-
1
-
-
0003429266
-
-
National Academy Press, Washington, D.C.
-
Arntzen C.E., Dale B.E. Biobased industrial products, priorities for research and commercialization 1999, National Academy Press, Washington, D.C.
-
(1999)
Biobased industrial products, priorities for research and commercialization
-
-
Arntzen, C.E.1
Dale, B.E.2
-
2
-
-
0034731616
-
The commercial production of chemicals using pathway engineering
-
Chotani G., Dodge T., Hsu A., Kumar M., LaDuca R., Trimbur D., Weyler W., Sanford K. The commercial production of chemicals using pathway engineering. Biochim. Biophys. Acta 2000, 1543:434-455.
-
(2000)
Biochim. Biophys. Acta
, vol.1543
, pp. 434-455
-
-
Chotani, G.1
Dodge, T.2
Hsu, A.3
Kumar, M.4
LaDuca, R.5
Trimbur, D.6
Weyler, W.7
Sanford, K.8
-
3
-
-
58149327319
-
Development of industrial production of high molecular weight poly-l-lactate from renewable resources
-
Ohara H., Okuyama H., Sawa S., Fujii Y., Hiyama K. Development of industrial production of high molecular weight poly-l-lactate from renewable resources. Nippon Kagaku Kaishi 2001, 6:323-331.
-
(2001)
Nippon Kagaku Kaishi
, vol.6
, pp. 323-331
-
-
Ohara, H.1
Okuyama, H.2
Sawa, S.3
Fujii, Y.4
Hiyama, K.5
-
4
-
-
0001439889
-
Lactic acid bacteria: starters for flavor
-
Marshall V.M. Lactic acid bacteria: starters for flavor. FEMS Microbiol. Rev. 1987, 46:327-336.
-
(1987)
FEMS Microbiol. Rev.
, vol.46
, pp. 327-336
-
-
Marshall, V.M.1
-
5
-
-
0037255676
-
Lactic acid production by Saccharomyces cerevisiae expressing a Rhizopus oryzae lactate dehydrogenase gene
-
Skory C.D. Lactic acid production by Saccharomyces cerevisiae expressing a Rhizopus oryzae lactate dehydrogenase gene. J. Ind. Microbiol. Biotechnol. 2003, 30:22-27.
-
(2003)
J. Ind. Microbiol. Biotechnol.
, vol.30
, pp. 22-27
-
-
Skory, C.D.1
-
6
-
-
14744294675
-
Mixed lactic acid-alcoholic fermentation by Saccharomyces cerevisiae expressing the Lactobacillus casei L(+)-LDH
-
Dequin S., Barre P. Mixed lactic acid-alcoholic fermentation by Saccharomyces cerevisiae expressing the Lactobacillus casei L(+)-LDH. Biotechnology 1994, 12:173-177.
-
(1994)
Biotechnology
, vol.12
, pp. 173-177
-
-
Dequin, S.1
Barre, P.2
-
7
-
-
0029294111
-
Development of metabolically engineered Saccharomyces cerevisiae cells for the production of lactic acid
-
Porro D., Barmbilla L., Ranzi B.M., Martegani E., Alberghina L. Development of metabolically engineered Saccharomyces cerevisiae cells for the production of lactic acid. Biotechnol. Prog. 1995, 11:294-298.
-
(1995)
Biotechnol. Prog.
, vol.11
, pp. 294-298
-
-
Porro, D.1
Barmbilla, L.2
Ranzi, B.M.3
Martegani, E.4
Alberghina, L.5
-
8
-
-
17444407064
-
Efficient production of l-lactic acid by metabolically engineered Saccharomyces cerevisiae with a genome-integrated l-lactate dehydrogenase gene
-
Ishida N., Saitoh S., Tokuhiro K., Nagamori E., Matsuyama T., Kitamoto K., Takahashi H. Efficient production of l-lactic acid by metabolically engineered Saccharomyces cerevisiae with a genome-integrated l-lactate dehydrogenase gene. Appl. Environ. Microbiol. 2005, 71:1964-1970.
