-
1
-
-
38349093902
-
Microbial production of organic acids: expanding the markets
-
Sauer M, Porro D, Mattanovich D, Branduardi P. 2008. Microbial production of organic acids: expanding the markets. Trends Biotechnol. 26:100-108. http://dx.doi.org/10.1016/j.tibtech.2007.11.006.
-
(2008)
Trends Biotechnol
, vol.26
, pp. 100-108
-
-
Sauer, M.1
Porro, D.2
Mattanovich, D.3
Branduardi, P.4
-
2
-
-
0037255676
-
Lactic acid production by Saccharomyces cerevisiae expressing a Rhizopus oryzae lactate dehydrogenase gene
-
Skory CD. 2003. Lactic acid production by Saccharomyces cerevisiae expressing a Rhizopus oryzae lactate dehydrogenase gene. J. Ind. Microbiol. Biotechnol. 30:22-27. http://dx.doi.org/10.1007/s10295-002-0004-2.
-
(2003)
J. Ind. Microbiol. Biotechnol
, vol.30
, pp. 22-27
-
-
Skory, C.D.1
-
3
-
-
0034135549
-
Factors affecting the fermentative lactic acid production from renewable resources
-
Hofvendahl K, Hahn-Hagerdal B. 2000. Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microb. Technol. 26:87-107. http://dx.doi.org/10.1016/S0141-0229(99)00155-6.
-
(2000)
Enzyme Microb. Technol
, vol.26
, pp. 87-107
-
-
Hofvendahl, K.1
Hahn-Hagerdal, B.2
-
4
-
-
0031658814
-
Modification of metabolic pathways of Saccharomyces cerevisiae by the expression of lactate dehydrogenase and deletion of pyruvate decarboxylase genes for the lactic acid fermentation at low pH value
-
Adachi E, Torigoe M, Sugiyama S, Nikawa J, Shimizu K. 1998. Modification of metabolic pathways of Saccharomyces cerevisiae by the expression of lactate dehydrogenase and deletion of pyruvate decarboxylase genes for the lactic acid fermentation at low pH value. J. Ferment. Bioeng. 86:284-289. http://dx.doi.org/10.1016/S0922-338X(98)80131-1.
-
(1998)
J. Ferment. Bioeng
, vol.86
, pp. 284-289
-
-
Adachi, E.1
Torigoe, M.2
Sugiyama, S.3
Nikawa, J.4
Shimizu, K.5
-
5
-
-
14744294675
-
Mixed lactic acid-alcoholic fermentation by Saccharomyces cerevisiae expressing the Lactobacillus casei L(+)-LDH
-
Dequin S, Barre P. 1994. Mixed lactic acid-alcoholic fermentation by Saccharomyces cerevisiae expressing the Lactobacillus casei L(+)-LDH. Biotechnology 12:173-177. http://dx.doi.org/10.1038/nbt0294-173.
-
(1994)
Biotechnology
, vol.12
, pp. 173-177
-
-
Dequin, S.1
Barre, P.2
-
6
-
-
0032825184
-
Replacement of a metabolic pathway for large-scale production of lactic acid from engineered yeasts
-
Porro D, Bianchi MM, Brambilla L, Menghini R, Bolzani D, Carrera V, Lievense J, Liu CL, Ranzi BM, Frontali L, Alberghina L. 1999. Replacement of a metabolic pathway for large-scale production of lactic acid from engineered yeasts. Appl. Environ. Microbiol. 65:4211-4215.
-
(1999)
Appl. Environ. Microbiol
, vol.65
, pp. 4211-4215
-
-
Porro, D.1
Bianchi, M.M.2
Brambilla, L.3
Menghini, R.4
Bolzani, D.5
Carrera, V.6
Lievense, J.7
Liu, C.L.8
Ranzi, B.M.9
Frontali, L.10
Alberghina, L.11
-
7
-
-
17444407064
-
Efficient production of L-lactic acid by metabolically engineered Saccharomyces cerevisiae with a genome-integrated L-lactate dehydrogenase gene
-
Ishida N, Saitoh S, Tokuhiro K, Nagamori E, Matsuyama T, Kitamoto K, Takahashi H. 2005. Efficient production of L-lactic acid by metabolically engineered Saccharomyces cerevisiae with a genome-integrated L-lactate dehydrogenase gene. Appl. Environ. Microbiol. 71:1964-1970. http://dx.doi.org/10.1128/AEM.71.4.1964-1970.2005.
