메뉴 건너뛰기




Volumn , Issue , 2012, Pages 1031-1038

Breast cancer detection using cartesian genetic programming evolved artificial neural networks

Author keywords

artificial neural network; breast cancer; cartesian genetic programmingevolution; fine needle aspiration fna; neuro evolution

Indexed keywords

BREAST CANCER; BREAST CANCER DETECTION; BREAST MASS; CARTESIAN GENETIC PROGRAMMING; CARTESIANS; ERROR OF THE MODELS; FAST LEARNING; FINE-NEEDLE ASPIRATIONS; NEURO EVOLUTIONS; TRAINING AND TESTING; WISCONSIN;

EID: 84864713628     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2330163.2330307     Document Type: Conference Paper
Times cited : (56)

References (38)
  • 1
    • 0036275180 scopus 로고    scopus 로고
    • An evolutionary artificial neural networks approach for breast cancer diagnosis
    • H. A. Abbass. An evolutionary artificial neural networks approach for breast cancer diagnosis. Artificial Intelligence in Medicine, 25:265-281, 2002.
    • (2002) Artificial Intelligence in Medicine , vol.25 , pp. 265-281
    • Abbass, H.A.1
  • 2
    • 33744548422 scopus 로고    scopus 로고
    • Classification of breast masses in mammograms using neural networks with shape, edge sharpness, and texture features
    • T. C. S. S. André and R. M. Rangayyan. Classification of breast masses in mammograms using neural networks with shape, edge sharpness, and texture features. J. Electronic Imaging, 15(1):013019, 2006.
    • (2006) J. Electronic Imaging , vol.15 , Issue.1 , pp. 013019
    • André, T.C.S.S.1    Rangayyan, R.M.2
  • 3
    • 2142711004 scopus 로고    scopus 로고
    • Mass lesion detection with a fuzzy neural network
    • H. D. Cheng and M. Cui. Mass lesion detection with a fuzzy neural network. Pattern Recognition, 37(6):1189-1200, 2004.
    • (2004) Pattern Recognition , vol.37 , Issue.6 , pp. 1189-1200
    • Cheng, H.D.1    Cui, M.2
  • 4
    • 80051977275 scopus 로고    scopus 로고
    • Artificial neural network synthesis by means of artificial bee colony (abc) algorithm
    • B. A. Garro, H. Sossa, and R. A. Vázquez. Artificial neural network synthesis by means of artificial bee colony (abc) algorithm. In IEEE Congress on Evolutionary Computation, pages 331-338, 2011.
    • (2011) IEEE Congress on Evolutionary Computation , pp. 331-338
    • Garro, B.A.1    Sossa, H.2    Vázquez, R.A.3
  • 5
    • 44649193889 scopus 로고    scopus 로고
    • Accelerated neural evolution through cooperatively coevolved synapses
    • F. Gomez, J. Schmidhuber, and R. Miikkulainen. Accelerated neural evolution through cooperatively coevolved synapses. J. Mach. Learn. Res., 9:937-965, 2008.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 937-965
    • Gomez, F.1    Schmidhuber, J.2    Miikkulainen, R.3
  • 6
    • 33244460050 scopus 로고    scopus 로고
    • Breast cancer diagnosis using genetic programming generated feature
    • H. Guo and A. K. Nandi. Breast cancer diagnosis using genetic programming generated feature. Pattern Recognition, 39(5):980-987, 2006.
    • (2006) Pattern Recognition , vol.39 , Issue.5 , pp. 980-987
    • Guo, H.1    Nandi, A.K.2
  • 7
    • 0034593063 scopus 로고    scopus 로고
    • UleViz: A model for visualizing knowledge discovery process
    • J. Han and N. Cercone. uleViz: a model for visualizing knowledge discovery process. In KDD, pages 244-253, 2000.
    • (2000) KDD , pp. 244-253
    • Han, J.1    Cercone, N.2
  • 8
    • 1842587806 scopus 로고    scopus 로고
    • Design of accurate classifiers with a compact fuzzy-rule base using an evolutionary scatter partition of feature space
    • S. Ho, H. Chen, S. Ho, and T. Chen. Design of accurate classifiers with a compact fuzzy-rule base using an evolutionary scatter partition of feature space. IEEE Trans. Syst. Man Cybern., 34 (2):1031-1044, 2004.
    • (2004) IEEE Trans. Syst. Man Cybern. , vol.34 , Issue.2 , pp. 1031-1044
    • Ho, S.1    Chen, H.2    Ho, S.3    Chen, T.4
  • 9
    • 1842587806 scopus 로고    scopus 로고
    • Design of accurate classifiers with a compact fuzzy-rule base using an evolutionary scatter partition of feature space
