메뉴 건너뛰기




Volumn 9, Issue 6, 2012, Pages 1663-1675

Design and analysis of classifier learning experiments in bioinformatics: Survey and case studies

Author keywords

Classification; Model selection; Statistical tests

Indexed keywords

BIOINFORMATICS APPLICATIONS; CLASSIFIER LEARNING; DESIGN AND ANALYSIS; EXPERIMENT DESIGN; MODEL SELECTION; PERFORMANCE MEASURE; PERFORMANCE METRICS; STATISTICAL METHODOLOGIES;

EID: 84880458786     PISSN: 15455963     EISSN: None     Source Type: Journal    
DOI: 10.1109/TCBB.2012.117     Document Type: Article
Times cited : (19)

References (51)
  • 3
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to roc analysis
    • T. Fawcett, "An Introduction to ROC Analysis," Pattern Recognition Letters, vol. 27, pp. 861-874, 2006.
    • (2006) Pattern Recognition Letters , vol.27 , pp. 861-874
    • Fawcett, T.1
  • 4
    • 0024689801 scopus 로고
    • A critical investigation of recall and precision as measures of retrieval system performance
    • V.V. Raghavan, G.S. Jung, and P. Bollmann, "A Critical Investigation of Recall and Precision as Measures of Retrieval System Performance," ACM Trans. Information Systems, vol. 7, pp. 205-229, 1989.
    • (1989) ACM Trans. Information Systems , vol.7 , pp. 205-229
    • Raghavan, V.V.1    Jung, G.S.2    Bollmann, P.3
  • 5
    • 33749249600 scopus 로고    scopus 로고
    • The relationship between precision-recall and roc curves
    • J. Davis and M. Goadrich, "The Relationship between Precision-Recall and ROC Curves," Proc. Int'l Conf. Machine Learning, pp. 233-240, 2006.
    • (2006) Proc. Int'l Conf. Machine Learning , pp. 233-240
    • Davis, J.1    Goadrich, M.2
  • 6
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning classifiers
    • T.G. Dietterich, "Approximate Statistical Tests for Comparing Supervised Classification Learning Classifiers," Neural Computation, vol. 10, pp. 1895-1923, 1998.
    • (1998) Neural Computation , vol.10 , pp. 1895-1923
    • Dietterich, T.G.1
  • 7
    • 0000359055 scopus 로고    scopus 로고
    • Combined 5 - 2 cv f test for comparing supervised classification learning classifiers
    • E. Alpaydin, "Combined 5 - 2 CV F test for Comparing Supervised Classification Learning Classifiers," Neural Computation, vol. 11, pp. 1975-1982, 1999.
    • (1999) Neural Computation , vol.11 , pp. 1975-1982
    • Alpaydin, E.1
  • 8
    • 0031536511 scopus 로고    scopus 로고
    • Improvements on cross-validation: The.632+ bootstrap method
    • B. Efron and R. Tibshirani, "Improvements on Cross-Validation: The.632+ Bootstrap Method," J. Am. Statistical Assoc., vol. 92, pp. 548-560, 1997.
    • (1997) J. Am. Statistical Assoc , vol.92 , pp. 548-560
    • Efron, B.1    Tibshirani, R.2
  • 9
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demsar, "Statistical Comparisons of Classifiers over Multiple Data Sets," J. Machine Learning Research, vol. 7, pp. 1-30, 2006.
    • (2006) J. Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 12
    • 27144463192 scopus 로고    scopus 로고
    • On comparing classifiers: Pitfalls to avoid and a recommended approach
    • S.L. Salzberg, "On Comparing Classifiers: Pitfalls to Avoid and a Recommended Approach," Data Mining and Knowledge Discovery, vol. 1, pp. 317-328, 1997.
