exerts specific effects on intracellular membrane trafficking pathways in Saccharomyces cerevisiae
-
Hazan R, Levine A, Abeliovich H (2004) Benzoic acid, a weak organic acid food preservative, exerts specific effects on intracellular membrane trafficking pathways in Saccharomyces cerevisiae. Appl Environ Microbiol 70(8):4449–4457. doi: 10.1128/AEM.70.8.4449-4457.2004
-
(2004)
Appl Environ Microbiol
, vol.70
, Issue.8
, pp. 4449-4457
-
-
Hazan, R.1
Levine, A.2
Abeliovich, H.3
-
15
-
-
0034135549
-
Factors affecting the fermentative lactic acid production from renewable resources(1)
-
Hofvendahl K, Hahn-Hagerdal B (2000) Factors affecting the fermentative lactic acid production from renewable resources(1). Enzyme Microb Technol 26(2–4):87–107
-
(2000)
Enzyme Microb Technol
, vol.26
, Issue.2-4
, pp. 87-107
-
-
Hofvendahl, K.1
Hahn-Hagerdal, B.2
-
16
-
-
0029808313
-
Activity of the plasma membrane H(+)-ATPase and optimal glycolytic flux are required for rapid adaptation and growth of Saccharomyces cerevisiae in the presence of the weak-acid preservative sorbic acid
-
Holyoak CD, Stratford M, McMullin Z, Cole MB, Crimmins K, Brown AJ, Coote PJ (1996) Activity of the plasma membrane H(+)-ATPase and optimal glycolytic flux are required for rapid adaptation and growth of Saccharomyces cerevisiae in the presence of the weak-acid preservative sorbic acid. Appl Environ Microbiol 62(9):3158–3164
-
(1996)
Appl Environ Microbiol
, vol.62
, Issue.9
, pp. 3158-3164
-
-
Holyoak, C.D.1
Stratford, M.2
McMullin, Z.3
Cole, M.B.4
Crimmins, K.5
Brown, A.J.6
Coote, P.J.7
-
17
-
-
84878016831
-
Utilization of Saccharomyces cerevisiae recombinant strain incapable of both ethanol and glycerol biosynthesis for anaerobic bioproduction
-
Ida Y, Hirasawa T, Furusawa C, Shimizu H (2013) Utilization of Saccharomyces cerevisiae recombinant strain incapable of both ethanol and glycerol biosynthesis for anaerobic bioproduction. Appl Microbiol Biotechnol 97(11):4811–4819. doi: 10.1007/s00253-013-4760-x
-
(2013)
Appl Microbiol Biotechnol
, vol.97
, Issue.11
, pp. 4811-4819
-
-
Ida, Y.1
Hirasawa, T.2
Furusawa, C.3
Shimizu, H.4
-
18
-
-
84892491936
-
An organic acid-tolerant HAA1 -overexpression mutant of an industrial bioethanol strain of Saccharomyces cerevisiae and its application to the production of bioethanol from sugarcane molasses
-
Inaba T, Watanabe D, Yoshiyama Y, Tanaka K, Ogawa J, Takagi H, Shimoi H, Shima J (2013) An organic acid-tolerant HAA1 -overexpression mutant of an industrial bioethanol strain of Saccharomyces cerevisiae and its application to the production of bioethanol from sugarcane molasses. AMB Express 3(1):74. doi: 10.1186/2191-0855-3-74
-
(2013)
AMB Express
, vol.3
, Issue.1
, pp. 74
-
-
Inaba, T.1
Watanabe, D.2
Yoshiyama, Y.3
Tanaka, K.4
Ogawa, J.5
Takagi, H.6
Shimoi, H.7
Shima, J.8
-
19
-
-
17444407064
-
Efficient production of L -lactic acid by metabolically engineered Saccharomyces cerevisiae with a genome-integrated L -lactate dehydrogenase gene
-
Ishida N, Saitoh S, Tokuhiro K, Nagamori E, Matsuyama T, Kitamoto K, Takahashi H (2005) Efficient production of L -lactic acid by metabolically engineered Saccharomyces cerevisiae with a genome-integrated L -lactate dehydrogenase gene. Appl Environ Microbiol 71(4): 1964–1970. doi: 10.1128/AEM.71.4.1964-1970.2005