-
(2005)
Appl. Environ. Microbiol
, vol.71
, pp. 1964-1970
-
-
Ishida, N.1
Saitoh, S.2
Tokuhiro, K.3
Nagamori, E.4
Matsuyama, T.5
Kitamoto, K.6
Takahashi, H.7
-
8
-
-
18444393083
-
Genetically engineered wine yeast produces a high concentration of L-lactic acid of extremely high optical purity
-
Saitoh S, Ishida N, Onishi T, Tokuhiro K, Nagamori E, Kitamoto K, Takahashi H. 2005. Genetically engineered wine yeast produces a high concentration of L-lactic acid of extremely high optical purity. Appl. Environ. Microbiol. 71:2789-2792. http://dx.doi.org/10.1128/AEM.71.5.2789-2792.2005.
-
(2005)
Appl. Environ. Microbiol
, vol.71
, pp. 2789-2792
-
-
Saitoh, S.1
Ishida, N.2
Onishi, T.3
Tokuhiro, K.4
Nagamori, E.5
Kitamoto, K.6
Takahashi, H.7
-
9
-
-
0037014527
-
Process development and optimisation of lactic acid purification using electrodialysis
-
Madzingaidzo L, Danner H, Braun R. 2002. Process development and optimisation of lactic acid purification using electrodialysis. J. Biotechnol. 96:223-239. http://dx.doi.org/10.1016/S0168-1656(02)00049-4.
-
(2002)
J Biotechnol
, vol.96
, pp. 223-239
-
-
Madzingaidzo, L.1
Danner, H.2
Braun, R.3
-
10
-
-
84876330319
-
Disruption of multiple genes whose deletion causes lactic-acid resistance improves lactic-acid resistance and productivity in Saccharomyces cerevisiae
-
Suzuki T, Sakamoto T, Sugiyama M, Ishida N, Kambe H, Obata S, Kaneko Y, Takahashi H, Harashima S. 2013. Disruption of multiple genes whose deletion causes lactic-acid resistance improves lactic-acid resistance and productivity in Saccharomyces cerevisiae. J. Biosci. Bioeng. 115:467-474. http://dx.doi.org/10.1016/j.jbiosc.2012.11.014.
-
(2013)
J. Biosci. Bioeng
, vol.115
, pp. 467-474
-
-
Suzuki, T.1
Sakamoto, T.2
Sugiyama, M.3
Ishida, N.4
Kambe, H.5
Obata, S.6
Kaneko, Y.7
Takahashi, H.8
Harashima, S.9
-
11
-
-
0034766303
-
Acetic acid and lactic acid inhibition of growth of Saccharomyces cerevisiae by different mechanisms
-
Narendranath NV, Thomas KC, Ingledew WM. 2001. Acetic acid and lactic acid inhibition of growth of Saccharomyces cerevisiae by different mechanisms. J. Am. Soc. Brew. Chem. 59:187-194. http://dx.doi.org/10.1094/ASBCJ-59-0187.
-
(2001)
J. Am. Soc. Brew. Chem
, vol.59
, pp. 187-194
-
-
Narendranath, N.V.1
Thomas, K.C.2
Ingledew, W.M.3
-
12
-
-
33747337558
-
Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p
-
Kawahata M, Masaki K, Fujii T, Iefuji H. 2006. Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p. FEMS Yeast Res. 6:924-936. http://dx.doi.org/10.1111/j.1567-1364.2006.00089.x.
-
(2006)
FEMS Yeast Res
, vol.6
, pp. 924-936
-
-
Kawahata, M.1
Masaki, K.2
Fujii, T.3
Iefuji, H.4
-
13
-
-
52649136162
-
Physiological and transcriptional responses to high concentrations of lactic acid in anaerobic chemostat cultures of Saccharomyces cerevisiae
-
Abbott DA, Suir E, van Maris AJ, Pronk JT. 2008. Physiological and transcriptional responses to high concentrations of lactic acid in anaerobic chemostat cultures of Saccharomyces cerevisiae. Appl. Environ. Microbiol. 74:5759-5768. http://dx.doi.org/10.1128/AEM.01030-08.