    • (1997) Data Mining and Knowledge Discovery , vol.1 , pp. 317-328
    • Salzberg, S.L.1
  • 13
    • 0042847140 scopus 로고    scopus 로고
    • Inference for the generalization error
    • C. Nadeau and Y. Bengio, "Inference for the Generalization Error," Machine Learning, vol. 52, pp. 239-281, 2003.
    • (2003) Machine Learning , vol.52 , pp. 239-281
    • Nadeau, C.1    Bengio, Y.2
  • 14
    • 33847708108 scopus 로고    scopus 로고
    • Estimating replicability of classifier learning experiments
    • R.R. Bouckaert, "Estimating Replicability of Classifier Learning Experiments," Proc. Int'l Conf. Machine Learning, pp. 15-22, 2004.
    • (2004) Proc. Int'l Conf. Machine Learning , pp. 15-22
    • Bouckaert, R.R.1
  • 16
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (roc) curve
    • J.A. Hanley and B.J. McNeil, "The Meaning and Use of the Area under a Receiver Operating Characteristic (ROC) Curve," Radiology, vol. 143, pp. 29-36, 1982.
    • (1982) Radiology , vol.143 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 18
    • 44649092482 scopus 로고    scopus 로고
    • Comparing naive bayes, decision trees, and svm with auc and accuracy
    • J. Huang, J. Lu, and C. Ling, "Comparing Naive Bayes, Decision Trees, and SVM with AUC and Accuracy," Proc. IEEE Int'l Conf. Data Mining, pp. 553-556, 2003.
    • (2003) Proc. IEEE Int'l Conf. Data Mining , pp. 553-556
    • Huang, J.1    Lu, J.2    Ling, C.3
  • 19
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the roc curve in the evaluation of machine learning algorithms
    • A.P. Bradley, "The Use of the Area under the ROC Curve in the Evaluation of Machine Learning Algorithms," Pattern Recognition, vol. 30, pp. 1145-1159, 1997.
    • (1997) Pattern Recognition , vol.30 , pp. 1145-1159
    • Bradley, A.P.1
  • 20
    • 0020524559 scopus 로고
    • A method of comparing the areas under receiver operating characteristic curves derived from the same cases
    • J.A. Hanley and B.J. McNeil, "A Method of Comparing the Areas under Receiver Operating Characteristic Curves Derived from the Same Cases," Radiology, vol. 148, pp. 839-843, 1983.
    • (1983) Radiology , vol.148 , pp. 839-843
    • Hanley, J.A.1    McNeil, B.J.2
  • 22
    • 66249133953 scopus 로고    scopus 로고
    • Examining the relative influence of familial, genetic, and environmental covariate information in flexible risk models
    • H.C. Bravo, G. Wahba, K.E. Lee, B.E.K. Klein, R. Klein, and S.K. Iyengar, "Examining the Relative Influence of Familial, Genetic, and Environmental Covariate Information in Flexible Risk Models," Proc. Nat'l Academy of Sciences USA, vol. 106, pp. 8128-8133, 2004.
    • (2004) Proc. Nat'l Academy of Sciences USA , vol.106 , pp. 8128-8133
    • Bravo, H.C.1    Wahba, G.2    Lee, K.E.3    Klein, B.E.K.4    Klein, R.5    Iyengar, S.K.6
  • 23
    • 1442275185 scopus 로고    scopus 로고
    • Learning when training data are costly: The effect of class distribution on tree induction
    • G.M. Weiss and F. Provost, "Learning when Training Data Are Costly: The Effect of Class Distribution on Tree Induction," J. Artificial Intelligence Research, vol. 19, pp. 315-354, 2003.
    • (2003) J. Artificial Intelligence Research , vol.19 , pp. 315-354
    • Weiss, G.M.1    Provost, F.2
  • 25
    • 77952832818 scopus 로고    scopus 로고