-
(2005)
Appl Environ Microbiol
, vol.71
, Issue.4
, pp. 1964-1970
-
-
Ishida, N.1
Saitoh, S.2
Tokuhiro, K.3
Nagamori, E.4
Matsuyama, T.5
Kitamoto, K.6
Takahashi, H.7
-
20
-
-
33646771845
-
The effect of pyruvate decarboxylase gene knockout in Saccharomyces cerevisiae on L -lactic acid production
-
Ishida N, Saitoh S, Onishi T, Tokuhiro K, Nagamori E, Kitamoto K, Takahashi H (2006) The effect of pyruvate decarboxylase gene knockout in Saccharomyces cerevisiae on L -lactic acid production. Biosci Biotechnol Biochem 70(5):1148–1153
-
(2006)
Biosci Biotechnol Biochem
, vol.70
, Issue.5
, pp. 1148-1153
-
-
Ishida, N.1
Saitoh, S.2
Onishi, T.3
Tokuhiro, K.4
Nagamori, E.5
Kitamoto, K.6
Takahashi, H.7
-
21
-
-
0032481048
-
The receptor Msn5 exports the phosphorylated transcription factor Pho4 out of the nucleus
-
Kaffman A, Rank NM, O’Neill EM, Huang LS, O’Shea EK (1998) The receptor Msn5 exports the phosphorylated transcription factor Pho4 out of the nucleus. Nature 396(6710):482–486. doi: 10.1038/24898
-
(1998)
Nature
, vol.396
, Issue.6710
, pp. 482-486
-
-
Kaffman, A.1
Rank, N.M.2
O’Neill, E.M.3
Huang, L.S.4
O’Shea, E.K.5
-
22
-
-
33747337558
-
Yeast genes involved in response to lactic acid and acetic acid: Acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p
-
Kawahata M, Masaki K, Fujii T, Iefuji H (2006) Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p. FEMS Yeast Res 6(6):924–936. doi: 10.1111/j.1567-1364.2006.00089.x
-
(2006)
FEMS Yeast Res
, vol.6
, Issue.6
, pp. 924-936
-
-
Kawahata, M.1
Masaki, K.2
Fujii, T.3
Iefuji, H.4
-
23
-
-
0037370028
-
War1p, a novel transcription factor controlling weak acid stress response in yeast
-
Kren A, Mamnun YM, Bauer BE, Schuller C, Wolfger H, Hatzixanthis K, Mollapour M, Gregori C, Piper P, Kuchler K (2003) War1p, a novel transcription factor controlling weak acid stress response in yeast. Mol Cell Biol 23(5):1775–1785
-
(2003)
Mol Cell Biol
, vol.23
, Issue.5
, pp. 1775-1785
-
-
Kren, A.1
Mamnun, Y.M.2
Bauer, B.E.3
Schuller, C.4
Wolfger, H.5
Hatzixanthis, K.6
Mollapour, M.7
Gregori, C.8
Piper, P.9
Kuchler, K.10
-
24
-
-
0036678040
-
Cytochrome c release and mitochondria involvement in programmed cell death induced by acetic acid in Saccharomyces cerevisiae
-
Ludovico P, Rodrigues F, Almeida A, Silva MT, Barrientos A, Corte-Real M (2002) Cytochrome c release and mitochondria involvement in programmed cell death induced by acetic acid in Saccharomyces cerevisiae. Mol Biol Cell 13(8):2598–2606. doi: 10.1091/mbc.E01-12-0161
-
(2002)
Mol Biol Cell
, vol.13
, Issue.8
, pp. 2598-2606
-
-
Ludovico, P.1
Rodrigues, F.2
Almeida, A.3
Silva, M.T.4
Barrientos, A.5
Corte-Real, M.6
-
25
-
-
50649120655
-
Vacuolar and plasma membrane proton pumps collaborate to achieve cytosolic pH homeostasis in yeast
-
Martinez-Munoz GA, Kane P (2008) Vacuolar and plasma membrane proton pumps collaborate to achieve cytosolic pH homeostasis in yeast. J Biol Chem 283(29):20309–20319. doi: 10.1074/jbc.M710470200
-
(2008)
J Biol Chem
, vol.283
, Issue.29
, pp. 20309-20319
-
-
Martinez-Munoz, G.A.1
Kane, P.2
-
26
-
-
77958169154
-
Genomic expression program involving the Haa1pregulon in Saccharomyces cerevisiae response to acetic acid
-
