메뉴 건너뛰기




Volumn 5, Issue 2, 2013, Pages

Biologically inspired intelligent decision making: A commentary on the use of artificial neural networks in bioinformatics

Author keywords

Artificial neural networks; Bioinformatics; Gene identification; Gene gene interaction; Genome wide association study; Multilayer perceptron; Protein structure prediction

Indexed keywords

ALGORITHM; ANIMAL; ARTIFICIAL NEURAL NETWORK; AUTOMATED PATTERN RECOGNITION; BIOLOGY; BIOMIMETICS; DECISION MAKING; DECISION SUPPORT SYSTEM; HUMAN; NERVE CELL NETWORK; PHYSIOLOGY; PROCEDURES; BIOINFORMATICS; CONSENSUS DEVELOPMENT; EXPLOSION;

EID: 84931833092     PISSN: 19491018     EISSN: 19491026     Source Type: Journal    
DOI: 10.4161/bioe.26997     Document Type: Article
Times cited : (46)

References (126)
  • 1
    • 74949125948 scopus 로고    scopus 로고
    • Grounding cooccurrence: Identifying features in a lexical co-occurrence model of semantic memory
    • PMID:19897830
    • Durda K, Buchanan L, Caron R. Grounding cooccurrence: Identifying features in a lexical co-occurrence model of semantic memory. Behav Res Methods 2009; 41:1210-23; PMID:19897830; http://dx.doi. org/10.3758/BRM.41.4.1210.
    • (2009) Behav Res Methods , vol.41 , pp. 1210-1223
    • Durda, K.1    Buchanan, L.2    Caron, R.3
  • 3
    • 84875052509 scopus 로고    scopus 로고
    • Using machine learning to classify image features from canine pelvic radiographs: Evaluation of partial least squares discriminant analysis and artificial neural network models
    • PMID:23228122
    • McEvoy FJ, Amigo JM. Using machine learning to classify image features from canine pelvic radiographs: evaluation of partial least squares discriminant analysis and artificial neural network models. Vet Radiol Ultrasound 2012; 54:122-6; PMID:23228122; http://dx.doi.org/10.1111/vru.12003.
    • (2012) Vet Radiol Ultrasound , vol.54 , pp. 122-126
    • McEvoy, F.J.1    Amigo, J.M.2
  • 6
    • 84888206091 scopus 로고    scopus 로고
    • Segmentation, feature extraction, and multiclass brain tumor classification
    • PMID:23645344
    • Sachdeva J, Kumar V, Gupta I, Khandelwal N, Ahuja CK. Segmentation, feature extraction, and multiclass brain tumor classification. J Digit Imaging 2013; 26:1141-50; PMID:23645344; http://dx.doi. org/10.1007/s10278-013-9600-0.
    • (2013) J Digit Imaging , vol.26 , pp. 1141-1150
    • Sachdeva, J.1    Kumar, V.2    Gupta, I.3    Khandelwal, N.4    Ahuja, C.K.5
  • 7
    • 84878099465 scopus 로고    scopus 로고
    • A microfluidic system for cell type classification based on cellular size-independent electrical properties
    • PMID:23640025
    • Zhao Y, Chen D, Luo Y, Li H, Deng B, Huang SB, Chiu TK, Wu MH, Long R, Hu H, et al. A microfluidic system for cell type classification based on cellular size-independent electrical properties. Lab Chip 2013; 13:2272-7; PMID:23640025; http://dx.doi. org/10.1039/c3lc41361f.
    • (2013) Lab Chip , vol.13 , pp. 2272-2277
    • Zhao, Y.1    Chen, D.2    Luo, Y.3    Li, H.4    Deng, B.5    Huang, S.B.6    Chiu, T.K.7    Wu, M.H.8    Long, R.9    Hu, H.10
  • 8
    • 84892587881 scopus 로고    scopus 로고
    • Scaled free-energy based reinforcement learning for robust and efficient learning in high-dimensional state spaces
    • PMID:23450126
    • Elfwing S, Uchibe E, Doya K. Scaled free-energy based reinforcement learning for robust and efficient learning in high-dimensional state spaces. Front Neurorobot 2013; 7:3; PMID:23450126
    • (2013) Front Neurorobot , vol.7 , pp. 3
    • Elfwing, S.1    Uchibe, E.2    Doya, K.3
  • 10
    • 84870233667 scopus 로고    scopus 로고
    • Evolving granular neural networks from fuzzy data streams
    • PMID:23201554
    • Leite D, Costa P, Gomide F. Evolving granular neural networks from fuzzy data streams. Neural Netw 2013; 38:1-16; PMID:23201554; http://dx.doi. org/10.1016/j.neunet.2012.10.006.
    • (2013) Neural Netw , vol.38 , pp. 1-16
    • Leite, D.1    Costa, P.2    Gomide, F.3
  • 12
    • 0035895205 scopus 로고    scopus 로고
    • PubMed Central: The GenBank of the published literature
    • PMID:11209037
    • Roberts RJ. PubMed Central: The GenBank of the published literature. Proc Natl Acad Sci USA 2001; 98:381-2; PMID:11209037; http://dx.doi. org/10.1073/pnas.98.2.381.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 381-382
    • Roberts, R.J.1
  • 13
    • 84868587432 scopus 로고    scopus 로고
    • Digital biology: A new era has begun
    • PMID:23099453
    • Sleator RD. Digital biology: a new era has begun. Bioengineered 2012; 3:311-2; PMID:23099453; http://dx.doi.org/10.4161/bioe.22367.
    • (2012) Bioengineered , vol.3 , pp. 311-312
    • Sleator, R.D.1
  • 15
    • 65549136186 scopus 로고    scopus 로고
    • An introduction to artificial neural networks in bioinformatics--application to complex microarray and mass spectrometry datasets in cancer studies
    • PMID:19307287
    • Lancashire LJ, Lemetre C, Ball GR. An introduction to artificial neural networks in bioinformatics--application to complex microarray and mass spectrometry datasets in cancer studies. Brief Bioinform 2009; 10:315-29; PMID:19307287; http://dx.doi. org/10.1093/bib/bbp012.