-
(2008)
Appl. Environ. Microbiol
, vol.74
, pp. 5759-5768
-
-
Abbott, D.A.1
Suir, E.2
Van Maris, A.J.3
Pronk, J.T.4
-
14
-
-
18144408439
-
Organic acids and esters
-
Kluwer Academic/Plenum Publishers, New York, NY
-
Stratford M, Eklund T. 2003. Organic acids and esters. Kluwer Academic/Plenum Publishers, New York, NY.
-
(2003)
-
-
Stratford, M.1
Eklund, T.2
-
15
-
-
77958169154
-
Genomic expression program involving the Haa1p-regulon in Saccharomyces cerevisiae response to acetic acid
-
Mira NP, Becker JD, Sa-Correia I. 2010. Genomic expression program involving the Haa1p-regulon in Saccharomyces cerevisiae response to acetic acid. OMICS 14:587-601. http://dx.doi.org/10.1089/omi.2010.0048.
-
(2010)
OMICS
, vol.14
, pp. 587-601
-
-
Mira, N.P.1
Becker, J.D.2
Sa-Correia, I.3
-
16
-
-
80052432738
-
Identification of a DNA-binding site for the transcription factor Haa1, required for Saccharomyces cerevisiae response to acetic acid stress
-
Mira NP, Henriques SF, Keller G, Teixeira MC, Matos RG, Arraiano CM, Winge DR, Sa-Correia I. 2011. Identification of a DNA-binding site for the transcription factor Haa1, required for Saccharomyces cerevisiae response to acetic acid stress. Nucleic Acids Res. 39:6896-6907. http://dx.doi.org/10.1093/nar/gkr228.
-
(2011)
Nucleic Acids Res
, vol.39
, pp. 6896-6907
-
-
Mira, N.P.1
Henriques, S.F.2
Keller, G.3
Teixeira, M.C.4
Matos, R.G.5
Arraiano, C.M.6
Winge, D.R.7
Sa-Correia, I.8
-
17
-
-
0035914449
-
Haa1, a protein homologous to the copper-regulated transcription factor AceI, is a novel transcriptional activator
-
Keller G, Ray E, Brown PO, Winge DR. 2001. Haa1, a protein homologous to the copper-regulated transcription factor AceI, is a novel transcriptional activator. J. Biol. Chem. 276:38697-38702. http://dx.doi.org/10.1074/jbc. M107131200.
-
(2001)
J. Biol. Chem
, vol.276
, pp. 38697-38702
-
-
Keller, G.1
Ray, E.2
Brown, P.O.3
Winge, D.R.4
-
18
-
-
25844432253
-
Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes
-
Fernandes AR, Mira NP, Vargas RC, Canelhas I, Sa-Correia I. 2005. Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes. Biochem. Biophys. Res. Commun. 337:95-103. http://dx.doi.org/10.1016/j.bbrc.2005.09.010.
-
(2005)
Biochem. Biophys. Res. Commun
, vol.337
, pp. 95-103
-
-
Fernandes, A.R.1
Mira, N.P.2
Vargas, R.C.3
Canelhas, I.4
Sa-Correia, I.5
-
19
-
-
0028217073
-
Identification and characterization of a novel yeast gene: the YGP1 gene product is a highly glycosylated secreted protein that is synthesized in response to nutrient limitation
-
Destruelle M, Holzer H, Klionsky DJ. 1994. Identification and characterization of a novel yeast gene: the YGP1 gene product is a highly glycosylated secreted protein that is synthesized in response to nutrient limitation. Mol. Cell. Biol. 14:2740-2754. http://dx.doi.org/10.1128/MCB.14.4.2740.
-
(1994)
Mol. Cell. Biol
, vol.14
, pp. 2740-2754
-
-
Destruelle, M.1
Holzer, H.2
Klionsky, D.J.3
-
20
-
-
0038504070
-
Genome-wide analysis of the response to cell wall mutations in the yeast Saccharomyces cerevisiae
-
Lagorce A, Hauser NC, Labourdette D, Rodriguez C, Martin-Yken H, Arroyo J, Hoheisel JD, Francois J. 2003. Genome-wide analysis of the response to cell wall mutations in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 278: 20345-20357. http://dx.doi.org/10.1074/jbc. M211604200.