-
(2005)
Appl. Environ. Microbiol.
, vol.71
, pp. 1964-1970
-
-
Ishida, N.1
Saitoh, S.2
Tokuhiro, K.3
Nagamori, E.4
Matsuyama, T.5
Kitamoto, K.6
Takahashi, H.7
-
9
-
-
0034769551
-
Weak acid adaptation: the stress response that confers yeasts with resistance to organic acid food preservatives
-
Piper P., Calderon C.O., Hatzixanthis K., Mollapour M. Weak acid adaptation: the stress response that confers yeasts with resistance to organic acid food preservatives. Microbiology 2001, 147:2635-2642.
-
(2001)
Microbiology
, vol.147
, pp. 2635-2642
-
-
Piper, P.1
Calderon, C.O.2
Hatzixanthis, K.3
Mollapour, M.4
-
10
-
-
4644301793
-
Inhibition of yeast by lactic acid bacteria in continuous culture: nutrient depletion and/or acid toxicity?
-
Bayrock D.P., Ingledew W.M. Inhibition of yeast by lactic acid bacteria in continuous culture: nutrient depletion and/or acid toxicity?. J. Ind. Microbiol. Biotechnol. 2004, 31:362-368.
-
(2004)
J. Ind. Microbiol. Biotechnol.
, vol.31
, pp. 362-368
-
-
Bayrock, D.P.1
Ingledew, W.M.2
-
11
-
-
84857689251
-
Lactic-acid stress causes vacuolar fragmentation and impairs intracellular amino-acid homeostasis in Saccharomyces cerevisiae
-
Suzuki T., Sugiyama M., Wakazono K., Kaneko Y., Harashima S. Lactic-acid stress causes vacuolar fragmentation and impairs intracellular amino-acid homeostasis in Saccharomyces cerevisiae. J. Biosci. Bioeng. 2012, 113:421-430.
-
(2012)
J. Biosci. Bioeng.
, vol.113
, pp. 421-430
-
-
Suzuki, T.1
Sugiyama, M.2
Wakazono, K.3
Kaneko, Y.4
Harashima, S.5
-
12
-
-
52649136162
-
Physiological and transcriptional responses to high concentrations of lactic acid in anaerobic chemostat cultures of Saccharomyces cerevisiae
-
Abbott D.A., Suir E., van Maris A.J., Pronk J.T. Physiological and transcriptional responses to high concentrations of lactic acid in anaerobic chemostat cultures of Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2008, 74:5759-5768.
-
(2008)
Appl. Environ. Microbiol.
, vol.74
, pp. 5759-5768
-
-
Abbott, D.A.1
Suir, E.2
van Maris, A.J.3
Pronk, J.T.4
-
13
-
-
33745962254
-
The effect of lactic acid on anaerobic carbon or nitrogen limited chemostat cultures of Saccharomyces cerevisiae
-
Thomsson E., Larsson C. The effect of lactic acid on anaerobic carbon or nitrogen limited chemostat cultures of Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2006, 71:533-542.
-
(2006)
Appl. Microbiol. Biotechnol.
, vol.71
, pp. 533-542
-
-
Thomsson, E.1
Larsson, C.2
-
14
-
-
33747337558
-
Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p
-
Kawahata M., Masaki K., Fujii T., Iefuji H. Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p. FEMS Yeast Res. 2006, 6:924-936.
-
(2006)
FEMS Yeast Res.
, vol.6
, pp. 924-936
-
-
Kawahata, M.1
Masaki, K.2
Fujii, T.3
Iefuji, H.4
-
15
-
-
0031658814
-
Modification of metabolic pathways of Saccharomyces cerevisiae by the expression of lactate dehydrogenase and deletion of pyruvate decarboxylase genes for the lactic acid fermentation at low pH value
-
Adachi E., Torigoe M., Sugiyama M., Nikawa J., Shimizu K. Modification of metabolic pathways of Saccharomyces cerevisiae by the expression of lactate dehydrogenase and deletion of pyruvate decarboxylase genes for the lactic acid fermentation at low pH value. J. Ferment. Bioeng. 1998, 86:284-289.
