메뉴 건너뛰기




Volumn 80, Issue 11, 2014, Pages 3488-3495

Nuclear localization of Haa1, which is linked to its phosphorylation status, mediates lactic acid tolerance in Saccharomyces cerevisiae

Author keywords

[No Author keywords available]

Indexed keywords

ACID RESISTANCE; CYTOLOGY; GENE EXPRESSION; GENES; PHOSPHORYLATION; YEAST;

EID: 85047689314     PISSN: 00992240     EISSN: 10985336     Source Type: Journal    
DOI: 10.1128/AEM.04241-13     Document Type: Article
Times cited : (32)

References (43)
  • 1
    • 38349093902 scopus 로고    scopus 로고
    • Microbial production of organic acids: expanding the markets
    • Sauer M, Porro D, Mattanovich D, Branduardi P. 2008. Microbial production of organic acids: expanding the markets. Trends Biotechnol. 26:100-108. http://dx.doi.org/10.1016/j.tibtech.2007.11.006.
    • (2008) Trends Biotechnol , vol.26 , pp. 100-108
    • Sauer, M.1    Porro, D.2    Mattanovich, D.3    Branduardi, P.4
  • 2
    • 0037255676 scopus 로고    scopus 로고
    • Lactic acid production by Saccharomyces cerevisiae expressing a Rhizopus oryzae lactate dehydrogenase gene
    • Skory CD. 2003. Lactic acid production by Saccharomyces cerevisiae expressing a Rhizopus oryzae lactate dehydrogenase gene. J. Ind. Microbiol. Biotechnol. 30:22-27. http://dx.doi.org/10.1007/s10295-002-0004-2.
    • (2003) J. Ind. Microbiol. Biotechnol , vol.30 , pp. 22-27
    • Skory, C.D.1
  • 3
    • 0034135549 scopus 로고    scopus 로고
    • Factors affecting the fermentative lactic acid production from renewable resources
    • Hofvendahl K, Hahn-Hagerdal B. 2000. Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microb. Technol. 26:87-107. http://dx.doi.org/10.1016/S0141-0229(99)00155-6.
    • (2000) Enzyme Microb. Technol , vol.26 , pp. 87-107
    • Hofvendahl, K.1    Hahn-Hagerdal, B.2
  • 4
    • 0031658814 scopus 로고    scopus 로고
    • Modification of metabolic pathways of Saccharomyces cerevisiae by the expression of lactate dehydrogenase and deletion of pyruvate decarboxylase genes for the lactic acid fermentation at low pH value
    • Adachi E, Torigoe M, Sugiyama S, Nikawa J, Shimizu K. 1998. Modification of metabolic pathways of Saccharomyces cerevisiae by the expression of lactate dehydrogenase and deletion of pyruvate decarboxylase genes for the lactic acid fermentation at low pH value. J. Ferment. Bioeng. 86:284-289. http://dx.doi.org/10.1016/S0922-338X(98)80131-1.
    • (1998) J. Ferment. Bioeng , vol.86 , pp. 284-289
    • Adachi, E.1    Torigoe, M.2    Sugiyama, S.3    Nikawa, J.4    Shimizu, K.5
  • 5
    • 14744294675 scopus 로고
    • Mixed lactic acid-alcoholic fermentation by Saccharomyces cerevisiae expressing the Lactobacillus casei L(+)-LDH
    • Dequin S, Barre P. 1994. Mixed lactic acid-alcoholic fermentation by Saccharomyces cerevisiae expressing the Lactobacillus casei L(+)-LDH. Biotechnology 12:173-177. http://dx.doi.org/10.1038/nbt0294-173.
    • (1994) Biotechnology , vol.12 , pp. 173-177
    • Dequin, S.1    Barre, P.2
  • 7
    • 17444407064 scopus 로고    scopus 로고
    • Efficient production of L-lactic acid by metabolically engineered Saccharomyces cerevisiae with a genome-integrated L-lactate dehydrogenase gene
    • Ishida N, Saitoh S, Tokuhiro K, Nagamori E, Matsuyama T, Kitamoto K, Takahashi H. 2005. Efficient production of L-lactic acid by metabolically engineered Saccharomyces cerevisiae with a genome-integrated L-lactate dehydrogenase gene. Appl. Environ. Microbiol. 71:1964-1970. http://dx.doi.org/10.1128/AEM.71.4.1964-1970.2005.