-
(2003)
J. Biol. Chem
, vol.278
, pp. 20345-20357
-
-
Lagorce, A.1
Hauser, N.C.2
Labourdette, D.3
Rodriguez, C.4
Martin-Yken, H.5
Arroyo, J.6
Hoheisel, J.D.7
Francois, J.8
-
21
-
-
33751006150
-
The SPI1 gene, encoding a glycosylphosphatidylinositol-anchored cell wall protein, plays a prominent role in the development of yeast resistance to lipophilic weakacid food preservatives
-
Simoes T, Mira NP, Fernandes AR, Sa-Correia I. 2006. The SPI1 gene, encoding a glycosylphosphatidylinositol-anchored cell wall protein, plays a prominent role in the development of yeast resistance to lipophilic weakacid food preservatives. Appl. Environ. Microbiol. 72:7168-7175. http://dx.doi.org/10.1128/AEM.01476-06.
-
(2006)
Appl. Environ. Microbiol
, vol.72
, pp. 7168-7175
-
-
Simoes, T.1
Mira, N.P.2
Fernandes, A.R.3
Sa-Correia, I.4
-
22
-
-
79953222615
-
The Yak1 protein kinase lies at the center of a regulatory cascade affecting adhesive growth and stress resistance in Saccharomyces cerevisiae
-
Malcher M, Schladebeck S, Mosch HU. 2011. The Yak1 protein kinase lies at the center of a regulatory cascade affecting adhesive growth and stress resistance in Saccharomyces cerevisiae. Genetics 187:717-730. http://dx.doi.org/10.1534/genetics.110.125708.
-
(2011)
Genetics
, vol.187
, pp. 717-730
-
-
Malcher, M.1
Schladebeck, S.2
Mosch, H.U.3
-
23
-
-
0034628508
-
A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae
-
Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, Narayan V, Srinivasan M, Pochart P, Qureshi-Emili A, Li Y, Godwin B, Conover D, Kalbfleisch T, Vijayadamodar G, Yang M, Johnston M, Fields S, Rothberg JM. 2000. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403:623-627. http://dx.doi.org/10.1038/35001009.
-
(2000)
Nature
, vol.403
, pp. 623-627
-
-
Uetz, P.1
Giot, L.2
Cagney, G.3
Mansfield, T.A.4
Judson, R.S.5
Knight, J.R.6
Lockshon, D.7
Narayan, V.8
Srinivasan, M.9
Pochart, P.10
Qureshi-Emili, A.11
Li, Y.12
Godwin, B.13
Conover, D.14
Kalbfleisch, T.15
Vijayadamodar, G.16
Yang, M.17
Johnston, M.18
Fields, S.19
Rothberg, J.M.20
more..
-
24
-
-
0036500167
-
Calcineurin-dependent regulation of Crz1p nuclear export requires Msn5p and a conserved calcineurin docking site
-
Boustany LM, Cyert MS. 2002. Calcineurin-dependent regulation of Crz1p nuclear export requires Msn5p and a conserved calcineurin docking site. Genes Dev. 16:608-619. http://dx.doi.org/10.1101/gad.967602.
-
(2002)
Genes Dev
, vol.16
, pp. 608-619
-
-
Boustany, L.M.1
Cyert, M.S.2
-
25
-
-
0033523996
-
The nuclear exportin Msn5 is required for nuclear export of the Mig1 glucose repressor of Saccharomyces cerevisiae
-
DeVit MJ, Johnston M. 1999. The nuclear exportin Msn5 is required for nuclear export of the Mig1 glucose repressor of Saccharomyces cerevisiae. Curr. Biol. 9:1231-1241. http://dx.doi.org/10.1016/S0960-9822(99)80503-X.
-
(1999)
Curr. Biol
, vol.9
, pp. 1231-1241
-
-
DeVit, M.J.1
Johnston, M.2
-
26
-
-
0032481048
-
The receptor Msn5 exports the phosphorylated transcription factor Pho4 out of the nucleus
-
Kaffman A, Rank NM, O'Neill EM, Huang LS, O'Shea EK. 1998. The receptor Msn5 exports the phosphorylated transcription factor Pho4 out of the nucleus. Nature 396:482-486. http://dx.doi.org/10.1038/24898.
