메뉴 건너뛰기




Volumn 38, Issue , 2013, Pages 1-16

Evolving granular neural networks from fuzzy data streams

Author keywords

Evolving systems; Granular computing; Information fusion; Neurofuzzy networks; Online modeling

Indexed keywords

APPLICATION EXAMPLES; DATA STREAM; EVOLVING FUZZY SYSTEMS; EVOLVING SYSTEMS; FUNCTION APPROXIMATION; FUNCTION REPRESENTATIONS; FUZZY DATA; FUZZY INTERVAL; FUZZY MODELING; FUZZY MODELS; LOCAL MODEL; NEURAL NETWORK STRUCTURES; NEURO-FUZZY NETWORK; NONSTATIONARY; ONLINE INCREMENTAL LEARNING; ONLINE MODELING; PARAMETER CHANGES; STATE-OF-THE-ART APPROACH;

EID: 84870233667     PISSN: 08936080     EISSN: 18792782     Source Type: Journal    
DOI: 10.1016/j.neunet.2012.10.006     Document Type: Article
Times cited : (105)

References (62)
  • 2
    • 79960533640 scopus 로고    scopus 로고
    • Special issue on interpretable fuzzy systems
    • Alonso J.M., Magdalena L. Special issue on interpretable fuzzy systems. Information Sciences 2010, 181:4331-4339.
    • (2010) Information Sciences , vol.181 , pp. 4331-4339
    • Alonso, J.M.1    Magdalena, L.2
  • 5
  • 7
    • 58149524918 scopus 로고    scopus 로고
    • Evolving fuzzy-rule-based classifiers from data streams
    • Angelov P., Zhou X. Evolving fuzzy-rule-based classifiers from data streams. IEEE Transactions on Fuzzy Systems 2008, 16(6):1462-1475.
    • (2008) IEEE Transactions on Fuzzy Systems , vol.16 , Issue.6 , pp. 1462-1475
    • Angelov, P.1    Zhou, X.2
  • 13
    • 0021776661 scopus 로고
    • A massively parallel architecture for a self-organizing neural pattern recognition machine
    • Carpenter G.A., Grossberg S. A massively parallel architecture for a self-organizing neural pattern recognition machine. Computer Vision, Graphics, and Image Processing 1987, 37:54-115.
    • (1987) Computer Vision, Graphics, and Image Processing , vol.37 , pp. 54-115
    • Carpenter, G.A.1    Grossberg, S.2
  • 14
  • 15
    • 0347600680 scopus 로고    scopus 로고
    • On the use of aggregation operations in information fusion processes
    • Dubois D., Prade H. On the use of aggregation operations in information fusion processes. Fuzzy Sets and Systems 2004, 142(1):143-161.
    • (2004) Fuzzy Sets and Systems , vol.142 , Issue.1 , pp. 143-161
    • Dubois, D.1    Prade, H.2
  • 16
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Fawcett T. An introduction to ROC analysis. Pattern Recognition Letters 2006, 27:861-874.
    • (2006) Pattern Recognition Letters , vol.27 , pp. 861-874
    • Fawcett, T.1
  • 17
    • 0034187078 scopus 로고    scopus 로고
    • General fuzzy min-max neural network for clustering and classification
    • Gabrys B., Bargiela A. General fuzzy min-max neural network for clustering and classification. IEEE Transactions on Neural Networks 2000, 11(3):769-783.
    • (2000) IEEE Transactions on Neural Networks , vol.11 , Issue.3 , pp. 769-783
    • Gabrys, B.1    Bargiela, A.2
  • 18
    • 1142303894 scopus 로고    scopus 로고
    • Combining labelled and unlabelled data in the design of pattern classification systems
    • Gabrys B., Petrakieva L. Combining labelled and unlabelled data in the design of pattern classification systems. International Journal of Approximate Reasoning 2004, 35(3):251-273.
    • (2004) International Journal of Approximate Reasoning , vol.35 , Issue.3 , pp. 251-273
    • Gabrys, B.1    Petrakieva, L.2
  • 21
    • 0032293604 scopus 로고    scopus 로고
    • Speech impairment in a large sample of patients with Parkinson's disease
    • Ho A., Iansek R., Marigliani C., Bradshaw J., Gates S. Speech impairment in a large sample of patients with Parkinson's disease. Behavioral Neurology 1998, 11:131-137.