    • (2009) Brief Bioinform , vol.10 , pp. 315-329
    • Lancashire, L.J.1    Lemetre, C.2    Ball, G.R.3
  • 16
    • 77952763424 scopus 로고    scopus 로고
    • Neural Networks
    • In: Carugo O, Eisenhaber F, eds Humana Press
    • Yang Z. Neural Networks. In: Carugo O, Eisenhaber F, eds. Data Mining Techniques for the Life Sciences: Humana Press, 2010:197-222.
    • (2010) Data Mining Techniques for the Life Sciences , pp. 197-222
    • Yang, Z.1
  • 17
    • 0037862841 scopus 로고    scopus 로고
    • A comprehensive review for industrial applicability of artificial neural networks. Industrial Electronics
    • Meireles MR, Almeida PE, Simões MG. A comprehensive review for industrial applicability of artificial neural networks. Industrial Electronics. IEEE Transactions on 2003; 50:585-601
    • (2003) IEEE Transactions on , vol.50 , pp. 585-601
    • Meireles, M.R.1    Almeida, P.E.2    Simões, M.G.3
  • 18
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart DE, Hintont GE, Williams RJ. Learning representations by back-propagating errors. Nature 1986; 323:533-6; http://dx.doi. org/10.1038/323533a0.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hintont, G.E.2    Williams, R.J.3
  • 19
    • 0026351408 scopus 로고
    • Locating protein-coding regions in human DNA sequences by a multiple sensor-neural network approach
    • PMID:1763041
    • Uberbacher EC, Mural RJ. Locating protein-coding regions in human DNA sequences by a multiple sensor-neural network approach. Proc Natl Acad Sci USA 1991; 88:11261-5; PMID:1763041; http:// dx.doi.org/10.1073/pnas.88.24.11261.
    • (1991) Proc Natl Acad Sci USA , vol.88 , pp. 11261-11265
    • Uberbacher, E.C.1    Mural, R.J.2
  • 20
    • 0023803244 scopus 로고
    • Predicting the secondary structure of globular proteins using neural network models
    • PMID:3172241
    • Qian N, Sejnowski TJ. Predicting the secondary structure of globular proteins using neural network models. J Mol Biol 1988; 202:865-84; PMID:3172241; http://dx.doi.org/10.1016/0022-2836(88)90564-5.
    • (1988) J Mol Biol , vol.202 , pp. 865-884
    • Qian, N.1    Sejnowski, T.J.2
  • 24
    • 0024931167 scopus 로고
    • A new approach for finding the global minimum of error function of neural networks
    • Baba N. A new approach for finding the global minimum of error function of neural networks. Neural Netw 1989; 2:367-73; http://dx.doi. org/10.1016/0893-6080(89)90021-X.
    • (1989) Neural Netw , vol.2 , pp. 367-373
    • Baba, N.1
  • 25
    • 0026017007 scopus 로고
    • Creating artificial neural networks that generalize
    • Sietsma J, Dow RJ. Creating artificial neural networks that generalize. Neural Netw 1991; 4:67-79; http://dx.doi.org/10.1016/0893-6080(91)90033-2.
    • (1991) Neural Netw , vol.4 , pp. 67-79
    • Sietsma, J.1    Dow, R.J.2
  • 26
    • 80053625918 scopus 로고    scopus 로고
    • A new formulation for feedforward neural networks
    • PMID:21859600
    • Razavi S, Tolson BA. A new formulation for feedforward neural networks. IEEE Trans Neural Netw 2011; 22:1588-98; PMID:21859600; http://dx.doi. org/10.1109/TNN.2011.2163169.
    • (2011) IEEE Trans Neural Netw , vol.22 , pp. 1588-1598
    • Razavi, S.1    Tolson, B.A.2
  • 27
    • 0032146239 scopus 로고    scopus 로고
    • Artificial neural networks (the multilayer perceptron)-a review of applications in the atmospheric sciences
    • Gardner M, Dorling S. Artificial neural networks (the multilayer perceptron)-a review of applications in the atmospheric sciences. Atmos Environ 1998; 32:2627-36; http://dx.doi.org/10.1016/ S1352-2310(97)00447-0.
    • (1998) Atmos Environ , vol.32 , pp. 2627-2636
    • Gardner, M.1    Dorling, S.2
  • 28
    • 11144273669 scopus 로고
    • The perceptron: A probabilistic model for information storage and organization in the brain
    • PMID:13602029
    • Rosenblatt F. The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev 1958; 65:386-408; PMID:13602029; http://dx.doi.org/10.1037/h0042519.
    • (1958) Psychol Rev , vol.65 , pp. 386-408
    • Rosenblatt, F.1
  • 29
    • 0025488663 scopus 로고
    • 30 years of adaptive neural networks: Perceptron, madaline, and backpropagation
    • Widrow B, Lehr MA. 30 years of adaptive neural networks: perceptron, madaline, and backpropagation. Proc IEEE 1990; 78:1415-42; http://dx.doi. org/10.1109/5.58323.
    • (1990) Proc IEEE , vol.78 , pp. 1415-1442
    • Widrow, B.1    Lehr, M.A.2
  • 30
    • 0031128330 scopus 로고    scopus 로고
    • On fault tolerant training of feedforward neural networks
    • Arad BS, El-Amawy A. On fault tolerant training of feedforward neural networks. Neural Netw 1997; 10:539-53; http://dx.doi.org/10.1016/ S0893-6080(96)00089-5.
    • (1997) Neural Netw , vol.10 , pp. 539-553
    • Arad, B.S.1    El-Amawy, A.2
  • 31
    • 0034970056 scopus 로고    scopus 로고
    • Clinical validation of an artificial neural network trained to identify acute allograft rejection in liver transplant recipients
    • PMID:11443576
    • Hughes VF, Melvin DG, Niranjan M, Alexander GA, Trull AK. Clinical validation of an artificial neural network trained to identify acute allograft rejection in liver transplant recipients. Liver Transpl 2001; 7:496-503; PMID:11443576; http://dx.doi.org/10.1053/ jlts.2001.24642.