-
(1998)
Nature
, vol.396
, pp. 482-486
-
-
Kaffman, A.1
Rank, N.M.2
O'Neill, E.M.3
Huang, L.S.4
O'Shea, E.K.5
-
27
-
-
34547763678
-
Mechanism underlying the iron-dependent nuclear export of the iron-responsive transcription factor Aft1p in Saccharomyces cerevisiae
-
Ueta R, Fujiwara N, Iwai K, Yamaguchi-Iwai Y. 2007. Mechanism underlying the iron-dependent nuclear export of the iron-responsive transcription factor Aft1p in Saccharomyces cerevisiae. Mol. Biol. Cell 18: 2980-2990. http://dx.doi.org/10.1091/mbc. E06-11-1054.
-
(2007)
Mol. Biol. Cell
, vol.18
, pp. 2980-2990
-
-
Ueta, R.1
Fujiwara, N.2
Iwai, K.3
Yamaguchi-Iwai, Y.4
-
28
-
-
0032579440
-
Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disrup-tion and other applications
-
Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD. 1998. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disrup-tion and other applications. Yeast 14:115-132. http://dx.doi.org/10.1002/(SICI)1097-0061(19980130)14:2115::AID-YEA2043.0.CO;2-2.
-
(1998)
Yeast
, vol.14
, pp. 115-132
-
-
Brachmann, C.B.1
Davies, A.2
Cost, G.J.3
Caputo, E.4
Li, J.5
Hieter, P.6
Boeke, J.D.7
-
29
-
-
27744449273
-
PCR-mediated repeated chromosome splitting in Saccharomyces cerevisiae
-
Sugiyama M, Ikushima S, Nakazawa T, Kaneko Y, Harashima S. 2005. PCR-mediated repeated chromosome splitting in Saccharomyces cerevisiae. Biotechniques 38:909-914. http://dx.doi.org/10.2144/05386RR01.
-
(2005)
Biotechniques
, vol.38
, pp. 909-914
-
-
Sugiyama, M.1
Ikushima, S.2
Nakazawa, T.3
Kaneko, Y.4
Harashima, S.5
-
30
-
-
0038095416
-
Transcriptional regulation of phosphate-responsive genes in low-affinity phosphate-transporter-defective mutants in Saccharomyces cerevisiae
-
Auesukaree C, Homma T, Kaneko Y, Harashima S. 2003. Transcriptional regulation of phosphate-responsive genes in low-affinity phosphate-transporter-defective mutants in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 306:843-850. http://dx.doi.org/10.1016/S0006-291X(03)01068-4.
-
(2003)
Biochem. Biophys. Res. Commun
, vol.306
, pp. 843-850
-
-
Auesukaree, C.1
Homma, T.2
Kaneko, Y.3
Harashima, S.4
-
31
-
-
0031820288
-
Additional modules for versatileand economical PCR-based gene deletion and modification in Saccharomyces cerevisiae
-
Longtine MS, McKenzie A, III, Demarini DJ, Shah NG, Wach A, Brachat A, Philippsen P, Pringle JR. 1998. Additional modules for versatileand economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14:953-961. http://dx.doi.org/10.1002/(SICI)1097-0061(199807)14:10953::AID-YEA2933.0.CO;2-U.
-
(1998)
Yeast
, vol.14
, pp. 953-961
-
-
Longtine, M.S.1
McKenzie, A.2
Demarini, D.J.3
Shah, N.G.4
Wach, A.5
Brachat, A.6
Philippsen, P.7
Pringle, J.R.8
-
32
-
-
84868611282
-
Enhancement of acetic acid tolerance in Saccharomyces cerevisiae by overexpression of the HAA1 gene, encoding a transcriptional activator
-
Tanaka K, Ishii Y, Ogawa J, Shima J. 2012. Enhancement of acetic acid tolerance in Saccharomyces cerevisiae by overexpression of the HAA1 gene, encoding a transcriptional activator. Appl. Environ. Microbiol. 78:8161-8163. http://dx.doi.org/10.1128/AEM.02356-12.