    • S.-Y. Ho, H.-M. Chen, S.-J. Ho, and T.-K. Chen. Design of accurate classifiers with a compact fuzzy-rule base using an evolutionary scatter partition of feature space. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 34(2):1031-1044, 2004.
    • (2004) IEEE Transactions on Systems, Man, and Cybernetics, Part B , vol.34 , Issue.2 , pp. 1031-1044
    • Ho, S.-Y.1    Chen, H.-M.2    Ho, S.-J.3    Chen, T.-K.4
  • 11
    • 77954626012 scopus 로고    scopus 로고
    • Intelligent Decision Support System for Breast Cancer
    • chapter 46, Springer Berlin Heidelberg, Berlin, Heidelberg
    • R. Janghel, A. Shukla, R. Tiwari, and R. Kala. Intelligent Decision Support System for Breast Cancer. In Advances in Swarm Intelligence, volume 6146, chapter 46, pages 351-358. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.
    • (2010) Advances in Swarm Intelligence , vol.6146 , pp. 351-358
    • Janghel, R.1    Shukla, A.2    Tiwari, R.3    Kala, R.4
  • 13
    • 84866062894 scopus 로고    scopus 로고
    • Evolution of optimal anns for non-linear control problems using cartesian genetic programming
    • M. Khan, G. Khan, and J. F. Miller. Evolution of optimal anns for non-linear control problems using cartesian genetic programming. In Proc. IEEE. ICAI'2010, 2010.
    • (2010) Proc. IEEE. ICAI'2010
    • Khan, M.1    Khan, G.2    Miller, J.F.3
  • 14
    • 79851491485 scopus 로고    scopus 로고
    • Efficient representation of recurrent neural networks for markovian/non-markovian non-linear control problems
    • M. Khan, G. Khan, and J. Miller. Efficient representation of recurrent neural networks for markovian/non-markovian non-linear control problems. In Proc. ISDA'2010, pages 615-620, 2010.
    • (2010) Proc. ISDA'2010 , pp. 615-620
    • Khan, M.1    Khan, G.2    Miller, J.3
  • 17
    • 0036643351 scopus 로고    scopus 로고
    • Learning good prototypes for classification using filtering and abstraction of instances
    • W. Lam, C.-K. Keung, and C. X. Ling. Learning good prototypes for classification using filtering and abstraction of instances. Pattern Recognition, 35(7):1491-1506, 2002.
    • (2002) Pattern Recognition , vol.35 , Issue.7 , pp. 1491-1506
    • Lam, W.1    Keung, C.-K.2    Ling, C.X.3
  • 19
    • 70449408976 scopus 로고    scopus 로고
    • Design of artificial neural networks using a modified particle swarm optimization algorithm
    • B. A. G. Licon, J. H. S. Azuela, and R. A. Vázquez. Design of artificial neural networks using a modified particle swarm optimization algorithm. In IJCNN, pages 938-945, 2009.
    • (2009) IJCNN , pp. 938-945
    • Licon, B.A.G.1    Azuela, J.H.S.2    Vázquez, R.A.3
  • 21
    • 84946491745 scopus 로고    scopus 로고
    • Cartesian genetic programming
    • J. F. Miller and P. Thomson. Cartesian genetic programming. In Proc. EuroGP'2000, volume 1802, pages 121-132, 2000.
    • (2000) Proc. EuroGP'2000 , vol.1802 , pp. 121-132
    • Miller, J.F.1    Thomson, P.2
  • 23
    • 33947492207 scopus 로고    scopus 로고
    • Breast cancer detection from FNA using SVM with different parameter tuning systems and SOM-RBF classifier
    • T. Mu and A. K. Nandi. Breast cancer detection from FNA using SVM with different parameter tuning systems and SOM-RBF classifier. Journal of the Franklin Institute, 344:285-311, 2007.
    • (2007) Journal of the Franklin Institute , vol.344 , pp. 285-311
    • Mu, T.1    Nandi, A.K.2
  • 24
    • 33746947798 scopus 로고    scopus 로고
    • Classification of breast masses in mammograms using genetic programming and feature selection
    • R. Nandi, A. Nandi, R. Rangayyan, and D. Scutt. Classification of breast masses in mammograms using genetic programming and feature selection. Medical Biological Engineering & Computing, 44(8):683-94, 2006.
    • (2006) Medical Biological Engineering & Computing , vol.44 , Issue.8 , pp. 683-694
    • Nandi, R.1    Nandi, A.2    Rangayyan, R.3    Scutt, D.4
  • 25
    • 0242269079 scopus 로고    scopus 로고
    • Comparison of multi excitation fluorescence and diffuse reflectance spectroscopy for the diagnosis of breast cancer
    • G. Palmer, C. Zhu, T. Breslin, F. Xu, K. Gilchrist, and N. Ramanujam. Comparison of multi excitation fluorescence and diffuse reflectance spectroscopy for the diagnosis of breast cancer. IEEE Trans Biomed Eng., 50(11):1233-42, 2003.