    • (2005) Appl. Environ. Microbiol , vol.71 , pp. 1964-1970
    • Ishida, N.1    Saitoh, S.2    Tokuhiro, K.3    Nagamori, E.4    Matsuyama, T.5    Kitamoto, K.6    Takahashi, H.7
  • 8
    • 18444393083 scopus 로고    scopus 로고
    • Genetically engineered wine yeast produces a high concentration of L-lactic acid of extremely high optical purity
    • Saitoh S, Ishida N, Onishi T, Tokuhiro K, Nagamori E, Kitamoto K, Takahashi H. 2005. Genetically engineered wine yeast produces a high concentration of L-lactic acid of extremely high optical purity. Appl. Environ. Microbiol. 71:2789-2792. http://dx.doi.org/10.1128/AEM.71.5.2789-2792.2005.
    • (2005) Appl. Environ. Microbiol , vol.71 , pp. 2789-2792
    • Saitoh, S.1    Ishida, N.2    Onishi, T.3    Tokuhiro, K.4    Nagamori, E.5    Kitamoto, K.6    Takahashi, H.7
  • 9
    • 0037014527 scopus 로고    scopus 로고
    • Process development and optimisation of lactic acid purification using electrodialysis
    • Madzingaidzo L, Danner H, Braun R. 2002. Process development and optimisation of lactic acid purification using electrodialysis. J. Biotechnol. 96:223-239. http://dx.doi.org/10.1016/S0168-1656(02)00049-4.
    • (2002) J Biotechnol , vol.96 , pp. 223-239
    • Madzingaidzo, L.1    Danner, H.2    Braun, R.3
  • 10
    • 84876330319 scopus 로고    scopus 로고
    • Disruption of multiple genes whose deletion causes lactic-acid resistance improves lactic-acid resistance and productivity in Saccharomyces cerevisiae
    • Suzuki T, Sakamoto T, Sugiyama M, Ishida N, Kambe H, Obata S, Kaneko Y, Takahashi H, Harashima S. 2013. Disruption of multiple genes whose deletion causes lactic-acid resistance improves lactic-acid resistance and productivity in Saccharomyces cerevisiae. J. Biosci. Bioeng. 115:467-474. http://dx.doi.org/10.1016/j.jbiosc.2012.11.014.
    • (2013) J. Biosci. Bioeng , vol.115 , pp. 467-474
    • Suzuki, T.1    Sakamoto, T.2    Sugiyama, M.3    Ishida, N.4    Kambe, H.5    Obata, S.6    Kaneko, Y.7    Takahashi, H.8    Harashima, S.9
  • 11
    • 0034766303 scopus 로고    scopus 로고
    • Acetic acid and lactic acid inhibition of growth of Saccharomyces cerevisiae by different mechanisms
    • Narendranath NV, Thomas KC, Ingledew WM. 2001. Acetic acid and lactic acid inhibition of growth of Saccharomyces cerevisiae by different mechanisms. J. Am. Soc. Brew. Chem. 59:187-194. http://dx.doi.org/10.1094/ASBCJ-59-0187.
    • (2001) J. Am. Soc. Brew. Chem , vol.59 , pp. 187-194
    • Narendranath, N.V.1    Thomas, K.C.2    Ingledew, W.M.3
  • 12
    • 33747337558 scopus 로고    scopus 로고
    • Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p
    • Kawahata M, Masaki K, Fujii T, Iefuji H. 2006. Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p. FEMS Yeast Res. 6:924-936. http://dx.doi.org/10.1111/j.1567-1364.2006.00089.x.
    • (2006) FEMS Yeast Res , vol.6 , pp. 924-936
    • Kawahata, M.1    Masaki, K.2    Fujii, T.3    Iefuji, H.4
  • 13
    • 52649136162 scopus 로고    scopus 로고
    • Physiological and transcriptional responses to high concentrations of lactic acid in anaerobic chemostat cultures of Saccharomyces cerevisiae
    • Abbott DA, Suir E, van Maris AJ, Pronk JT. 2008. Physiological and transcriptional responses to high concentrations of lactic acid in anaerobic chemostat cultures of Saccharomyces cerevisiae. Appl. Environ. Microbiol. 74:5759-5768. http://dx.doi.org/10.1128/AEM.01030-08.