    • (2001) Liver Transpl , vol.7 , pp. 496-503
    • Hughes, V.F.1    Melvin, D.G.2    Niranjan, M.3    Alexander, G.A.4    Trull, A.K.5
  • 32
    • 0002932077 scopus 로고
    • Backpropagation can give rise to spurious local minima even for networks without hidden layers
    • Sontag ED, Sussmann HJ. Backpropagation can give rise to spurious local minima even for networks without hidden layers. AIP Conf Proc 1989; 3:91-106
    • (1989) AIP Conf Proc , vol.3 , pp. 91-106
    • Sontag, E.D.1    Sussmann, H.J.2
  • 33
    • 0037083655 scopus 로고    scopus 로고
    • Novel artificial neural network for early detection of prostate cancer
    • PMID:11844812
    • Djavan B, Remzi M, Zlotta A, Seitz C, Snow P, Marberger M. Novel artificial neural network for early detection of prostate cancer. J Clin Oncol 2002; 20:921-9; PMID:11844812; http://dx.doi. org/10.1200/JCO.20.4.921.
    • (2002) J Clin Oncol , vol.20 , pp. 921-929
    • Djavan, B.1    Remzi, M.2    Zlotta, A.3    Seitz, C.4    Snow, P.5    Marberger, M.6
  • 34
    • 0024866495 scopus 로고
    • On the approximate realization of continuous mappings by neural networks
    • Funahashi K-I. On the approximate realization of continuous mappings by neural networks. Neural Netw 1989; 2:183-92; http://dx.doi. org/10.1016/0893-6080(89)90003-8.
    • (1989) Neural Netw , vol.2 , pp. 183-192
    • Funahashi, K.-I.1
  • 35
    • 0028563264 scopus 로고
    • Design and evolution of modular neural network architectures
    • Happel BL, Murre JM. Design and evolution of modular neural network architectures. Neural Netw 1994; 7:985-1004; http://dx.doi.org/10.1016/ S0893-6080(05)80155-8.
    • (1994) Neural Netw , vol.7 , pp. 985-1004
    • Happel, B.L.1    Murre, J.M.2
  • 36
    • 84994831838 scopus 로고    scopus 로고
    • Design a PID controller for suspension system by back propagation neural network
    • Homaei H. Design a PID controller for suspension system by back propagation neural network. J Eng 2013; 2013:421543
    • (2013) J Eng , vol.2013 , pp. 421543
    • Homaei, H.1
  • 37
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Cybenko G. Approximation by superpositions of a sigmoidal function. Math Contr Signals Syst 1989; 2:303-14; http://dx.doi.org/10.1007/BF02551274.
    • (1989) Math Contr Signals Syst , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 39
    • 33745858913 scopus 로고    scopus 로고
    • Implementation of a fast artificial neural network library (fann)
    • Department of Computer Science University of Copenhagen (DIKU)
    • Nissen S. Implementation of a fast artificial neural network library (fann). Report, Department of Computer Science University of Copenhagen (DIKU) 2003; 31.
    • (2003) Report , pp. 31
    • Nissen, S.1
  • 40
    • 84859127815 scopus 로고    scopus 로고
    • A recurrent neural network for closed-loop intracortical brain-machine interface decoders
    • PMID:22427488
    • Sussillo D, Nuyujukian P, Fan JM, Kao JC, Stavisky SD, Ryu S, Shenoy K. A recurrent neural network for closed-loop intracortical brain-machine interface decoders. J Neural Eng 2012; 9:026027; PMID:22427488; http://dx.doi.org/10.1088/1741-2560/9/2/026027.
    • (2012) J Neural Eng , vol.9 , pp. 026027
    • Sussillo, D.1    Nuyujukian, P.2    Fan, J.M.3    Kao, J.C.4    Stavisky, S.D.5    Ryu, S.6    Shenoy, K.7
  • 41
    • 79955599894 scopus 로고    scopus 로고
    • CAST: Using neural networks to improve trading systems based on technical analysis by means of the RSI financial indicator
    • Rodríguez-González A, García-Crespo Á, Colomo-Palacios R, Guldrís Iglesias F, Gómez-Berbís JM. CAST: Using neural networks to improve trading systems based on technical analysis by means of the RSI financial indicator. Expert Syst Appl 2011; 38:11489-500; http://dx.doi.org/10.1016/j.eswa.2011.03.023.
    • (2011) Expert Syst Appl , vol.38 , pp. 11489-11500
    • Rodríguez-González, A.1    García-Crespo, Á.2    Colomo-Palacios, R.3    Guldrís Iglesias, F.4    Gómez-Berbís, J.M.5
  • 42
    • 18744438529 scopus 로고    scopus 로고
    • Artificial neural network-aided image analysis system for cell counting
    • PMID:10331623, (SICI)1097-0320(19990501)36:1<18::AID-CYTO3>3.0. CO;2-J
    • Sjöström PJ, Frydel BR, Wahlberg LU. Artificial neural network-aided image analysis system for cell counting. Cytometry 1999; 36:18-26; PMID:10331623; http://dx.doi.org/10.1002/
    • (1999) Cytometry , vol.36 , pp. 18-26
    • Sjöström, P.J.1    Frydel, B.R.2    Wahlberg, L.U.3
  • 43
    • 84871868177 scopus 로고    scopus 로고
    • Feedback-dependent generalization
    • PMID:23054603
    • Taylor JA, Hieber LL, Ivry RB. Feedback-dependent generalization. J Neurophysiol 2013; 109:202-15; PMID:23054603; http://dx.doi.org/10.1152/ jn.00247.2012.
    • (2013) J Neurophysiol , vol.109 , pp. 202-215
    • Taylor, J.A.1    Hieber, L.L.2    Ivry, R.B.3
  • 44
    • 0024137490 scopus 로고
    • Increased rates of convergence through learning rate adaptation
    • Jacobs RA. Increased rates of convergence through learning rate adaptation. Neural Netw 1988; 1:295-307; http://dx.doi. org/10.1016/0893-6080(88)90003-2.