    • A croc stronger than roc: Measuring, visualizing, and optimizing early retrieval
    • S.J. Swamidass, C.-A. Azencott, K. Daily, and P. Baldi, "A Croc Stronger than Roc: Measuring, Visualizing, and Optimizing Early Retrieval," Bioinformatics, vol. 26, no. 10, pp. 1348-1356, 2010.
    • (2010) Bioinformatics , vol.26 , Issue.10 , pp. 1348-1356
    • Swamidass, S.J.1    Azencott, C.-A.2    Daily, K.3    Baldi, P.4
  • 26
    • 60649086930 scopus 로고    scopus 로고
    • Comparison of four performance metrics for evaluating sampling techniques for low quality class-imbalanced data
    • A. Folleco, T.M. Khoshgoftaar, and A. Napolitano, "Comparison of Four Performance Metrics for Evaluating Sampling Techniques for Low Quality Class-Imbalanced Data," Proc. Int'l Conf. Machine Learning and Applications, pp. 153-158, 2008.
    • (2008) Proc. Int'l Conf. Machine Learning and Applications , pp. 153-158
    • Folleco, A.1    Khoshgoftaar, T.M.2    Napolitano, A.3
  • 28
    • 34147120594 scopus 로고    scopus 로고
    • Precision-recall operating characteristic (p-roc) curves in imprecise environments
    • T.C.W. Landgrebe, P. Paclik, and R.P.W. Duin, "Precision-Recall Operating Characteristic (P-ROC) Curves in Imprecise Environments," Proc. Int'l Conf. Pattern Recognition, pp. 123-127, 2006.
    • (2006) Proc. Int'l Conf. Pattern Recognition , pp. 123-127
    • Landgrebe, T.C.W.1    Paclik, P.2    Duin, R.P.W.3
  • 31
    • 33748991193 scopus 로고    scopus 로고
    • Cost curves: An improved method for visualizing classifier performance
    • Oct
    • C. Drummond and R.C. Holte, "Cost Curves: An Improved Method for Visualizing Classifier Performance," Machine Learning, vol. 65, no. 1, pp. 95-130, Oct. 2006.
    • (2006) Machine Learning , vol.65 , Issue.1 , pp. 95-130
    • Drummond, C.1    Holte, R.C.2
  • 32
    • 31544479266 scopus 로고    scopus 로고
    • Ordering and finding the best of k >2 supervised learning algorithms
    • Mar
    • O.T. Yildiz and E. Alpaydin, "Ordering and Finding the Best of K >2 Supervised Learning Algorithms," IEEE Trans. Pattern Analysis Machine Intelligence, vol. 28, no. 3, pp. 392-402, Mar. 2006.
    • (2006) IEEE Trans. Pattern Analysis Machine Intelligence , vol.28 , Issue.3 , pp. 392-402
    • Yildiz, O.T.1    Alpaydin, E.2
  • 34
    • 83655191921 scopus 로고    scopus 로고
    • Cost-conscious comparison of supervised learning algorithms over multiple data sets
    • A. Ulaş, O.T. Yildiz, and E. Alpaydin, "Cost-Conscious Comparison of Supervised Learning Algorithms over Multiple Data Sets," Pattern Recognition, vol. 45, pp. 1772-1781, 2012.
    • (2012) Pattern Recognition , vol.45 , pp. 1772-1781
    • Ulaş, A.1    Yildiz, O.T.2    Alpaydin, E.3
  • 36
    • 58149287952 scopus 로고    scopus 로고
    • An extension on " statistical comparisons of classifiers over multiple data sets" for all pairwise comparisons,"
    • S. Garc'́a and F. Herrera, "An Extension on "Statistical Comparisons of Classifiers over Multiple Data Sets" for All Pairwise Comparisons," J. Machine Learning Research, vol. 9, pp. 2677-2694, 2008.
    • (2008) J. Machine Learning Research , vol.9 , pp. 2677-2694
    • Garća, S.1    Herrera, F.2
  • 37
    • 0002294347 scopus 로고
    • A simple sequentially rejective multiple test procedure