    • (1998) Behavioral Neurology , vol.11 , pp. 131-137
    • Ho, A.1    Iansek, R.2    Marigliani, C.3    Bradshaw, J.4    Gates, S.5
  • 23
    • 33745814773 scopus 로고    scopus 로고
    • Granular self-organizing map (grSOM) for structure identification
    • Kaburlasos V.G., Papadakis S.E. Granular self-organizing map (grSOM) for structure identification. Neural Networks 2006, 19(5):623-643.
    • (2006) Neural Networks , vol.19 , Issue.5 , pp. 623-643
    • Kaburlasos, V.G.1    Papadakis, S.E.2
  • 24
    • 0035670764 scopus 로고    scopus 로고
    • Evolving fuzzy neural networks for supervised/unsupervised online knowledge-based learning
    • Kasabov N. Evolving fuzzy neural networks for supervised/unsupervised online knowledge-based learning. IEEE Transactions on Systems, Man, and Cybernetics - Part B 2001, 31(6):902-918.
    • (2001) IEEE Transactions on Systems, Man, and Cybernetics - Part B , vol.31 , Issue.6 , pp. 902-918
    • Kasabov, N.1
  • 26
    • 0036530967 scopus 로고    scopus 로고
    • DENFIS: dynamic evolving neural-fuzzy inference system and its application
    • Kasabov N., Song Q. DENFIS: dynamic evolving neural-fuzzy inference system and its application. IEEE Transactions on Fuzzy Systems 2002, 10(2):144-154.
    • (2002) IEEE Transactions on Fuzzy Systems , vol.10 , Issue.2 , pp. 144-154
    • Kasabov, N.1    Song, Q.2
  • 27
    • 84885848302 scopus 로고    scopus 로고
    • Acceptance of concrete compressive strength
    • Kausay T., Simon T.K. Acceptance of concrete compressive strength. Concrete Structures 2007, 8:54-63.
    • (2007) Concrete Structures , vol.8 , pp. 54-63
    • Kausay, T.1    Simon, T.K.2
  • 28
    • 84860424873 scopus 로고    scopus 로고
    • Evolving fuzzy granular modeling from nonstationary fuzzy data streams
    • Leite D., Ballini R., Costa P., Gomide F. Evolving fuzzy granular modeling from nonstationary fuzzy data streams. Evolving Systems 2012, 3(1):65-79.
    • (2012) Evolving Systems , vol.3 , Issue.1 , pp. 65-79
    • Leite, D.1    Ballini, R.2    Costa, P.3    Gomide, F.4
  • 32
    • 77958538921 scopus 로고    scopus 로고
    • Granular computing: practices, theories, and future directions
    • Springer, R.A. Meyers (Ed.)
    • Lin T.Y. Granular computing: practices, theories, and future directions. Encyclopedia of complexity and systems science 2009, Springer. R.A. Meyers (Ed.).
    • (2009) Encyclopedia of complexity and systems science
    • Lin, T.Y.1
  • 34
    • 78249273286 scopus 로고    scopus 로고
    • On-line incremental feature weighting in evolving fuzzy classifiers
    • Lughofer E. On-line incremental feature weighting in evolving fuzzy classifiers. Fuzzy Sets and Systems 2011, 163(1):1-23.
    • (2011) Fuzzy Sets and Systems , vol.163 , Issue.1 , pp. 1-23
    • Lughofer, E.1
  • 35
    • 79961039032 scopus 로고    scopus 로고
    • On-line elimination of local redundancies in evolving fuzzy systems
    • Lughofer E., Bouchot J.-L., Shaker A. On-line elimination of local redundancies in evolving fuzzy systems. Evolving Systems 2011, 2(3):165-187.
    • (2011) Evolving Systems , vol.2 , Issue.3 , pp. 165-187
    • Lughofer, E.1    Bouchot, J.-L.2    Shaker, A.3
  • 38
    • 67949117116 scopus 로고    scopus 로고
    • A granular reflex fuzzy min-max neural network for classification
    • Nandedkar A.V., Biswas P.K. A granular reflex fuzzy min-max neural network for classification. IEEE Transactions on Neural Networks 2009, 20(7):1117-1134.
    • (2009) IEEE Transactions on Neural Networks , vol.20 , Issue.7 , pp. 1117-1134