    • (1988) Neural Netw , vol.1 , pp. 295-307
    • Jacobs, R.A.1
  • 46
    • 0033116881 scopus 로고    scopus 로고
    • Analysis of learning rate and momentum term in backpropagation neural network algorithm trained to predict pavement performance
    • Attoh-Okine NO. Analysis of learning rate and momentum term in backpropagation neural network algorithm trained to predict pavement performance. Adv Eng Software 1999; 30:291-302; http://dx.doi. org/10.1016/S0965-9978(98)00071-4.
    • (1999) Adv Eng Software , vol.30 , pp. 291-302
    • Attoh-Okine, N.O.1
  • 47
    • 0004235910 scopus 로고    scopus 로고
    • 2nd ed. Basingstoke: Palgrave
    • Picton P. Neural networks. 2nd ed. Basingstoke: Palgrave; 2000.
    • (2000) Neural networks
    • Picton, P.1
  • 50
    • 0030297904 scopus 로고    scopus 로고
    • Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes
    • PMID:8892489
    • Tu JV. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J Clin Epidemiol 1996; 49:1225-31; PMID:8892489; http://dx.doi. org/10.1016/S0895-4356(96)00002-9.
    • (1996) J Clin Epidemiol , vol.49 , pp. 1225-1231
    • Tu, J.V.1
  • 51
    • 0026119038 scopus 로고
    • Symbolic and neural learning algorithms: An experimental comparison
    • Shavlik JW, Mooney RJ, Towell GG. Symbolic and neural learning algorithms: An experimental comparison. Mach Learn 1991; 6:111-43; http://dx.doi. org/10.1007/BF00114160.
    • (1991) Mach Learn , vol.6 , pp. 111-143
    • Shavlik, J.W.1    Mooney, R.J.2    Towell, G.G.3
  • 52
    • 0001447184 scopus 로고
    • Neural network studies. 1. Comparison of overfitting and overtraining
    • Tetko IV, Livingstone DJ, Luik AI. Neural network studies. 1. Comparison of overfitting and overtraining. J Chem Inf Comput Sci 1995; 35:826-33; http:// dx.doi.org/10.1021/ci00027a006.
    • (1995) J Chem Inf Comput Sci , vol.35 , pp. 826-833
    • Tetko, I.V.1    Livingstone, D.J.2    Luik, A.I.3
  • 53
    • 0031105739 scopus 로고    scopus 로고
    • Introduction neural networks in remote sensing
    • Atkinson PM, Tatnall A. Introduction neural networks in remote sensing. Int J Remote Sens 1997; 18:699-709; http://dx.doi.org/10.1080/014311697218700.
    • (1997) Int J Remote Sens , vol.18 , pp. 699-709
    • Atkinson, P.M.1    Tatnall, A.2
  • 55
    • 84884153831 scopus 로고    scopus 로고
    • An effective, practical and low computational cost framework for the integration of heterogeneous data to predict functional associations between proteins by means of artificial neural networks
    • Florido J, Pomares H, Rojas I, Guillén A, Ortuno F, Urquiza J. An effective, practical and low computational cost framework for the integration of heterogeneous data to predict functional associations between proteins by means of artificial neural networks. Neurocomputing 2013; 121:64-78; http://dx.doi. org/10.1016/j.neucom.2012.11.040.
    • (2013) Neurocomputing , vol.121 , pp. 64-78
    • Florido, J.1    Pomares, H.2    Rojas, I.3    Guillén, A.4    Ortuno, F.5    Urquiza, J.6
  • 56
    • 33645825183 scopus 로고    scopus 로고
    • Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer
    • PMID:16585533
    • Ein-Dor L, Zuk O, Domany E. Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. Proc Natl Acad Sci USA 2006; 103:5923-8; PMID:16585533; http://dx.doi. org/10.1073/pnas.0601231103.
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 5923-5928
    • Ein-Dor, L.1    Zuk, O.2    Domany, E.3
  • 57
    • 35348891430 scopus 로고    scopus 로고
    • Network-based classification of breast cancer metastasis
    • PMID:17940530
    • Chuang H-Y, Lee E, Liu Y-T, Lee D, Ideker T. Network-based classification of breast cancer metastasis. Mol Syst Biol 2007; 3:140; PMID:17940530; http://dx.doi.org/10.1038/msb4100180.
    • (2007) Mol Syst Biol , vol.3 , pp. 140
    • Chuang, H.-Y.1    Lee, E.2    Liu, Y.-T.3    Lee, D.4    Ideker, T.5
  • 58
    • 79952423666 scopus 로고    scopus 로고
    • Subnetwork state functions define dysregulated subnetworks in cancer
    • PMID:21385033
    • Chowdhury SA, Nibbe RK, Chance MR, Koyutürk M. Subnetwork state functions define dysregulated subnetworks in cancer. J Comput Biol 2011; 18:263-81; PMID:21385033; http://dx.doi.org/10.1089/ cmb.2010.0269.
    • (2011) J Comput Biol , vol.18 , pp. 263-281
    • Chowdhury, S.A.1    Nibbe, R.K.2    Chance, M.R.3    Koyutürk, M.4
  • 59
    • 45949121309 scopus 로고
    • Fast simulated annealing
    • Szu H, Hartley R. Fast simulated annealing. Phys Lett A 1987; 122:157-62; http://dx.doi. org/10.1016/0375-9601(87)90796-1.
    • (1987) Phys Lett A , vol.122 , pp. 157-162
    • Szu, H.1    Hartley, R.2
  • 60
    • 33644877879 scopus 로고    scopus 로고
    • A modified error backpropagation algorithm for complex-value neural networks
    • PMID:16385633
    • Chen X, Tang Z, Variappan C, Li S, Okada T. A modified error backpropagation algorithm for complex-value neural networks. Int J Neural Syst 2005; 15:435-43; PMID:16385633; http://dx.doi. org/10.1142/S0129065705000426.