Mira NP, Becker JD, Sa-Correia I (2010a) Genomic expression program involving the Haa1pregulon in Saccharomyces cerevisiae response to acetic acid. OMICS 14(5):587–601. doi: 10.1089/omi.2010.0048
-
(2010)
OMICS
, vol.14
, Issue.5
, pp. 587-601
-
-
Mira, N.P.1
Becker, J.D.2
Sa-Correia, I.3
-
27
-
-
77958162502
-
Adaptive response and tolerance to weak acids in Saccharomyces cerevisiae: A genome-wide view
-
Mira NP, Teixeira MC, Sa-Correia I (2010b) Adaptive response and tolerance to weak acids in Saccharomyces cerevisiae: a genome-wide view. OMICS 14(5):525–540. doi: 10.1089/omi.2010.0072
-
(2010)
OMICS
, vol.14
, Issue.5
, pp. 525-540
-
-
Mira, N.P.1
Teixeira, M.C.2
Sa-Correia, I.3
-
28
-
-
80052432738
-
Identification of a DNA-binding site for the transcription factor Haa1, required for Saccharomyces cerevisiae response to acetic acid stress
-
Mira NP, Henriques SF, Keller G, Teixeira MC, Matos RG, Arraiano CM, Winge DR, Sa-Correia I (2011) Identification of a DNA-binding site for the transcription factor Haa1, required for Saccharomyces cerevisiae response to acetic acid stress. Nucleic Acids Res 39(16):6896–6907. doi: 10.1093/nar/gkr228
-
(2011)
Nucleic Acids Res
, vol.39
, Issue.16
, pp. 6896-6907
-
-
Mira, N.P.1
Henriques, S.F.2
Keller, G.3
Teixeira, M.C.4
Matos, R.G.5
Arraiano, C.M.6
Winge, D.R.7
Sa-Correia, I.8
-
29
-
-
34548775911
-
Hog1 mitogen-activated protein kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid
-
Mollapour M, Piper PW (2007) Hog1 mitogen-activated protein kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid. Mol Cell Biol 27(18):6446–6456. doi: 10.1128/MCB.02205-06
-
(2007)
Mol Cell Biol
, vol.27
, Issue.18
, pp. 6446-6456
-
-
Mollapour, M.1
Piper, P.W.2
-
30
-
-
4444290337
-
Screening the yeast deletant mutant collection for hypersensitivity and hyper-resistance to sorbate, a weak organic acid food preservative
-
Mollapour M, Fong D, Balakrishnan K, Harris N, Thompson S, Schuller C, Kuchler K, Piper PW (2004) Screening the yeast deletant mutant collection for hypersensitivity and hyper-resistance to sorbate, a weak organic acid food preservative. Yeast 21(11):927–946. doi: 10.1002/yea.1141
-
(2004)
Yeast
, vol.21
, Issue.11
, pp. 927-946
-
-
Mollapour, M.1
Fong, D.2
Balakrishnan, K.3
Harris, N.4
Thompson, S.5
Schuller, C.6
Kuchler, K.7
Piper, P.W.8
-
31
-
-
71049194353
-
Presence of the Fps1p aquaglyceroporin channel is essential for Hog1p activation, but suppresses Slt2(Mpk1)p activation, with acetic acid stress of yeast
-
Mollapour M, Shepherd A, Piper PW (2009) Presence of the Fps1p aquaglyceroporin channel is essential for Hog1p activation, but suppresses Slt2(Mpk1)p activation, with acetic acid stress of yeast. Microbiology 155(Pt 10):3304–3311. doi: 10.1099/mic.0.030502-0
-
(2009)
Microbiology
, vol.155
, pp. 3304-3311
-
-
Mollapour, M.1
Shepherd, A.2
Piper, P.W.3
-
32
-
-
0034766303
-
Acetic acid and lactic acid inhibition of growth of Saccharomyces cerevisiae by different mechanisms
-
Narendranath NV (2001) Acetic acid and lactic acid inhibition of growth of Saccharomyces cerevisiae by different mechanisms. J Am Soc Brew Chem 59(4):187–194
-
(2001)
J am Soc Brew Chem
, vol.59
, Issue.4
, pp. 187-194
-
-
Narendranath, N.V.1
-
33
-
-
74149084370
-