-
(1998)
J. Ferment. Bioeng.
, vol.86
, pp. 284-289
-
-
Adachi, E.1
Torigoe, M.2
Sugiyama, M.3
Nikawa, J.4
Shimizu, K.5
-
16
-
-
0025381813
-
Pdc1 mutants of Saccharomyces cerevisiae give evidence for an additional structural PDC gene: cloning of PDC5, a gene homologous to PDC1
-
Seeboth P.G., Bohnsack K., Hollenberg C.P. pdc1 mutants of Saccharomyces cerevisiae give evidence for an additional structural PDC gene: cloning of PDC5, a gene homologous to PDC1. J. Bacteriol. 1990, 172:678-685.
-
(1990)
J. Bacteriol.
, vol.172
, pp. 678-685
-
-
Seeboth, P.G.1
Bohnsack, K.2
Hollenberg, C.P.3
-
17
-
-
0032906355
-
Thiamine repression and pyruvate decarboxylase autoregulation independently control the expression of the Saccharomyces cerevisiae PDC5 gene
-
Muller E.H., Richards E.J., Norbeck J., Byrne K.L., Karlsson K.A., Pretorius G.H., Meacock P.A., Blomberg A., Hohmann S. Thiamine repression and pyruvate decarboxylase autoregulation independently control the expression of the Saccharomyces cerevisiae PDC5 gene. FEBS Lett. 1999, 449:245-250.
-
(1999)
FEBS Lett.
, vol.449
, pp. 245-250
-
-
Muller, E.H.1
Richards, E.J.2
Norbeck, J.3
Byrne, K.L.4
Karlsson, K.A.5
Pretorius, G.H.6
Meacock, P.A.7
Blomberg, A.8
Hohmann, S.9
-
18
-
-
0026315442
-
Characterization of PDC6, a third structural gene for pyruvate decarboxylase in Saccharomyces cerevisiae
-
Hohmann S. Characterization of PDC6, a third structural gene for pyruvate decarboxylase in Saccharomyces cerevisiae. J. Bacteriol. 1991, 173:7963-7969.
-
(1991)
J. Bacteriol.
, vol.173
, pp. 7963-7969
-
-
Hohmann, S.1
-
19
-
-
0032579440
-
Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications
-
Brachmann C.B., Davies A., Cost G.J., Caputo E., Li J., Hieter P., Boeke J.D. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 1998, 14:115-132.
-
(1998)
Yeast
, vol.14
, pp. 115-132
-
-
Brachmann, C.B.1
Davies, A.2
Cost, G.J.3
Caputo, E.4
Li, J.5
Hieter, P.6
Boeke, J.D.7
-
20
-
-
0021078994
-
Plasmid-encoded hygromycin B resistance: the sequence of hygromycin B phosphotransferase gene and its expression in Escherichia coli and Saccharomyces cerevisiae
-
Gritz L., Davies J. Plasmid-encoded hygromycin B resistance: the sequence of hygromycin B phosphotransferase gene and its expression in Escherichia coli and Saccharomyces cerevisiae. Gene 1983, 25:179-188.
-
(1983)
Gene
, vol.25
, pp. 179-188
-
-
Gritz, L.1
Davies, J.2
-
21
-
-
0035207040
-
Tagging Hansenula polymorpha genes by random integration of linear DNA fragments (RALF)
-
van Dijk R., Faber K.N., Hammond A.T., Glick B.S., Veenhuis M., Kiel J.A. Tagging Hansenula polymorpha genes by random integration of linear DNA fragments (RALF). Mol. Genet. Genomics. 2001, 266:646-656.
-
(2001)
Mol. Genet. Genomics.