    • (2005) Int J Neural Syst , vol.15 , pp. 435-443
    • Chen, X.1    Tang, Z.2    Variappan, C.3    Li, S.4    Okada, T.5
  • 61
    • 0026745182 scopus 로고
    • On the problem of local minima in backpropagation
    • Gori M, Tesi A. On the problem of local minima in backpropagation. IEEE Trans Pattern Anal Mach Intell 1992; 14:76-86; http://dx.doi. org/10.1109/34.107014.
    • (1992) IEEE Trans Pattern Anal Mach Intell , vol.14 , pp. 76-86
    • Gori, M.1    Tesi, A.2
  • 62
    • 0001698980 scopus 로고
    • Backpropagation is sensitive to initial conditions
    • Pollack JB. Backpropagation is sensitive to initial conditions. Complex Systems 1990; 4:269-80
    • (1990) Complex Systems , vol.4 , pp. 269-280
    • Pollack, J.B.1
  • 63
    • 0036594106 scopus 로고    scopus 로고
    • Evolving neural networks through augmenting topologies
    • PMID:12180173
    • Stanley KO, Miikkulainen R. Evolving neural networks through augmenting topologies. Evol Comput 2002; 10:99-127; PMID:12180173; http://dx.doi. org/10.1162/106365602320169811.
    • (2002) Evol Comput , vol.10 , pp. 99-127
    • Stanley, K.O.1    Miikkulainen, R.2
  • 64
    • 84875792376 scopus 로고    scopus 로고
    • Understanding and detecting misfire in an HCCI engine fuelled with ethanol
    • Bahri B, Aziz AA, Shahbakhti M, Muhamad Said MF. Understanding and detecting misfire in an HCCI engine fuelled with ethanol. Appl Energy 2013; 108:24-33; http://dx.doi.org/10.1016/j. apenergy.2013.03.004.
    • (2013) Appl Energy , vol.108 , pp. 24-33
    • Bahri, B.1    Aziz, A.A.2    Shahbakhti, M.3    Muhamad Said, M.F.4
  • 65
    • 84890020619 scopus 로고    scopus 로고
    • Artificial intelligence vs. classical approaches: A new look at the prediction of flux decline in wastewater treatment
    • Mashhadi Meighani H, Dehghani A, Rekabdar F, Hemmati M, Goodarznia I. Artificial intelligence vs. classical approaches: a new look at the prediction of flux decline in wastewater treatment. Desalin Water Treat 2013; 51:7476-89; http://dx.doi.org/10.1080/1 9443994.2013.773861
    • (2013) Desalin Water Treat , vol.51 , pp. 7476-7489
    • Mashhadi Meighani, H.1    Dehghani, A.2    Rekabdar, F.3    Hemmati, M.4    Goodarznia, I.5
  • 67
    • 67649216412 scopus 로고    scopus 로고
    • A novel approach for determining the optimal number of hidden layer neurons for FNN's and its application in data mining
    • Xu S, Chen L. A novel approach for determining the optimal number of hidden layer neurons for FNN's and its application in data mining. International Conference on Information Technology and Applications: iCITA, 2008:683-6.
    • (2008) International Conference on Information Technology and Applications: ICITA , pp. 683-686
    • Xu, S.1    Chen, L.2
  • 68
    • 0342506462 scopus 로고    scopus 로고
    • Application of a neural network technique to rainfall-runoffmodelling
    • Shamseldin AY. Application of a neural network technique to rainfall-runoffmodelling. J Hydrol (Amst) 1997; 199:272-94; http://dx.doi.org/10.1016/ S0022-1694(96)03330-6.
    • (1997) J Hydrol (Amst) , vol.199 , pp. 272-294
    • Shamseldin, A.Y.1
  • 69
    • 33744505100 scopus 로고    scopus 로고
    • SExtractor: Software for source extraction
    • Bertin E, Arnouts S. SExtractor: Software for source extraction. Astron Astrophys Suppl Ser 1996; 117:393-404; http://dx.doi.org/10.1051/ aas:1996164.
    • (1996) Astron Astrophys Suppl Ser , vol.117 , pp. 393-404
    • Bertin, E.1    Arnouts, S.2
  • 71
    • 84878755856 scopus 로고    scopus 로고
    • Naturally selecting solutions: The use of genetic algorithms in bioinformatics
    • PMID:23222169
    • Manning T, Sleator RD, Walsh P. Naturally selecting solutions: the use of genetic algorithms in bioinformatics. Bioengineered 2013; 4:266-78; PMID:23222169; http://dx.doi.org/10.4161/ bioe.23041.
    • (2013) Bioengineered , vol.4 , pp. 266-278
    • Manning, T.1    Sleator, R.D.2    Walsh, P.3
  • 76
    • 4444262024 scopus 로고    scopus 로고
    • Why neural networks should not be used for HIV-1 protease cleavage site prediction
    • PMID:14988129
    • Rögnvaldsson T, You L. Why neural networks should not be used for HIV-1 protease cleavage site prediction. Bioinformatics 2004; 20:1702-9; PMID:14988129; http://dx.doi.org/10.1093/bioinformatics/ bth144.