Biotechnological production of enantiomeric pure lactic acid from renewable resources: Recent achievements, perspectives, and limits
-
Okano K, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) Biotechnological production of enantiomeric pure lactic acid from renewable resources: recent achievements, perspectives, and limits. Appl Microbiol Biotechnol 85(3):413–423. doi: 10.1007/s00253-009-2280-5
-
(2010)
Appl Microbiol Biotechnol
, vol.85
, Issue.3
, pp. 413-423
-
-
Okano, K.1
Tanaka, T.2
Ogino, C.3
Fukuda, H.4
Kondo, A.5
-
34
-
-
84866648366
-
Genome-wide analysis of intracellular pH reveals quantitative control of cell division rate by pH(C) in Saccharomyces cerevisiae
-
Orij R, Urbanus ML, Vizeacoumar FJ, Giaever G, Boone C, Nislow C, Brul S, Smits GJ (2012) Genome-wide analysis of intracellular pH reveals quantitative control of cell division rate by pH(c) in Saccharomyces cerevisiae. Genome Biol 13(9):R80. doi: 10.1186/gb-2012-13-9-r80
-
(2012)
Genome Biol
, vol.13
, Issue.9
-
-
Orij, R.1
Urbanus, M.L.2
Vizeacoumar, F.J.3
Giaever, G.4
Boone, C.5
Nislow, C.6
Brul, S.7
Smits, G.J.8
-
35
-
-
0035131223
-
Genetic manipulation of 6-phosphofructo-1-kinase and fructose 2,6-bisphosphate levels affects the extent to which benzoic acid inhibits the growth of Saccharomyces cerevisiae
-
Pearce AK, Booth IR, Brown AJ (2001) Genetic manipulation of 6-phosphofructo-1-kinase and fructose 2,6-bisphosphate levels affects the extent to which benzoic acid inhibits the growth of Saccharomyces cerevisiae. Microbiology 147(Pt 2):403–410
-
(2001)
Microbiology
, vol.147
, pp. 403-410
-
-
Pearce, A.K.1
Booth, I.R.2
Brown, A.J.3
-
36
-
-
0033458078
-
Yeast superoxide dismutase mutants reveal a pro-oxidant action of weak organic acid food preservatives
-
Piper PW (1999) Yeast superoxide dismutase mutants reveal a pro-oxidant action of weak organic acid food preservatives. Free Radic Biol Med 27(11-12):1219–1227
-
(1999)
Free Radic Biol Med
, vol.27
, Issue.11-12
, pp. 1219-1227
-
-
Piper, P.W.1
-
37
-
-
80055115197
-
Resistance of yeasts to weak organic acid food preservatives
-
Piper PW (2011) Resistance of yeasts to weak organic acid food preservatives. Adv Appl Microbiol 77:97–113. doi: 10.1016/B978-0-12-387044-5.00004-2
-
(2011)
Adv Appl Microbiol
, vol.77
, pp. 97-113
-
-
Piper, P.W.1
-
38
-
-
0030935908
-
Hsp30, the integral plasma membrane heat shock protein of Saccharomyces cerevisiae, is a stress-inducible regulator of plasma membrane H(+)-ATPase
-
Piper PW, Ortiz-Calderon C, Holyoak C, Coote P, Cole M (1997) Hsp30, the integral plasma membrane heat shock protein of Saccharomyces cerevisiae, is a stress-inducible regulator of plasma membrane H(+)-ATPase. Cell Stress Chaperones 2(1):12–24
-
(1997)
Cell Stress Chaperones
, vol.2
, Issue.1
, pp. 12-24
-
-
Piper, P.W.1
Ortiz-Calderon, C.2
Holyoak, C.3
Coote, P.4
Cole, M.5
-
39
-
-
0032479995
-
The Pdr12 ABC transporter is required for the development of weak organic acid resistance in yeast
-
Piper P, Mahe Y, Thompson S, Pandjaitan R, Holyoak C, Egner R, Muhlbauer M, Coote P, Kuchler K (1998) The Pdr12 ABC transporter is required for the development of weak organic acid resistance in yeast. EMBO J 17(15):4257–4265. doi: 10.1093/emboj/17.15.4257
-
(1998)
EMBO J
, vol.17
, Issue.15