-
(2012)
Appl. Environ. Microbiol
, vol.78
, pp. 8161-8163
-
-
Tanaka, K.1
Ishii, Y.2
Ogawa, J.3
Shima, J.4
-
33
-
-
84868139340
-
Identification of an acetate-tolerant strain of Saccharomyces cerevisiae and characterization by gene expression analysis
-
Haitani Y, Tanaka K, Yamamoto M, Nakamura T, Ando A, Ogawa J, Shima J. 2012. Identification of an acetate-tolerant strain of Saccharomyces cerevisiae and characterization by gene expression analysis. J. Biosci. Bioeng. 114:648-651. http://dx.doi.org/10.1016/j.jbiosc.2012.07.002.
-
(2012)
J. Biosci. Bioeng
, vol.114
, pp. 648-651
-
-
Haitani, Y.1
Tanaka, K.2
Yamamoto, M.3
Nakamura, T.4
Ando, A.5
Ogawa, J.6
Shima, J.7
-
34
-
-
0032518996
-
Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity
-
Gorner W, Durchschlag E, Martinez-Pastor MT, Estruch F, Ammerer G, Hamilton B, Ruis H, Schuller C. 1998. Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity. Genes Dev. 12:586-597. http://dx.doi.org/10.1101/gad.12.4.586.
-
(1998)
Genes Dev
, vol.12
, pp. 586-597
-
-
Gorner, W.1
Durchschlag, E.2
Martinez-Pastor, M.T.3
Estruch, F.4
Ammerer, G.5
Hamilton, B.6
Ruis, H.7
Schuller, C.8
-
35
-
-
0033532281
-
Roles of phosphorylation sites in regulating activity of the transcription factor Pho4
-
Komeili A, O'Shea EK. 1999. Roles of phosphorylation sites in regulating activity of the transcription factor Pho4. Science 284:977-980. http://dx.doi.org/10.1126/science.284.5416.977.
-
(1999)
Science
, vol.284
, pp. 977-980
-
-
Komeili, A.1
O'Shea, E.K.2
-
36
-
-
0037173045
-
Gene activation by interaction of an inhibitor with a cytoplasmic signaling protein
-
Peng G, Hopper JE. 2002. Gene activation by interaction of an inhibitor with a cytoplasmic signaling protein. Proc. Natl. Acad. Sci. U. S. A. 99: 8548-8553. http://dx.doi.org/10.1073/pnas.142100099.
-
(2002)
Proc. Natl. Acad. Sci. U.S.A
, vol.99
, pp. 8548-8553
-
-
Peng, G.1
Hopper, J.E.2
-
37
-
-
78650632764
-
Phosphoproteomic analysis reveals interconnected system-wide responses to perturbations of kinases and phosphatases in yeast
-
Bodenmiller B, Wanka S, Kraft C, Urban J, Campbell D, Pedrioli PG, Gerrits B, Picotti P, Lam H, Vitek O, Brusniak MY, Roschitzki B, Zhang C, Shokat KM, Schlapbach R, Colman-Lerner A, Nolan GP, Nesvizhskii AI, Peter M, Loewith R, von Mering C, Aebersold R. 2010. Phosphoproteomic analysis reveals interconnected system-wide responses to perturbations of kinases and phosphatases in yeast. Sci. Signal. 3:rs4. http://dx.doi.org/10.1126/scisignal.2001182.
-
(2010)
Sci. Signal
, vol.3
-
-
Bodenmiller, B.1
Wanka, S.2
Kraft, C.3
Urban, J.4
Campbell, D.5
Pedrioli, P.G.6
Gerrits, B.7
Picotti, P.8
Lam, H.9
Vitek, O.10
Brusniak, M.Y.11
Roschitzki, B.12
Zhang, C.13
Shokat, K.M.14
Schlapbach, R.15
Colman-Lerner, A.16
Nolan, G.P.17
Nesvizhskii, A.I.18
Peter, M.19
Loewith, R.20
von Mering, C.21
Aebersold, R.22
more..
-
38
-
-
70349546862
-
Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution
-
Holt LJ, Tuch BB, Villen J, Johnson AD, Gygi SP, Morgan DO. 2009. Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325:1682-1686. http://dx.doi.org/10.1126/science.1172867.