    • (2004) Bioinformatics , vol.20 , pp. 1702-1709
    • Rögnvaldsson, T.1    You, L.2
  • 77
    • 84880458786 scopus 로고    scopus 로고
    • Design and analysis of classifier learning experiments in bioinformatics: Survey and case studies
    • PMID:22908127
    • Irsoy O, Yildiz OT, Alpaydin E. Design and analysis of classifier learning experiments in bioinformatics: survey and case studies. IEEE/ACM Trans Comput Biol Bioinform 2012; 9:1663-75; PMID:22908127
    • (2012) IEEE/ACM Trans Comput Biol Bioinform , vol.9 , pp. 1663-1675
    • Irsoy, O.1    Yildiz, O.T.2    Alpaydin, E.3
  • 78
    • 0036721272 scopus 로고    scopus 로고
    • Comparison of machine learning and traditional classifiers in glaucoma diagnosis
    • PMID:12214886
    • Chan K, Lee T-W, Sample PA, Goldbaum MH, Weinreb RN, Sejnowski TJ. Comparison of machine learning and traditional classifiers in glaucoma diagnosis. IEEE Trans Biomed Eng 2002; 49:963-74; http://dx.doi.org/10.1109/TBME.2002.802012; PMID:12214886
    • (2002) IEEE Trans Biomed Eng , vol.49 , pp. 963-974
    • Chan, K.1    Lee, T.-W.2    Sample, P.A.3    Goldbaum, M.H.4    Weinreb, R.N.5    Sejnowski, T.J.6
  • 79
    • 0141686299 scopus 로고    scopus 로고
    • Classifying gene expression data of cancer using classifier ensemble with mutually exclusive features
    • Cho S-B, Ryu J. Classifying gene expression data of cancer using classifier ensemble with mutually exclusive features. Proc IEEE 2002; 90:1744-53; http:// dx.doi.org/10.1109/JPROC.2002.804682.
    • (2002) Proc IEEE , vol.90 , pp. 1744-1753
    • Cho, S.-B.1    Ryu, J.2
  • 81
    • 0037306384 scopus 로고    scopus 로고
    • Support vector machines for diagnosis of breast tumors on US images
    • PMID:12583571
    • Chang R-F, Wu W-J, Moon WK, Chou Y-H, Chen D-R. Support vector machines for diagnosis of breast tumors on US images. Acad Radiol 2003; 10:189-97; PMID:12583571; http://dx.doi.org/10.1016/S1076-6332(03)80044-2.
    • (2003) Acad Radiol , vol.10 , pp. 189-197
    • Chang, R.-F.1    Wu, W.-J.2    Moon, W.K.3    Chou, Y.-H.4    Chen, D.-R.5
  • 82
    • 84555195983 scopus 로고    scopus 로고
    • Prediction of protein functions
    • PMID:22130980
    • Sleator RD. Prediction of protein functions. Methods Mol Biol 2012; 815:15-24; PMID:22130980; http:// dx.doi.org/10.1007/978-1-61779-424-7_2.
    • (2012) Methods Mol Biol , vol.815 , pp. 15-24
    • Sleator, R.D.1
  • 83
    • 79952365986 scopus 로고    scopus 로고
    • Comparative modelling of LysB from the mycobacterial bacteriophage Ardmore
    • PMID:21636995
    • Henry M, Coffey A, O'Mahony J, Sleator RD. Comparative modelling of LysB from the mycobacterial bacteriophage Ardmore. Bioeng Bugs 2011; 2:88-95; PMID:21636995; http://dx.doi.org/10.4161/ bbug.2.2.14138.
    • (2011) Bioeng Bugs , vol.2 , pp. 88-95
    • Henry, M.1    Coffey, A.2    O'Mahony, J.3    Sleator, R.D.4
  • 84
    • 0035961329 scopus 로고    scopus 로고
    • The structural basis of protein folding and its links with human disease
    • PMID:11260793
    • Dobson CM. The structural basis of protein folding and its links with human disease. Philos Trans R Soc Lond B Biol Sci 2001; 356:133-45; PMID:11260793; http://dx.doi.org/10.1098/rstb.2000.0758.
    • (2001) Philos Trans R Soc Lond B Biol Sci , vol.356 , pp. 133-145
    • Dobson, C.M.1
  • 85
    • 84861789038 scopus 로고    scopus 로고
    • Proteins: Form and function
    • PMID:22095055
    • Sleator RD. Proteins: form and function. Bioeng Bugs 2012; 3:80-5; PMID:22095055; http://dx.doi. org/10.4161/bbug.18303.
    • (2012) Bioeng Bugs , vol.3 , pp. 80-85
    • Sleator, R.D.1
  • 86
    • 84864436301 scopus 로고    scopus 로고
    • KoBaMIN: A knowledge-based minimization web server for protein structure refinement
    • PMID:22564897
    • Rodrigues JP, Levitt M, Chopra G. KoBaMIN: a knowledge-based minimization web server for protein structure refinement. Nucleic Acids Res 2012; 40:W323-8; PMID:22564897; http://dx.doi. org/10.1093/nar/gks376.
    • (2012) Nucleic Acids Res , vol.40 , pp. 323-328
    • Rodrigues, J.P.1    Levitt, M.2    Chopra, G.3
  • 87
    • 0031663369 scopus 로고    scopus 로고
    • The green fluorescent protein
    • PMID:9759496
    • Tsien RY. The green fluorescent protein. Annu Rev Biochem 1998; 67:509-44; PMID:9759496; http:// dx.doi.org/10.1146/annurev.biochem.67.1.509.
    • (1998) Annu Rev Biochem , vol.67 , pp. 509-544
    • Tsien, R.Y.1
  • 88
    • 84861204029 scopus 로고    scopus 로고
    • Protein secondary structure prediction using pattern recognition neural network
    • Rao PNDT, Kaladhar D, Sridhar G, Appa A. Protein secondary structure prediction using pattern recognition neural network. Int J Eng Sci 2010; 2:1752-7
    • (2010) Int J Eng Sci , vol.2 , pp. 1752-1757
    • Rao, P.N.D.T.1    Kaladhar, D.2    Sridhar, G.3    Appa, A.4
  • 89
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • Møller MF. A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw 1993; 6:525-33; http://dx.doi.org/10.1016/S0893-6080(05)80056-5.
    • (1993) Neural Netw , vol.6 , pp. 525-533
    • Møller, M.F.1
  • 90
    • 0020997912 scopus 로고
    • Dictionary of protein secondary structure: Pattern recognition of hydrogenbonded and geometrical features
    • PMID:6667333
    • Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogenbonded and geometrical features. Biopolymers 1983; 22:2577-637; PMID:6667333; http://dx.doi. org/10.1002/bip.360221211.