, pp. 4257-4265
-
-
Piper, P.1
Mahe, Y.2
Thompson, S.3
Pandjaitan, R.4
Holyoak, C.5
Egner, R.6
Muhlbauer, M.7
Coote, P.8
Kuchler, K.9
-
40
-
-
18444393083
-
Genetically engineered wine yeast produces a high concentration of L -lactic acid of extremely high optical purity
-
Saitoh S, Ishida N, Onishi T, Tokuhiro K, Nagamori E, Kitamoto K, Takahashi H (2005) Genetically engineered wine yeast produces a high concentration of L -lactic acid of extremely high optical purity. Appl Environ Microbiol 71(5):2789–2792. doi: 10.1128/AEM.71.5.2789-2792.2005
-
(2005)
Appl Environ Microbiol
, vol.71
, Issue.5
, pp. 2789-2792
-
-
Saitoh, S.1
Ishida, N.2
Onishi, T.3
Tokuhiro, K.4
Nagamori, E.5
Kitamoto, K.6
Takahashi, H.7
-
41
-
-
0742270637
-
Global phenotypic analysis and transcriptional profiling defines the weak acid stress response regulon in Saccharomyces cerevisiae
-
Schuller C, Mamnun YM, Mollapour M, Krapf G, Schuster M, Bauer BE, Piper PW, Kuchler K (2004) Global phenotypic analysis and transcriptional profiling defines the weak acid stress response regulon in Saccharomyces cerevisiae. Mol Biol Cell 15(2):706–720. doi: 10.1091/mbc.E03-05-0322
-
(2004)
Mol Biol Cell
, vol.15
, Issue.2
, pp. 706-720
-
-
Schuller, C.1
Mamnun, Y.M.2
Mollapour, M.3
Krapf, G.4
Schuster, M.5
Bauer, B.E.6
Piper, P.W.7
Kuchler, K.8
-
42
-
-
33751006150
-
The SPI1 gene, encoding a glycosylphosphatidylinositol- anchored cell wall protein, plays a prominent role in the development of yeast resistance to lipophilic weak-acid food preservatives
-
Simoes T, Mira NP, Fernandes AR, Sa-Correia I (2006) The SPI1 gene, encoding a glycosylphosphatidylinositol- anchored cell wall protein, plays a prominent role in the development of yeast resistance to lipophilic weak-acid food preservatives. Appl Environ Microbiol 72(11):7168–7175. doi: 10.1128/AEM.01476-06
-
(2006)
Appl Environ Microbiol
, vol.72
, Issue.11
, pp. 7168-7175
-
-
Simoes, T.1
Mira, N.P.2
Fernandes, A.R.3
Sa-Correia, I.4
-
43
-
-
0037255676
-
Lactic acid production by Saccharomyces cerevisiae expressing a Rhizopus oryzae lactate dehydrogenase gene
-
Skory CD (2003) Lactic acid production by Saccharomyces cerevisiae expressing a Rhizopus oryzae lactate dehydrogenase gene. J Ind Microbiol Biotechnol 30(1):22–27. doi: 10.1007/s10295-002-0004-2
-
(2003)
J Ind Microbiol Biotechnol
, vol.30
, Issue.1
, pp. 22-27
-
-
Skory, C.D.1
-
44
-
-
0031740733
-
Evidence that sorbic acid does not inhibit yeast as a classic “weak acid preservative”
-
Stratford M, Anslow PA (1998) Evidence that sorbic acid does not inhibit yeast as a classic “weak acid preservative”. Lett Appl Microbiol 27(4):203–206
-
(1998)
Lett Appl Microbiol
, vol.27
, Issue.4
, pp. 203-206
-
-
Stratford, M.1
Anslow, P.A.2
-
45
-
-
84872468614
-
Weakacid preservatives: PH and proton movements in the yeast Saccharomyces cerevisiae
-
Stratford M, Nebe-von-Caron G, Steels H, Novodvorska M, Ueckert J, Archer DB (2013) Weakacid preservatives: pH and proton movements in the yeast Saccharomyces cerevisiae. Int J Food Microbiol 161(3):164–171. doi: 10.1016/j.ijfoodmicro.2012.12.013
-
(2013)
Int J Food Microbiol
, vol.161
, Issue.3
, pp. 164-171
-
-
Stratford, M.1
Nebe-Von-Caron, G.2
Steels, H.3
Novodvorska, M.4
Ueckert, J.5
Archer, D.B.6
-
46
-