    • (2008) Appl. Environ. Microbiol , vol.74 , pp. 5759-5768
    • Abbott, D.A.1    Suir, E.2    Van Maris, A.J.3    Pronk, J.T.4
  • 14
    • 18144408439 scopus 로고    scopus 로고
    • Organic acids and esters
    • Kluwer Academic/Plenum Publishers, New York, NY
    • Stratford M, Eklund T. 2003. Organic acids and esters. Kluwer Academic/Plenum Publishers, New York, NY.
    • (2003)
    • Stratford, M.1    Eklund, T.2
  • 15
    • 77958169154 scopus 로고    scopus 로고
    • Genomic expression program involving the Haa1p-regulon in Saccharomyces cerevisiae response to acetic acid
    • Mira NP, Becker JD, Sa-Correia I. 2010. Genomic expression program involving the Haa1p-regulon in Saccharomyces cerevisiae response to acetic acid. OMICS 14:587-601. http://dx.doi.org/10.1089/omi.2010.0048.
    • (2010) OMICS , vol.14 , pp. 587-601
    • Mira, N.P.1    Becker, J.D.2    Sa-Correia, I.3
  • 16
    • 80052432738 scopus 로고    scopus 로고
    • Identification of a DNA-binding site for the transcription factor Haa1, required for Saccharomyces cerevisiae response to acetic acid stress
    • Mira NP, Henriques SF, Keller G, Teixeira MC, Matos RG, Arraiano CM, Winge DR, Sa-Correia I. 2011. Identification of a DNA-binding site for the transcription factor Haa1, required for Saccharomyces cerevisiae response to acetic acid stress. Nucleic Acids Res. 39:6896-6907. http://dx.doi.org/10.1093/nar/gkr228.
    • (2011) Nucleic Acids Res , vol.39 , pp. 6896-6907
    • Mira, N.P.1    Henriques, S.F.2    Keller, G.3    Teixeira, M.C.4    Matos, R.G.5    Arraiano, C.M.6    Winge, D.R.7    Sa-Correia, I.8
  • 17
    • 0035914449 scopus 로고    scopus 로고
    • Haa1, a protein homologous to the copper-regulated transcription factor AceI, is a novel transcriptional activator
    • Keller G, Ray E, Brown PO, Winge DR. 2001. Haa1, a protein homologous to the copper-regulated transcription factor AceI, is a novel transcriptional activator. J. Biol. Chem. 276:38697-38702. http://dx.doi.org/10.1074/jbc. M107131200.
    • (2001) J. Biol. Chem , vol.276 , pp. 38697-38702
    • Keller, G.1    Ray, E.2    Brown, P.O.3    Winge, D.R.4
  • 18
    • 25844432253 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes
    • Fernandes AR, Mira NP, Vargas RC, Canelhas I, Sa-Correia I. 2005. Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes. Biochem. Biophys. Res. Commun. 337:95-103. http://dx.doi.org/10.1016/j.bbrc.2005.09.010.
    • (2005) Biochem. Biophys. Res. Commun , vol.337 , pp. 95-103
    • Fernandes, A.R.1    Mira, N.P.2    Vargas, R.C.3    Canelhas, I.4    Sa-Correia, I.5
  • 19
    • 0028217073 scopus 로고
    • Identification and characterization of a novel yeast gene: the YGP1 gene product is a highly glycosylated secreted protein that is synthesized in response to nutrient limitation
    • Destruelle M, Holzer H, Klionsky DJ. 1994. Identification and characterization of a novel yeast gene: the YGP1 gene product is a highly glycosylated secreted protein that is synthesized in response to nutrient limitation. Mol. Cell. Biol. 14:2740-2754. http://dx.doi.org/10.1128/MCB.14.4.2740.
    • (1994) Mol. Cell. Biol , vol.14 , pp. 2740-2754
    • Destruelle, M.1    Holzer, H.2    Klionsky, D.J.3
  • 21
    • 33751006150 scopus 로고    scopus 로고
    • The SPI1 gene, encoding a glycosylphosphatidylinositol-anchored cell wall protein, plays a prominent role in the development of yeast resistance to lipophilic weakacid food preservatives
    • Simoes T, Mira NP, Fernandes AR, Sa-Correia I. 2006. The SPI1 gene, encoding a glycosylphosphatidylinositol-anchored cell wall protein, plays a prominent role in the development of yeast resistance to lipophilic weakacid food preservatives. Appl. Environ. Microbiol. 72:7168-7175. http://dx.doi.org/10.1128/AEM.01476-06.