, vol.266
, pp. 646-656
-
-
van Dijk, R.1
Faber, K.N.2
Hammond, A.T.3
Glick, B.S.4
Veenhuis, M.5
Kiel, J.A.6
-
22
-
-
27744449273
-
PCR-mediated repeated chromosome splitting in Saccharomyces cerevisiae
-
Sugiyama M., Ikushima S., Nakazawa T., Kaneko Y., Harashima S. PCR-mediated repeated chromosome splitting in Saccharomyces cerevisiae. Biotechniques 2005, 38:909-914.
-
(2005)
Biotechniques
, vol.38
, pp. 909-914
-
-
Sugiyama, M.1
Ikushima, S.2
Nakazawa, T.3
Kaneko, Y.4
Harashima, S.5
-
24
-
-
0036081347
-
MIPS: a database for genomes and protein sequences
-
Mewes H.W., Frishman D., Guldener U., Mannhaupt G., Mayer K., Mokrejs M., Morgenstern B., Munsterkotter M., Rudd S., Weil B. MIPS: a database for genomes and protein sequences. Nucleic Acids Res. 2002, 30:31-34.
-
(2002)
Nucleic Acids Res.
, vol.30
, pp. 31-34
-
-
Mewes, H.W.1
Frishman, D.2
Guldener, U.3
Mannhaupt, G.4
Mayer, K.5
Mokrejs, M.6
Morgenstern, B.7
Munsterkotter, M.8
Rudd, S.9
Weil, B.10
-
25
-
-
0036087548
-
Saccharomyces genome database (SGD) provides secondary gene annotation using the gene ontology (GO)
-
other 4 authors
-
Dwight S.S., Harris M.A., Dolinski K., Ball C.A., Binkley G., Christie K.R., Fisk D.G., Issel-Tarver L., Schroeder M., Sherlock G. Saccharomyces genome database (SGD) provides secondary gene annotation using the gene ontology (GO). Nucleic Acids Res. 2002, 30:69-72. other 4 authors.
-
(2002)
Nucleic Acids Res.
, vol.30
, pp. 69-72
-
-
Dwight, S.S.1
Harris, M.A.2
Dolinski, K.3
Ball, C.A.4
Binkley, G.5
Christie, K.R.6
Fisk, D.G.7
Issel-Tarver, L.8
Schroeder, M.9
Sherlock, G.10
-
26
-
-
0033525582
-
Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair
-
Hofmann R.M., Pickart C.M. Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell 1999, 96:645-653.
-
(1999)
Cell
, vol.96
, pp. 645-653
-
-
Hofmann, R.M.1
Pickart, C.M.2
-
27
-
-
0025164762
-
Ubiquitin-conjugating enzymes UBC4 and UBC5 mediate selective degradation of short-lived and abnormal proteins
-
Seufert W., Jentsch S. Ubiquitin-conjugating enzymes UBC4 and UBC5 mediate selective degradation of short-lived and abnormal proteins. EMBO J. 1990, 9:543-550.
-
(1990)
EMBO J.
, vol.9
, pp. 543-550
-
-
Seufert, W.1
Jentsch, S.2
-
28
-
-
33751395934
-
Enhancement of stress tolerance in Saccharomyces cerevisiae by overexpression of ubiquitin ligase Rsp5 and ubiquitin-conjugating enzymes
-
Hiraishi H., Mochizuki M., Takagi H. Enhancement of stress tolerance in Saccharomyces cerevisiae by overexpression of ubiquitin ligase Rsp5 and ubiquitin-conjugating enzymes. Biosci. Biotechnol. Biochem. 2006, 70:2762-2765.
-
(2006)
Biosci. Biotechnol. Biochem.
, vol.70
, pp. 2762-2765
-
-
Hiraishi, H.1
Mochizuki, M.2
Takagi, H.3
-
29
-
-
0028935165
-
Ubiquitin, proteasomes, and the regulation of intracellular protein degradation
-
Hochstrasser M. Ubiquitin, proteasomes, and the regulation of intracellular protein degradation. Curr. Opin. Cell Biol. 1995, 7:215-223.