-
85047689314
-
Nuclear localization of Haa1, which is linked to its phosphorylation status, mediates lactic acid tolerance in Saccharomyces cerevisiae
-
Sugiyama M, Akase SP, Nakanishi R, Horie H, Kaneko Y, Harashima S (2014) Nuclear localization of Haa1, which is linked to its phosphorylation status, mediates lactic acid tolerance in Saccharomyces cerevisiae. Appl Environ Microbiol 80(11):3488–3495. doi: 10.1128/AEM.04241-13
-
(2014)
Appl Environ Microbiol
, vol.80
, Issue.11
, pp. 3488-3495
-
-
Sugiyama, M.1
Akase, S.P.2
Nakanishi, R.3
Horie, H.4
Kaneko, Y.5
Harashima, S.6
-
47
-
-
84857689251
-
Lactic-acid stress causes vacuolar fragmentation and impairs intracellular amino-acid homeostasis in Saccharomyces cerevisiae
-
Suzuki T, Sugiyama M, Wakazono K, Kaneko Y, Harashima S (2012) Lactic-acid stress causes vacuolar fragmentation and impairs intracellular amino-acid homeostasis in Saccharomyces cerevisiae. J Biosci Bioeng 113(4):421–430. doi: 10.1016/j.jbiosc.2011.11.010
-
(2012)
J Biosci Bioeng
, vol.113
, Issue.4
, pp. 421-430
-
-
Suzuki, T.1
Sugiyama, M.2
Wakazono, K.3
Kaneko, Y.4
Harashima, S.5
-
48
-
-
84876330319
-
Disruption of multiple genes whose deletion causes lactic-acid resistance improves lactic-acid resistance and productivity in Saccharomyces cerevisiae
-
Suzuki T, Sakamoto T, Sugiyama M, Ishida N, Kambe H, Obata S, Kaneko Y, Takahashi H, Harashima S (2013) Disruption of multiple genes whose deletion causes lactic-acid resistance improves lactic-acid resistance and productivity in Saccharomyces cerevisiae. J Biosci Bioeng 115(5):467–474. doi: 10.1016/j.jbiosc.2012.11.014
-
(2013)
J Biosci Bioeng
, vol.115
, Issue.5
, pp. 467-474
-
-
Suzuki, T.1
Sakamoto, T.2
Sugiyama, M.3
Ishida, N.4
Kambe, H.5
Obata, S.6
Kaneko, Y.7
Takahashi, H.8
Harashima, S.9
-
49
-
-
84868611282
-
Enhancement of acetic acid tolerance in Saccharomyces cerevisiae by overexpression of the HAA1 gene, encoding a transcriptional activator
-
Tanaka K, Ishii Y, Ogawa J, Shima J (2012) Enhancement of acetic acid tolerance in Saccharomyces cerevisiae by overexpression of the HAA1 gene, encoding a transcriptional activator. Appl Environ Microbiol 78(22):8161–8163. doi: 10.1128/AEM.02356-12
-
(2012)
Appl Environ Microbiol
, vol.78
, Issue.22
, pp. 8161-8163
-
-
Tanaka, K.1
Ishii, Y.2
Ogawa, J.3
Shima, J.4
-
50
-
-
0036086750
-
AQR1 gene (ORF YNL065w) encodes a plasma membrane transporter of the major facilitator superfamily that confers resistance to short-chain monocarboxylic acids and quinidine in Saccharomyces cerevisiae
-
Tenreiro S, Nunes PA, Viegas CA, Neves MS, Teixeira MC, Cabral MG, Sa-Correia I (2002) AQR1 gene (ORF YNL065w) encodes a plasma membrane transporter of the major facilitator superfamily that confers resistance to short-chain monocarboxylic acids and quinidine in Saccharomyces cerevisiae. Biochem Biophys Res Commun 292(3):741–748. doi: 10.1006/bbrc.2002.6703
-
(2002)
Biochem Biophys Res Commun
, vol.292
, Issue.3
, pp. 741-748
-
-
Tenreiro, S.1
Nunes, P.A.2
Viegas, C.A.3
Neves, M.S.4
Teixeira, M.C.5
Cabral, M.G.6
Sa-Correia, I.7
-
51
-
-
84865715286
-
Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress
-