    • (2006) Appl. Environ. Microbiol , vol.72 , pp. 7168-7175
    • Simoes, T.1    Mira, N.P.2    Fernandes, A.R.3    Sa-Correia, I.4
  • 22
    • 79953222615 scopus 로고    scopus 로고
    • The Yak1 protein kinase lies at the center of a regulatory cascade affecting adhesive growth and stress resistance in Saccharomyces cerevisiae
    • Malcher M, Schladebeck S, Mosch HU. 2011. The Yak1 protein kinase lies at the center of a regulatory cascade affecting adhesive growth and stress resistance in Saccharomyces cerevisiae. Genetics 187:717-730. http://dx.doi.org/10.1534/genetics.110.125708.
    • (2011) Genetics , vol.187 , pp. 717-730
    • Malcher, M.1    Schladebeck, S.2    Mosch, H.U.3
  • 24
    • 0036500167 scopus 로고    scopus 로고
    • Calcineurin-dependent regulation of Crz1p nuclear export requires Msn5p and a conserved calcineurin docking site
    • Boustany LM, Cyert MS. 2002. Calcineurin-dependent regulation of Crz1p nuclear export requires Msn5p and a conserved calcineurin docking site. Genes Dev. 16:608-619. http://dx.doi.org/10.1101/gad.967602.
    • (2002) Genes Dev , vol.16 , pp. 608-619
    • Boustany, L.M.1    Cyert, M.S.2
  • 25
    • 0033523996 scopus 로고    scopus 로고
    • The nuclear exportin Msn5 is required for nuclear export of the Mig1 glucose repressor of Saccharomyces cerevisiae
    • DeVit MJ, Johnston M. 1999. The nuclear exportin Msn5 is required for nuclear export of the Mig1 glucose repressor of Saccharomyces cerevisiae. Curr. Biol. 9:1231-1241. http://dx.doi.org/10.1016/S0960-9822(99)80503-X.
    • (1999) Curr. Biol , vol.9 , pp. 1231-1241
    • DeVit, M.J.1    Johnston, M.2
  • 26
    • 0032481048 scopus 로고    scopus 로고
    • The receptor Msn5 exports the phosphorylated transcription factor Pho4 out of the nucleus
    • Kaffman A, Rank NM, O'Neill EM, Huang LS, O'Shea EK. 1998. The receptor Msn5 exports the phosphorylated transcription factor Pho4 out of the nucleus. Nature 396:482-486. http://dx.doi.org/10.1038/24898.
    • (1998) Nature , vol.396 , pp. 482-486
    • Kaffman, A.1    Rank, N.M.2    O'Neill, E.M.3    Huang, L.S.4    O'Shea, E.K.5
  • 27
    • 34547763678 scopus 로고    scopus 로고
    • Mechanism underlying the iron-dependent nuclear export of the iron-responsive transcription factor Aft1p in Saccharomyces cerevisiae
    • Ueta R, Fujiwara N, Iwai K, Yamaguchi-Iwai Y. 2007. Mechanism underlying the iron-dependent nuclear export of the iron-responsive transcription factor Aft1p in Saccharomyces cerevisiae. Mol. Biol. Cell 18: 2980-2990. http://dx.doi.org/10.1091/mbc. E06-11-1054.
    • (2007) Mol. Biol. Cell , vol.18 , pp. 2980-2990
    • Ueta, R.1    Fujiwara, N.2    Iwai, K.3    Yamaguchi-Iwai, Y.4
  • 28
    • 0032579440 scopus 로고    scopus 로고
    • Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disrup-tion and other applications
    • Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD. 1998. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disrup-tion and other applications. Yeast 14:115-132. http://dx.doi.org/10.1002/(SICI)1097-0061(19980130)14:2115::AID-YEA2043.0.CO;2-2.
    • (1998) Yeast , vol.14 , pp. 115-132
    • Brachmann, C.B.1    Davies, A.2    Cost, G.J.3    Caputo, E.4    Li, J.5    Hieter, P.6    Boeke, J.D.7
  • 29
    • 27744449273 scopus 로고    scopus 로고
    • PCR-mediated repeated chromosome splitting in Saccharomyces cerevisiae
    • Sugiyama M, Ikushima S, Nakazawa T, Kaneko Y, Harashima S. 2005. PCR-mediated repeated chromosome splitting in Saccharomyces cerevisiae. Biotechniques 38:909-914. http://dx.doi.org/10.2144/05386RR01.