    • (1983) Biopolymers , vol.22 , pp. 2577-2637
    • Kabsch, W.1    Sander, C.2
  • 92
    • 0030801002 scopus 로고    scopus 로고
    • Gapped BLAST and PSI-BLAST: A new generation of protein database search programs
    • PMID:9254694
    • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25:3389-402; PMID:9254694; http://dx.doi.org/10.1093/ nar/25.17.3389.
    • (1997) Nucleic Acids Res , vol.25 , pp. 3389-3402
    • Altschul, S.F.1    Madden, T.L.2    Schäffer, A.A.3    Zhang, J.4    Zhang, Z.5    Miller, W.6    Lipman, D.J.7
  • 93
    • 0034044314 scopus 로고    scopus 로고
    • The PSIPRED protein structure prediction server
    • PMID:10869041
    • McGuffin LJ, Bryson K, Jones DT. The PSIPRED protein structure prediction server. Bioinformatics 2000; 16:404-5; PMID:10869041; http://dx.doi. org/10.1093/bioinformatics/16.4.404.
    • (2000) Bioinformatics , vol.16 , pp. 404-405
    • McGuffin, L.J.1    Bryson, K.2    Jones, D.T.3
  • 94
    • 0027291015 scopus 로고
    • Prediction of protein secondary structure at better than 70% accuracy
    • PMID:8345525
    • Rost B, Sander C. Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol 1993; 232:584-99; PMID:8345525; http://dx.doi. org/10.1006/jmbi.1993.1413.
    • (1993) J Mol Biol , vol.232 , pp. 584-599
    • Rost, B.1    Sander, C.2
  • 95
    • 0033578684 scopus 로고    scopus 로고
    • Protein secondary structure prediction based on position-specific scoring matrices
    • PMID:10493868
    • Jones DT. Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 1999; 292:195-202; PMID:10493868; http:// dx.doi.org/10.1006/jmbi.1999.3091.
    • (1999) J Mol Biol , vol.292 , pp. 195-202
    • Jones, D.T.1
  • 96
    • 0032606039 scopus 로고    scopus 로고
    • Critical assessment of methods of protein structure prediction (CASP): Round III
    • PMID:10526346
    • Moult J, Hubbard T, Fidelis K, Pedersen JT. Critical assessment of methods of protein structure prediction (CASP): round III. Proteins 1999; 37(Suppl 3):2-6; PMID:10526346
    • (1999) Proteins , vol.37 , Issue.SUPPL. 3 , pp. 2-6
    • Moult, J.1    Hubbard, T.2    Fidelis, K.3    Pedersen, J.T.4
  • 97
    • 0035702809 scopus 로고    scopus 로고
    • Critical assessment of methods of protein structure prediction (CASP): Round IV
    • PMID:11835476
    • Moult J, Fidelis K, Zemla A, Hubbard T. Critical assessment of methods of protein structure prediction (CASP): round IV. Proteins 2001; 45(Suppl 5):2-7; PMID:11835476
    • (2001) Proteins , vol.45 , Issue.SUPPL. 5 , pp. 2-7
    • Moult, J.1    Fidelis, K.2    Zemla, A.3    Hubbard, T.4
  • 98
    • 77954818578 scopus 로고    scopus 로고
    • An overview of the current status of eukaryote gene prediction strategies
    • PMID:20430068
    • Sleator RD. An overview of the current status of eukaryote gene prediction strategies. Gene 2010; 461:1-4; PMID:20430068; http://dx.doi. org/10.1016/j.gene.2010.04.008.
    • (2010) Gene , vol.461 , pp. 1-4
    • Sleator, R.D.1
  • 99
    • 85008025286 scopus 로고    scopus 로고
    • Gene identification: Classical and computational intelligence approaches
    • Bandyopadhyay S, Maulik U, Roy D. Gene identification: classical and computational intelligence approaches. IEEE SYS MAN CYBERN C Appl Rev 2008; 38:55-68; http://dx.doi.org/10.1109/ TSMCC.2007.906066
    • (2008) IEEE SYS MAN CYBERN C Appl Rev , vol.38 , pp. 55-68
    • Bandyopadhyay, S.1    Maulik, U.2    Roy, D.3
  • 101
    • 0027059264 scopus 로고
    • Assessment of protein coding measures
    • PMID:1480466
    • Fickett JW, Tung C-S. Assessment of protein coding measures. Nucleic Acids Res 1992; 20:6441-50; PMID:1480466; http://dx.doi.org/10.1093/ nar/20.24.6441.
    • (1992) Nucleic Acids Res , vol.20 , pp. 6441-6450
    • Fickett, J.W.1    Tung, C.-S.2
  • 102
    • 0025312750 scopus 로고
    • Codon usage tabulated from the GenBank genetic sequence data
    • PMID:2333226
    • Wada K, Aota S, Tsuchiya R, Ishibashi F, Gojobori T, Ikemura T. Codon usage tabulated from the GenBank genetic sequence data. Nucleic Acids Res 1990; 18(Suppl):2367-411; PMID:2333226; http:// dx.doi.org/10.1093/nar/18.suppl.2367.
    • (1990) Nucleic Acids Res , vol.18 , Issue.SUPPL. , pp. 2367-2411
    • Wada, K.1    Aota, S.2    Tsuchiya, R.3    Ishibashi, F.4    Gojobori, T.5    Ikemura, T.6
  • 103
    • 0020480512 scopus 로고
    • Recognition of protein coding regions in DNA sequences
    • PMID:7145702
    • Fickett JW. Recognition of protein coding regions in DNA sequences. Nucleic Acids Res 1982; 10:5303-18; PMID:7145702; http://dx.doi.org/10.1093/ nar/10.17.5303.
    • (1982) Nucleic Acids Res , vol.10 , pp. 5303-5318
    • Fickett, J.W.1
  • 104
    • 0030585734 scopus 로고    scopus 로고
    • Evaluation of gene structure prediction programs
    • PMID:8786136
    • Burset M, Guigó R. Evaluation of gene structure prediction programs. Genomics 1996; 34:353-67; PMID:8786136; http://dx.doi.org/10.1006/ geno.1996.0298.