-
(2009)
Science
, vol.325
, pp. 1682-1686
-
-
Holt, L.J.1
Tuch, B.B.2
Villen, J.3
Johnson, A.D.4
Gygi, S.P.5
Morgan, D.O.6
-
39
-
-
69249240179
-
Characterization of the rapamycinsensitive phosphoproteome reveals that Sch9 is a central coordinator of protein synthesis
-
Huber A, Bodenmiller B, Uotila A, Stahl M, Wanka S, Gerrits B, Aebersold R, Loewith R. 2009. Characterization of the rapamycinsensitive phosphoproteome reveals that Sch9 is a central coordinator of protein synthesis. Genes Dev. 23:1929-1943. http://dx.doi.org/10.1101/gad.532109.
-
(2009)
Genes Dev
, vol.23
, pp. 1929-1943
-
-
Huber, A.1
.Bodenmiller, B.2
Uotila, A.3
Stahl, M.4
Wanka, S.5
Gerrits, B.6
Aebersold, R.7
Loewith, R.8
-
40
-
-
77958031723
-
The rapamycin-sensitive phosphoproteome reveals that TOR controls protein kinase A toward some but not all substrates
-
Soulard A, Cremonesi A, Moes S, Schutz F, Jeno P, Hall MN. 2010. The rapamycin-sensitive phosphoproteome reveals that TOR controls protein kinase A toward some but not all substrates. Mol. Biol. Cell 21:3475-3486. http://dx.doi.org/10.1091/mbc. E10-03-0182.
-
(2010)
Mol. Biol. Cell
, vol.21
, pp. 3475-3486
-
-
Soulard, A.1
Cremonesi, A.2
Moes, S.3
Schutz, F.4
Jeno, P.5
Hall, M.N.6
-
41
-
-
84892491936
-
An organic acid-tolerant HAA1-overexpression mutant of an industrial bioethanol strain of Saccharomyces cerevisiae and its application to the production of bioethanol from sugarcane molasses
-
AMB Express
-
Inaba T, Watanabe D, Yoshiyama Y, Tanaka K, Ogawa J, Takagi H, Shimoi H, Shima J. 2013. An organic acid-tolerant HAA1-overexpression mutant of an industrial bioethanol strain of Saccharomyces cerevisiae and its application to the production of bioethanol from sugarcane molasses. AMB Express. 3:74. http://dx.doi.org/10.1186/2191-0855-3-74.
-
(2013)
, vol.3
, pp. 74
-
-
Inaba, T.1
Watanabe, D.2
Yoshiyama, Y.3
Tanaka, K.4
Ogawa, J.5
Takagi, H.6
Shimoi, H.7
Shima, J.8
-
42
-
-
84865715286
-
Dissecting DNA damage response pathways by analysing protein localization and abundance changes duringDNAreplication stress
-
Tkach JM, Yimit A, Lee AY, Riffle M, Costanzo M, Jaschob D, Hendry JA, Ou J, Moffat J, Boone C, Davis TN, Nislow C, Brown GW. 2012. Dissecting DNA damage response pathways by analysing protein localization and abundance changes duringDNAreplication stress. Nat. Cell Biol. 14:966-976. http://dx.doi.org/10.1038/ncb2549.
-
(2012)
Nat. Cell Biol
, vol.14
, pp. 966-976
-
-
Tkach, J.M.1
Yimit, A.2
Lee, A.Y.3
Riffle, M.4
Costanzo, M.5
Jaschob, D.6
Hendry, J.A.7
Ou, J.8
Moffat, J.9
Boone, C.10
Davis, T.N.11
Nislow, C.12
Brown, G.W.13
-
43
-
-
78651296878
-
PhosphoGRID: a database of experimentally verified in vivo protein phosphorylation sites from the budding yeast Saccharomyces cerevisiae
-
Oxford
-
Stark C, Su TC, Breitkreutz A, Lourenco P, Dahabieh M, Breitkreutz BJ, Tyers M, Sadowski I. 2010. PhosphoGRID: a database of experimentally verified in vivo protein phosphorylation sites from the budding yeast Saccharomyces cerevisiae. Database (Oxford) 2010:bap026. http://dx.doi.org/10.1093/database/bap026
-
(2010)
Database
, vol.2010
, pp. 026
-
-
Stark, C.1
Su, T.C.2
Breitkreutz, A.3
Lourenco, P.4
Dahabieh, M.5
Breitkreutz, B.J.6
Tyers, M.7
Sadowski, I.8
|