    • (2005) Biotechniques , vol.38 , pp. 909-914
    • Sugiyama, M.1    Ikushima, S.2    Nakazawa, T.3    Kaneko, Y.4    Harashima, S.5
  • 30
    • 0038095416 scopus 로고    scopus 로고
    • Transcriptional regulation of phosphate-responsive genes in low-affinity phosphate-transporter-defective mutants in Saccharomyces cerevisiae
    • Auesukaree C, Homma T, Kaneko Y, Harashima S. 2003. Transcriptional regulation of phosphate-responsive genes in low-affinity phosphate-transporter-defective mutants in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 306:843-850. http://dx.doi.org/10.1016/S0006-291X(03)01068-4.
    • (2003) Biochem. Biophys. Res. Commun , vol.306 , pp. 843-850
    • Auesukaree, C.1    Homma, T.2    Kaneko, Y.3    Harashima, S.4
  • 31
    • 0031820288 scopus 로고    scopus 로고
    • Additional modules for versatileand economical PCR-based gene deletion and modification in Saccharomyces cerevisiae
    • Longtine MS, McKenzie A, III, Demarini DJ, Shah NG, Wach A, Brachat A, Philippsen P, Pringle JR. 1998. Additional modules for versatileand economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14:953-961. http://dx.doi.org/10.1002/(SICI)1097-0061(199807)14:10953::AID-YEA2933.0.CO;2-U.
    • (1998) Yeast , vol.14 , pp. 953-961
    • Longtine, M.S.1    McKenzie, A.2    Demarini, D.J.3    Shah, N.G.4    Wach, A.5    Brachat, A.6    Philippsen, P.7    Pringle, J.R.8
  • 32
    • 84868611282 scopus 로고    scopus 로고
    • Enhancement of acetic acid tolerance in Saccharomyces cerevisiae by overexpression of the HAA1 gene, encoding a transcriptional activator
    • Tanaka K, Ishii Y, Ogawa J, Shima J. 2012. Enhancement of acetic acid tolerance in Saccharomyces cerevisiae by overexpression of the HAA1 gene, encoding a transcriptional activator. Appl. Environ. Microbiol. 78:8161-8163. http://dx.doi.org/10.1128/AEM.02356-12.
    • (2012) Appl. Environ. Microbiol , vol.78 , pp. 8161-8163
    • Tanaka, K.1    Ishii, Y.2    Ogawa, J.3    Shima, J.4
  • 33
    • 84868139340 scopus 로고    scopus 로고
    • Identification of an acetate-tolerant strain of Saccharomyces cerevisiae and characterization by gene expression analysis
    • Haitani Y, Tanaka K, Yamamoto M, Nakamura T, Ando A, Ogawa J, Shima J. 2012. Identification of an acetate-tolerant strain of Saccharomyces cerevisiae and characterization by gene expression analysis. J. Biosci. Bioeng. 114:648-651. http://dx.doi.org/10.1016/j.jbiosc.2012.07.002.
    • (2012) J. Biosci. Bioeng , vol.114 , pp. 648-651
    • Haitani, Y.1    Tanaka, K.2    Yamamoto, M.3    Nakamura, T.4    Ando, A.5    Ogawa, J.6    Shima, J.7
  • 34
    • 0032518996 scopus 로고    scopus 로고
    • Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity
    • Gorner W, Durchschlag E, Martinez-Pastor MT, Estruch F, Ammerer G, Hamilton B, Ruis H, Schuller C. 1998. Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity. Genes Dev. 12:586-597. http://dx.doi.org/10.1101/gad.12.4.586.
    • (1998) Genes Dev , vol.12 , pp. 586-597
    • Gorner, W.1    Durchschlag, E.2    Martinez-Pastor, M.T.3    Estruch, F.4    Ammerer, G.5    Hamilton, B.6    Ruis, H.7    Schuller, C.8
  • 35
    • 0033532281 scopus 로고    scopus 로고
    • Roles of phosphorylation sites in regulating activity of the transcription factor Pho4
    • Komeili A, O'Shea EK. 1999. Roles of phosphorylation sites in regulating activity of the transcription factor Pho4. Science 284:977-980. http://dx.doi.org/10.1126/science.284.5416.977.