    • (2003) IEEE Trans Biomed Eng. , vol.50 , Issue.11 , pp. 1233-1242
    • Palmer, G.1    Zhu, C.2    Breslin, T.3    Xu, F.4    Gilchrist, K.5    Ramanujam, N.6
  • 26
    • 0031651078 scopus 로고    scopus 로고
    • Evolving the topology and the weights of neural networks using a dual representation
    • J. Pujol and R. Poli. Evolving the topology and the weights of neural networks using a dual representation. Applied Intelligence Journal, 8:73-84, 1998.
    • (1998) Applied Intelligence Journal , vol.8 , pp. 73-84
    • Pujol, J.1    Poli, R.2
  • 27
    • 35048879142 scopus 로고    scopus 로고
    • Evolving reusable neural modules
    • Proceedings of the Genetic and Evolutionary Computation Conference, Springer
    • J. Reisinger, K. O. Stanley, and R. Miikkulainen. Evolving reusable neural modules. In Proceedings of the Genetic and Evolutionary Computation Conference, volume 3103 of Lecture Notes in Computer Science, pages 69-81. Springer, 2004.
    • (2004) Lecture Notes in Computer Science , vol.3103 , pp. 69-81
    • Reisinger, J.1    Stanley, K.O.2    Miikkulainen, R.3
  • 28
    • 84864672519 scopus 로고    scopus 로고
    • Classification of mammographic masses using radial basis functions and simulated annealing with shape, acutance, and texture features
    • R. Santo, R. Lopes, and R. Rangayyan. Classification of mammographic masses using radial basis functions and simulated annealing with shape, acutance, and texture features. In Proceedings of the IASTED Conference on Biomedical Engineering, pages 458-175, 2005.
    • (2005) Proceedings of the IASTED Conference on Biomedical Engineering , pp. 458-1175
    • Santo, R.1    Lopes, R.2    Rangayyan, R.3
  • 31
    • 0036594106 scopus 로고    scopus 로고
    • Evolving neural network through augmenting topologies
    • K. O. Stanley and R. Miikkulainen. Evolving neural network through augmenting topologies. Evolutionary Computation, 10(2):99-127, 2002.
    • (2002) Evolutionary Computation , vol.10 , Issue.2 , pp. 99-127
    • Stanley, K.O.1    Miikkulainen, R.2
  • 32
    • 19044383038 scopus 로고    scopus 로고
    • A study on several machine-learning methods for classification of malignant and benign clustered microcalcifications
    • L. Wei, Y. Yang, R. M. Nishikawa, and Y. Jiang. A study on several machine-learning methods for classification of malignant and benign clustered microcalcifications. IEEE Transactions on Medical Imaging, 24:371-380, 2005.
    • (2005) IEEE Transactions on Medical Imaging , vol.24 , pp. 371-380
    • Wei, L.1    Yang, Y.2    Nishikawa, R.M.3    Jiang, Y.4
  • 34
    • 0034333656 scopus 로고    scopus 로고
    • Model selection for a medical diagnostic decision support system: A breast cancer detection case
    • D. West and V. West. Model selection for a medical diagnostic decision support system: a breast cancer detection case. Artificial Intelligence in Medicine, 20(3):183-204, 2000.
    • (2000) Artificial Intelligence in Medicine , vol.20 , Issue.3 , pp. 183-204
    • West, D.1    West, V.2
  • 35
    • 33646714634 scopus 로고    scopus 로고
    • Evolutionary function approximation for reinforcement learning
    • S. Whiteson and P. Stone. Evolutionary function approximation for reinforcement learning. Journal of Machine Learning Research, 7:877-917, 2006.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 877-917
    • Whiteson, S.1    Stone, P.2
  • 36
    • 0028935859 scopus 로고
    • Image analysis and machine learning applied to breast cancer diagnosis and prognosis
    • W. Wolberg, W. Street, and O. Mangasarian. Image analysis and machine learning applied to breast cancer diagnosis and prognosis. Pubmid:Anal Quant Cytol Histol., 17(2):77-87, 1995.
    • (1995) Pubmid:Anal Quant Cytol Histol. , vol.17 , Issue.2 , pp. 77-87
    • Wolberg, W.1    Street, W.2    Mangasarian, O.3
  • 37
  • 38
    • 0033362601 scopus 로고    scopus 로고
    • Evolving artificial neural networks
    • X. Yao. Evolving artificial neural networks. In Proceedings of the IEEE, volume 87(9), pages 1423-1447, 1999.
    • (1999) Proceedings of the IEEE , vol.87 , Issue.9 , pp. 1423-1447
    • Yao, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.