    • Nandedkar, A.V.1    Biswas, P.K.2
  • 39
    • 9244227617 scopus 로고    scopus 로고
    • Heterogeneous fuzzy logic networks: fundamentals and development studies
    • Pedrycz W. Heterogeneous fuzzy logic networks: fundamentals and development studies. IEEE Transactions on Neural Networks 2004, 15(6):1466-1481.
    • (2004) IEEE Transactions on Neural Networks , vol.15 , Issue.6 , pp. 1466-1481
    • Pedrycz, W.1
  • 41
    • 79952364186 scopus 로고    scopus 로고
    • Evolvable fuzzy systems: some insights and challenges
    • Pedrycz W. Evolvable fuzzy systems: some insights and challenges. Evolving Systems 2010, 1(2):73-82.
    • (2010) Evolving Systems , vol.1 , Issue.2 , pp. 73-82
    • Pedrycz, W.1
  • 44
  • 46
    • 0026927202 scopus 로고
    • Fuzzy min-max neural networks. part I: classification
    • Simpson P.K. Fuzzy min-max neural networks. part I: classification. IEEE Transactions on Neural Networks 1992, 3(5):776-786.
    • (1992) IEEE Transactions on Neural Networks , vol.3 , Issue.5 , pp. 776-786
    • Simpson, P.K.1
  • 47
    • 0027542561 scopus 로고
    • Fuzzy min-max neural networks. part II: clustering
    • Simpson P.K. Fuzzy min-max neural networks. part II: clustering. IEEE Transactions on Fuzzy Systems 1993, 1(1):32-45.
    • (1993) IEEE Transactions on Fuzzy Systems , vol.1 , Issue.1 , pp. 32-45
    • Simpson, P.K.1
  • 51
    • 38149075118 scopus 로고    scopus 로고
    • Learning from imprecise granular data using trapezoidal fuzzy set representations
    • H. Prade, V.S. Subrahmanian (Eds.)
    • Yager R.R. Learning from imprecise granular data using trapezoidal fuzzy set representations. Lecture notes in computer science 2007, vol. 4772:244-254. H. Prade, V.S. Subrahmanian (Eds.).
    • (2007) Lecture notes in computer science , vol.4772 , pp. 244-254
    • Yager, R.R.1
  • 52
    • 60549107069 scopus 로고    scopus 로고
    • Participatory learning with granular observations
    • Yager R.R. Participatory learning with granular observations. IEEE Transactions on Fuzzy Systems 2009, 17(1):1-13.
    • (2009) IEEE Transactions on Fuzzy Systems , vol.17 , Issue.1 , pp. 1-13
    • Yager, R.R.1
  • 56
    • 0032295215 scopus 로고    scopus 로고
    • Modeling of strength of high performance concrete using artificial neural networks
    • Yeh i.-C. Modeling of strength of high performance concrete using artificial neural networks. Cement and Concrete Research 1998, 28(12):1797-1808.
    • (1998) Cement and Concrete Research , vol.28 , Issue.12 , pp. 1797-1808
    • Yeh, I.-C.1
  • 58
    • 1642469977 scopus 로고    scopus 로고
    • Towards a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic
    • Zadeh L.A. Towards a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets and Systems 1997, 19:111-127.
    • (1997) Fuzzy Sets and Systems , vol.19 , pp. 111-127
    • Zadeh, L.A.1
  • 59
    • 33750351856 scopus 로고    scopus 로고
    • Generalized theory of uncertainty (GTU)-principal concepts and ideas
    • Zadeh L.A. Generalized theory of uncertainty (GTU)-principal concepts and ideas. Computational Statistics & Data Analysis 2006, 51:15-46.
    • (2006) Computational Statistics & Data Analysis , vol.51 , pp. 15-46
    • Zadeh, L.A.1
  • 60
  • 61
    • 19744364896 scopus 로고    scopus 로고
    • Fuzzy reasoning model under quotient space structure
    • Zhang L., Zhang B. Fuzzy reasoning model under quotient space structure. Information Sciences 2005, 173:353-364.
    • (2005) Information Sciences , vol.173 , pp. 353-364
    • Zhang, L.1    Zhang, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.