-
(1995)
Curr. Opin. Cell Biol.
, vol.7
, pp. 215-223
-
-
Hochstrasser, M.1
-
30
-
-
0029073048
-
The plasma membrane of Saccharomyces cerevisiae: structure, function and biogenesis
-
van der Rest M., Kamminga A.H., Nakano A., Anraku Y., Poolman B., Konings W.N. The plasma membrane of Saccharomyces cerevisiae: structure, function and biogenesis. Microbiol. Rev. 1995, 59:304-322.
-
(1995)
Microbiol. Rev.
, vol.59
, pp. 304-322
-
-
van der Rest, M.1
Kamminga, A.H.2
Nakano, A.3
Anraku, Y.4
Poolman, B.5
Konings, W.N.6
-
31
-
-
10444226462
-
ER stress and the unfolded protein response
-
Schröder M., Kaufman R.J. ER stress and the unfolded protein response. Mutat. Res. 2005, 569:29-63.
-
(2005)
Mutat. Res.
, vol.569
, pp. 29-63
-
-
Schröder, M.1
Kaufman, R.J.2
-
32
-
-
0031689604
-
New potential cell wall glucanases of Saccharomyces cerevisiae and their involvement in mating
-
Cappellaro C., Mrsa V., Tanner W. New potential cell wall glucanases of Saccharomyces cerevisiae and their involvement in mating. J. Bacteriol. 1998, 180:5030-5037.
-
(1998)
J. Bacteriol.
, vol.180
, pp. 5030-5037
-
-
Cappellaro, C.1
Mrsa, V.2
Tanner, W.3
-
33
-
-
0035861863
-
Yeast Cbk1 and Mob2 activate daughter-specific genetic programs to induce asymmetric cell fates
-
Colman-Lerner A., Chin T.E., Brent R. Yeast Cbk1 and Mob2 activate daughter-specific genetic programs to induce asymmetric cell fates. Cell 2001, 107:739-750.
-
(2001)
Cell
, vol.107
, pp. 739-750
-
-
Colman-Lerner, A.1
Chin, T.E.2
Brent, R.3
-
34
-
-
1242352001
-
The Swm1p subunit of the APC/cyclosome is required for activation of the daughter-specific gene expression program mediated by Ace2p during growth at high temperature in Saccharomyces cerevisiae
-
Ufano S., Pablo M.E., Calzada A., del Rey F., Vázquez de Aldana C.R. The Swm1p subunit of the APC/cyclosome is required for activation of the daughter-specific gene expression program mediated by Ace2p during growth at high temperature in Saccharomyces cerevisiae. J. Cell Sci. 2004, 117:545-557.
-
(2004)
J. Cell Sci.
, vol.117
, pp. 545-557
-
-
Ufano, S.1
Pablo, M.E.2
Calzada, A.3
del Rey, F.4
Vázquez de Aldana, C.R.5
-
36
-
-
0347986672
-
Eaf3 regulates the global pattern of histone acetylation in Saccharomyces cerevisiae
-
Reid J.L., Moqtaderi Z., Struhl K. Eaf3 regulates the global pattern of histone acetylation in Saccharomyces cerevisiae. Mol. Cell. Biol. 2004, 24:757-764.
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 757-764
-
-
Reid, J.L.1
Moqtaderi, Z.2
Struhl, K.3
-
37
-
-
0040386501
-
The retention mechanism of cell wall proteins in Saccharomyces cerevisiae. Wall-bound Cwp2p is beta-1,6-glucosylated
-
van der Vaart J.M., van Schagen F.S., Mooren A.T., Chapman J.W., Klis F.M., Verrips C.T. The retention mechanism of cell wall proteins in Saccharomyces cerevisiae. Wall-bound Cwp2p is beta-1,6-glucosylated. Biochim. Biophys. Acta 1996, 1291:206-214.