Tkach JM, Yimit A, Lee AY, Riffl e M, Costanzo M, Jaschob D, Hendry JA, Ou J, Moffat J, Boone C, Davis TN, Nislow C, Brown GW (2012) Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress. Nat Cell Biol 14(9):966–976. doi: 10.1038/ncb2549
-
(2012)
Nat Cell Biol
, vol.14
, Issue.9
, pp. 966-976
-
-
Tkach, J.M.1
Yimit, A.2
Lee, A.Y.3
Riffl E, M.4
Costanzo, M.5
Jaschob, D.6
Hendry, J.A.7
Ou, J.8
Moffat, J.9
Boone, C.10
Davis, T.N.11
Nislow, C.12
Brown, G.W.13
-
52
-
-
0034628508
-
A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae
-
Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, Narayan V, Srinivasan M, Pochart P, Qureshi-Emili A, Li Y, Godwin B, Conover D, Kalbfl eisch T, Vijayadamodar G, Yang M, Johnston M, Fields S, Rothberg JM (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403(6770):623–627. doi: 10.1038/35001009
-
(2000)
Nature
, vol.403
, Issue.6770
, pp. 623-627
-
-
Uetz, P.1
Giot, L.2
Cagney, G.3
Mansfield, T.A.4
Judson, R.S.5
Knight, J.R.6
Lockshon, D.7
Narayan, V.8
Srinivasan, M.9
Pochart, P.10
Qureshi-Emili, A.11
Li, Y.12
Godwin, B.13
Conover, D.14
Kalbfl Eisch, T.15
Vijayadamodar, G.16
Yang, M.17
Johnston, M.18
Fields, S.19
Rothberg, J.M.20
more..
-
53
-
-
84870830687
-
Quantitative analysis of the modes of growth inhibition by weak organic acids in Saccharomyces cerevisiae
-
Ullah A, Orij R, Brul S, Smits GJ (2012) Quantitative analysis of the modes of growth inhibition by weak organic acids in Saccharomyces cerevisiae. Appl Environ Microbiol 78(23): 8377–8387. doi: 10.1128/AEM.02126-12
-
(2012)
Appl Environ Microbiol
, vol.78
, Issue.23
, pp. 8377-8387
-
-
Ullah, A.1
Orij, R.2
Brul, S.3
Smits, G.J.4
-
54
-
-
33747367729
-
Improvement of lactic acid production in Saccharomyces cerevisiae by cell sorting for high intracellular pH
-
Valli M, Sauer M, Branduardi P, Borth N, Porro D, Mattanovich D (2006) Improvement of lactic acid production in Saccharomyces cerevisiae by cell sorting for high intracellular pH. Appl Environ Microbiol 72(8):5492–5499. doi: 10.1128/AEM.00683-06
-
(2006)
Appl Environ Microbiol
, vol.72
, Issue.8
, pp. 5492-5499
-
-
Valli, M.1
Sauer, M.2
Branduardi, P.3
Borth, N.4
Porro, D.5
Mattanovich, D.6
-
55
-
-
2442640659
-
Homofermentative lactate production cannot sustain anaerobic growth of engineered Saccharomyces cerevisiae: Possible consequence of energy-dependent lactate export
-
van Maris AJ, Winkler AA, Porro D, van Dijken JP, Pronk JT (2004) Homofermentative lactate production cannot sustain anaerobic growth of engineered Saccharomyces cerevisiae: possible consequence of energy-dependent lactate export. Appl Environ Microbiol 70(5):2898–2905
-
(2004)
Appl Environ Microbiol
, vol.70
, Issue.5
, pp. 2898-2905
-
-
Van Maris, A.J.1
Winkler, A.A.2
Porro, D.3
Van Dijken, J.P.4
Pronk, J.T.5
-
56
-
-
77956111722
-
Phosphatidic acid is a pH biosensor that links membrane biogenesis to metabolism
-
Young BP, Shin JJ, Orij R, Chao JT, Li SC, Guan XL, Khong A, Jan E, Wenk MR, Prinz WA, Smits GJ, Loewen CJ (2010) Phosphatidic acid is a pH biosensor that links membrane biogenesis to metabolism. Science 329(5995):1085–1088. doi: 10.1126/science.1191026
-
(2010)
Science
, vol.329
, Issue.5995
, pp. 1085-1088
-
-
Young, B.P.1
Shin, J.J.2
Orij, R.3
Chao, J.T.4
Li, S.C.5
Guan, X.L.6
Khong, A.7
Jan, E.8
Wenk, M.R.9
Prinz, W.A.10
Smits, G.J.11
Loewen, C.J.12
|