    • S. Holm, "A Simple Sequentially Rejective Multiple Test Procedure," Scandinavian J. Statistics, vol. 6, pp. 65-70, 1979.
    • (1979) Scandinavian J. Statistics , vol.6 , pp. 65-70
    • Holm, S.1
  • 38
    • 84890829458 scopus 로고
    • Modified sequentially rejective multiple test procedures
    • J.P. Shaffer, "Modified Sequentially Rejective Multiple Test Procedures," J. Am. Statistical Assoc., vol. 81, no. 395, pp. 826-831, 1986.
    • (1986) J. Am. Statistical Assoc , vol.81 , Issue.395 , pp. 826-831
    • Shaffer, J.P.1
  • 39
    • 0009038905 scopus 로고
    • Improvements of general multiple test procedures for redundant systems of hypotheses
    • P. Bauer, G. Hommel, and E. Sonnemann, eds Springer
    • G. Bergmann and G. Hommel, "Improvements of General Multiple Test Procedures for Redundant Systems of Hypotheses," Multiple Hypotheses Testing, P. Bauer, G. Hommel, and E. Sonnemann, eds., pp. 100-115, Springer, 1988.
    • (1988) Multiple Hypotheses Testing , pp. 100-115
    • Bergmann, G.1    Hommel, G.2
  • 40
    • 83255194568 scopus 로고    scopus 로고
    • The rise and fall of supervised machine learning techniques
    • L.J. Jensen and A. Bateman, "The Rise and Fall of Supervised Machine Learning Techniques," Bioinformatics, vol. 27, no. 24, pp. 3331-3332, 2011.
    • (2011) Bioinformatics , vol.27 , Issue.24 , pp. 3331-3332
    • Jensen, L.J.1    Bateman, A.2
  • 45
    • 15844413351 scopus 로고    scopus 로고
    • A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis
    • A. Statnikov, C. Aliferis, I. Tsamardinos, D. Hardin, and S. Levy, "A Comprehensive Evaluation of Multicategory Classification Methods for Microarray Gene Expression Cancer Diagnosis," Bioinformatics, vol. 21, pp. 631-643, 2005.
    • (2005) Bioinformatics , vol.21 , pp. 631-643
    • Statnikov, A.1    Aliferis, C.2    Tsamardinos, I.3    Hardin, D.4    Levy, S.5
  • 48
    • 77955033518 scopus 로고    scopus 로고
    • Efficient learning of microbial genotype-phenotype association rules
    • N.J. MacDonald and R.G. Beiko, "Efficient Learning of Microbial Genotype-Phenotype Association Rules," Bioinformatics, vol. 26, pp. 1834-1840, 2010.
    • (2010) Bioinformatics , vol.26 , pp. 1834-1840
    • Macdonald, N.J.1    Beiko, R.G.2
  • 49
    • 79951780542 scopus 로고    scopus 로고
    • Multiclass classification of microarray data samples with a reduced number of genes
    • article 59
    • E. Tapia, L. Ornella, P. Bulacio, and L. Angelone, "Multiclass Classification of Microarray Data Samples with a Reduced Number of Genes," BMC Bioinformatics, vol. 12, article 59, 2011.
    • (2011) BMC Bioinformatics , vol.12
    • Tapia, E.1    Ornella, L.2    Bulacio, P.3    Angelone, L.4
  • 51
    • 76849090053 scopus 로고    scopus 로고
    • Sparse support vector machines with lp penalty for biomarker identification
    • Jan.-Mar
    • Z. Liu, S. Lin, and M.T. Tan, "Sparse Support Vector Machines with lp Penalty for Biomarker Identification," IEEE/ACM Trans. Computational Biology and Bioinformatics, vol. 7, no. 1, pp. 100-107, Jan.-Mar. 2010.
    • (2010) IEEE/ACM Trans. Computational Biology and Bioinformatics , vol.7 , Issue.1 , pp. 100-107
    • Liu, Z.1    Lin, S.2    Tan, M.T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.