-
(1996)
Biochim. Biophys. Acta
, vol.1291
, pp. 206-214
-
-
van der Vaart, J.M.1
van Schagen, F.S.2
Mooren, A.T.3
Chapman, J.W.4
Klis, F.M.5
Verrips, C.T.6
-
38
-
-
0031778695
-
Sed1p is a major cell wall protein of Saccharomyces cerevisiae in the stationary phase and is involved in lytic enzyme resistance
-
Shimoi H., Kitagaki H., Ohmori H., Iimura Y., Ito K. Sed1p is a major cell wall protein of Saccharomyces cerevisiae in the stationary phase and is involved in lytic enzyme resistance. J. Bacteriol. 1998, 180:3381-3387.
-
(1998)
J. Bacteriol.
, vol.180
, pp. 3381-3387
-
-
Shimoi, H.1
Kitagaki, H.2
Ohmori, H.3
Iimura, Y.4
Ito, K.5
-
39
-
-
0032522928
-
Transcription of multiple cell wall protein-encoding genes in Saccharomyces cerevisiae is differentially regulated during the cell cycle
-
Caro L.H., Smits G.J., van Egmond P., Chapman J.W., Klis F.M. Transcription of multiple cell wall protein-encoding genes in Saccharomyces cerevisiae is differentially regulated during the cell cycle. FEMS Microbiol. Lett. 1998, 161:345-349.
-
(1998)
FEMS Microbiol. Lett.
, vol.161
, pp. 345-349
-
-
Caro, L.H.1
Smits, G.J.2
van Egmond, P.3
Chapman, J.W.4
Klis, F.M.5
-
40
-
-
0032948889
-
Weak-acid preservatives: modeling microbial inhibition and response
-
Lambert R.J., Stratford M. Weak-acid preservatives: modeling microbial inhibition and response. J. Appl. Microbiol. 1999, 86:157-164.
-
(1999)
J. Appl. Microbiol.
, vol.86
, pp. 157-164
-
-
Lambert, R.J.1
Stratford, M.2
-
41
-
-
0025304880
-
Autoregulation may control the expression of yeast pyruvate decarboxylase structural genes PDC1 and PDC5
-
Hohmann S., Cederberg H. Autoregulation may control the expression of yeast pyruvate decarboxylase structural genes PDC1 and PDC5. Eur. J. Biochem. 1990, 188:615-621.
-
(1990)
Eur. J. Biochem.
, vol.188
, pp. 615-621
-
-
Hohmann, S.1
Cederberg, H.2
-
42
-
-
0026052738
-
PDC6, a weakly expressed pyruvate decarboxylase gene from yeast, is activated when fused spontaneously under the control of the PDC1 promoter
-
Hohmann S. PDC6, a weakly expressed pyruvate decarboxylase gene from yeast, is activated when fused spontaneously under the control of the PDC1 promoter. Curr. Genet. 1991, 20:373-378.
-
(1991)
Curr. Genet.
, vol.20
, pp. 373-378
-
-
Hohmann, S.1
-
43
-
-
62949109270
-
Double mutation of the PDC1 and ADH1 genes improves lactate production in the yeast Saccharomyces cerevisiae expressing the bovine lactate dehydrogenase gene
-
Tokuhiro K., Ishida N., Nagamori E., Saitoh S., Onishi T., Kondo A., Takahashi H. Double mutation of the PDC1 and ADH1 genes improves lactate production in the yeast Saccharomyces cerevisiae expressing the bovine lactate dehydrogenase gene. Appl. Microbiol. Biotechnol. 2009, 82:883-890.
-
(2009)
Appl. Microbiol. Biotechnol.
, vol.82
, pp. 883-890
-
-
Tokuhiro, K.1
Ishida, N.2
Nagamori, E.3
Saitoh, S.4
Onishi, T.5
Kondo, A.6
Takahashi, H.7
|