    • (1999) Science , vol.284 , pp. 977-980
    • Komeili, A.1    O'Shea, E.K.2
  • 36
    • 0037173045 scopus 로고    scopus 로고
    • Gene activation by interaction of an inhibitor with a cytoplasmic signaling protein
    • Peng G, Hopper JE. 2002. Gene activation by interaction of an inhibitor with a cytoplasmic signaling protein. Proc. Natl. Acad. Sci. U. S. A. 99: 8548-8553. http://dx.doi.org/10.1073/pnas.142100099.
    • (2002) Proc. Natl. Acad. Sci. U.S.A , vol.99 , pp. 8548-8553
    • Peng, G.1    Hopper, J.E.2
  • 38
    • 70349546862 scopus 로고    scopus 로고
    • Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution
    • Holt LJ, Tuch BB, Villen J, Johnson AD, Gygi SP, Morgan DO. 2009. Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325:1682-1686. http://dx.doi.org/10.1126/science.1172867.
    • (2009) Science , vol.325 , pp. 1682-1686
    • Holt, L.J.1    Tuch, B.B.2    Villen, J.3    Johnson, A.D.4    Gygi, S.P.5    Morgan, D.O.6
  • 39
    • 69249240179 scopus 로고    scopus 로고
    • Characterization of the rapamycinsensitive phosphoproteome reveals that Sch9 is a central coordinator of protein synthesis
    • Huber A, Bodenmiller B, Uotila A, Stahl M, Wanka S, Gerrits B, Aebersold R, Loewith R. 2009. Characterization of the rapamycinsensitive phosphoproteome reveals that Sch9 is a central coordinator of protein synthesis. Genes Dev. 23:1929-1943. http://dx.doi.org/10.1101/gad.532109.
    • (2009) Genes Dev , vol.23 , pp. 1929-1943
    • Huber, A.1    .Bodenmiller, B.2    Uotila, A.3    Stahl, M.4    Wanka, S.5    Gerrits, B.6    Aebersold, R.7    Loewith, R.8
  • 40
    • 77958031723 scopus 로고    scopus 로고
    • The rapamycin-sensitive phosphoproteome reveals that TOR controls protein kinase A toward some but not all substrates
    • Soulard A, Cremonesi A, Moes S, Schutz F, Jeno P, Hall MN. 2010. The rapamycin-sensitive phosphoproteome reveals that TOR controls protein kinase A toward some but not all substrates. Mol. Biol. Cell 21:3475-3486. http://dx.doi.org/10.1091/mbc. E10-03-0182.
    • (2010) Mol. Biol. Cell , vol.21 , pp. 3475-3486
    • Soulard, A.1    Cremonesi, A.2    Moes, S.3    Schutz, F.4    Jeno, P.5    Hall, M.N.6
  • 41
    • 84892491936 scopus 로고    scopus 로고
    • An organic acid-tolerant HAA1-overexpression mutant of an industrial bioethanol strain of Saccharomyces cerevisiae and its application to the production of bioethanol from sugarcane molasses
    • AMB Express
    • Inaba T, Watanabe D, Yoshiyama Y, Tanaka K, Ogawa J, Takagi H, Shimoi H, Shima J. 2013. An organic acid-tolerant HAA1-overexpression mutant of an industrial bioethanol strain of Saccharomyces cerevisiae and its application to the production of bioethanol from sugarcane molasses. AMB Express. 3:74. http://dx.doi.org/10.1186/2191-0855-3-74.
    • (2013) , vol.3 , pp. 74
    • Inaba, T.1    Watanabe, D.2    Yoshiyama, Y.3    Tanaka, K.4    Ogawa, J.5    Takagi, H.6    Shimoi, H.7    Shima, J.8
  • 43
    • 78651296878 scopus 로고    scopus 로고
    • PhosphoGRID: a database of experimentally verified in vivo protein phosphorylation sites from the budding yeast Saccharomyces cerevisiae
    • Oxford
    • Stark C, Su TC, Breitkreutz A, Lourenco P, Dahabieh M, Breitkreutz BJ, Tyers M, Sadowski I. 2010. PhosphoGRID: a database of experimentally verified in vivo protein phosphorylation sites from the budding yeast Saccharomyces cerevisiae. Database (Oxford) 2010:bap026. http://dx.doi.org/10.1093/database/bap026
    • (2010) Database , vol.2010 , pp. 026
    • Stark, C.1    Su, T.C.2    Breitkreutz, A.3    Lourenco, P.4    Dahabieh, M.5    Breitkreutz, B.J.6    Tyers, M.7    Sadowski, I.8


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.