    • (1996) Genomics , vol.34 , pp. 353-367
    • Burset, M.1    Guigó, R.2
  • 106
    • 84935413199 scopus 로고
    • Modular construction of time-delay neural networks for speech recognition
    • Waibel A. Modular construction of time-delay neural networks for speech recognition. Neural Comput 1989; 1:39-46; http://dx.doi.org/10.1162/ neco.1989.1.1.39.
    • (1989) Neural Comput , vol.1 , pp. 39-46
    • Waibel, A.1
  • 107
    • 0034740227 scopus 로고    scopus 로고
    • Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome
    • PMID:11765852
    • Reese MG. Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome. Comput Chem 2001; 26:51-6; PMID:11765852; http://dx.doi.org/10.1016/S0097-8485(01)00099-7.
    • (2001) Comput Chem , vol.26 , pp. 51-56
    • Reese, M.G.1
  • 108
    • 84875297571 scopus 로고    scopus 로고
    • Identification of diverse full-length endogenous betaretroviruses in megabats and microbats
    • PMID:23537098
    • Hayward JA, Tachedjian M, Cui J, Field H, Holmes EC, Wang L-F, Tachedjian G. Identification of diverse full-length endogenous betaretroviruses in megabats and microbats. Retrovirology 2013; 10:35; PMID:23537098; http://dx.doi.org/10.1186/1742-4690-10-35.
    • (2013) Retrovirology , vol.10 , pp. 35
    • Hayward, J.A.1    Tachedjian, M.2    Cui, J.3    Field, H.4    Holmes, E.C.5    Wang, L.-F.6    Tachedjian, G.7
  • 109
    • 84874318428 scopus 로고    scopus 로고
    • Comparative genomics identifies the mouse Bmp3 promoter and an upstream evolutionary conserved region (ECR) in mammals
    • PMID:23451274
    • Lowery JW, Lavigne AW, Kokabu S, Rosen V. Comparative genomics identifies the mouse Bmp3 promoter and an upstream evolutionary conserved region (ECR) in mammals. PLoS ONE 2013; 8:e57840; PMID:23451274; http://dx.doi. org/10.1371/journal.pone.0057840.
    • (2013) PLoS ONE , vol.8
    • Lowery, J.W.1    Lavigne, A.W.2    Kokabu, S.3    Rosen, V.4
  • 110
    • 84877701691 scopus 로고    scopus 로고
    • Computational identification of operon-like transcriptional loci in eukaryotes
    • PMID:23668349
    • Nannapaneni K, Ben-Shahar Y, Keen HL, Welsh MJ, Casavant TL, Scheetz TE. Computational identification of operon-like transcriptional loci in eukaryotes. Comput Biol Med 2013; 43:738-43; PMID:23668349; http://dx.doi.org/10.1016/j.compbiomed. 2013.03.004.
    • (2013) Comput Biol Med , vol.43 , pp. 738-743
    • Nannapaneni, K.1    Ben-Shahar, Y.2    Keen, H.L.3    Welsh, M.J.4    Casavant, T.L.5    Scheetz, T.E.6
  • 111
    • 84874608066 scopus 로고    scopus 로고
    • Ribosomal protein SA and its pseudogenes in ruminants: An extremely conserved gene family
    • Van den Broeke A, Van Poucke M, Van Zeveren A, Peelman L. Ribosomal protein SA and its pseudogenes in ruminants: an extremely conserved gene family. Czech J Anim Sci 2013; 58:79-90
    • (2013) Czech J Anim Sci , vol.58 , pp. 79-90
    • Van den Broeke, A.1    Van Poucke, M.2    Van Zeveren, A.3    Peelman, L.4
  • 113
    • 77957171378 scopus 로고    scopus 로고
    • ATHENA: A knowledge-based hybrid backpropagation-grammatical evolution neural network algorithm for discovering epistasis among quantitative trait Loci
    • PMID:20875103
    • Turner SD, Dudek SM, Ritchie MD. ATHENA: A knowledge-based hybrid backpropagation-grammatical evolution neural network algorithm for discovering epistasis among quantitative trait Loci. BioData Min 2010; 3:5; PMID:20875103
    • (2010) BioData Min , vol.3 , pp. 5
    • Turner, S.D.1    Dudek, S.M.2    Ritchie, M.D.3
  • 118
    • 66149131381 scopus 로고    scopus 로고
    • Sequence memory for prediction, inference and behaviour
    • PMID:19528001
    • Hawkins J, George D, Niemasik J. Sequence memory for prediction, inference and behaviour. Philos Trans R Soc Lond B Biol Sci 2009; 364:1203-9; PMID:19528001; http://dx.doi.org/10.1098/ rstb.2008.0322.
    • (2009) Philos Trans R Soc Lond B Biol Sci , vol.364 , pp. 1203-1209
    • Hawkins, J.1    George, D.2    Niemasik, J.3
  • 119
    • 84855358050 scopus 로고    scopus 로고
    • Hierarchical temporal memory including HTM cortical learning algorithms
    • Numenta, Inc, Palto Alto
    • Hawkins J, Ahmad S, Dubinsky D. Hierarchical temporal memory including HTM cortical learning algorithms. Techical report, Numenta, Inc, Palto Alto 2010.
    • (2010) Techical report
    • Hawkins, J.1    Ahmad, S.2    Dubinsky, D.3
  • 123
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • PMID:16764513
    • Hinton GE, Osindero S, Teh Y-W. A fast learning algorithm for deep belief nets. Neural Comput 2006; 18:1527-54; PMID:16764513; http://dx.doi. org/10.1162/neco.2006.18.7.1527.
    • (2006) Neural Comput , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 124
    • 84055211743 scopus 로고    scopus 로고
    • Acoustic modeling using deep belief networks
    • Mohamed A-R, Dahl GE, Hinton G. Acoustic modeling using deep belief networks. IEEE T Audio Speech 2012; 20:14-22; http://dx.doi.org/10.1109/ TASL.2011.2109382
    • (2012) IEEE T Audio Speech , vol.20 , pp. 14-22
    • Mohamed, A.-R.1    Dahl, G.E.2    Hinton, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.