메뉴 건너뛰기




Volumn 121, Issue , 2013, Pages 64-78

An effective, practical and low computational cost framework for the integration of heterogeneous data to predict functional associations between proteins by means of artificial neural networks

Author keywords

Data distribution; Data integration; Functional linkage network; Multilayer Perceptrons; Systems biology

Indexed keywords

DATA DISTRIBUTION; FUNCTIONAL ASSOCIATIONS; FUNCTIONAL RELATIONSHIP; HETEROGENEOUS DATA SOURCES; LEARNING PROCEDURES; OVER FITTING PROBLEM; PREDICTION ACCURACY; SYSTEMS BIOLOGY;

EID: 84884153831     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2012.11.040     Document Type: Article
Times cited : (4)

References (58)
  • 1
    • 78149328398 scopus 로고    scopus 로고
    • Global protein interactome exploration through mining genome-scale data in Arabidopsis thaliana
    • Xu F., Li G., Zhao C., Li Y., Li P., Cui J., Deng Y., Shi T. Global protein interactome exploration through mining genome-scale data in Arabidopsis thaliana. BMC Genomics 2010, 11:S2.
    • (2010) BMC Genomics , vol.11
    • Xu, F.1    Li, G.2    Zhao, C.3    Li, Y.4    Li, P.5    Cui, J.6    Deng, Y.7    Shi, T.8
  • 6
    • 33747856506 scopus 로고    scopus 로고
    • A framework of integrating gene relations from heterogeneous data sources: an experiment on Arabidopsis thaliana
    • Li J., Li X., Su H., Chen H., Galbraith D.W. A framework of integrating gene relations from heterogeneous data sources: an experiment on Arabidopsis thaliana. Bioinformatics 2006, 22:2037-2043.
    • (2006) Bioinformatics , vol.22 , pp. 2037-2043
    • Li, J.1    Li, X.2    Su, H.3    Chen, H.4    Galbraith, D.W.5
  • 7
    • 9444239213 scopus 로고    scopus 로고
    • A probabilistic functional network of yeast genes
    • Lee I., Date S.V., Adai A.T., Marcotte E.M. A probabilistic functional network of yeast genes. Science 2004, 306:1555-1558.
    • (2004) Science , vol.306 , pp. 1555-1558
    • Lee, I.1    Date, S.V.2    Adai, A.T.3    Marcotte, E.M.4
  • 8
    • 41549138299 scopus 로고    scopus 로고
    • An improved, bias-reduced probabilistic functional gene network of baker's yeast, Saccharomyces cerevisiae
    • Lee I., Li Z., Marcotte E.M. An improved, bias-reduced probabilistic functional gene network of baker's yeast, Saccharomyces cerevisiae. PLoS One 2007, 2:e988.
    • (2007) PLoS One , vol.2
    • Lee, I.1    Li, Z.2    Marcotte, E.M.3
  • 9
    • 80051659548 scopus 로고    scopus 로고
    • Probabilistic functional gene societies
    • (Systems Biology and Cancer)
    • Lee Insuk Probabilistic functional gene societies. Prog. Biophys. Mol. Biol. 2011, 106:435-442. (Systems Biology and Cancer).
    • (2011) Prog. Biophys. Mol. Biol. , vol.106 , pp. 435-442
    • Lee, I.1
  • 11
    • 76249105279 scopus 로고    scopus 로고
    • Genome-wide prioritization of disease genes and identification of disease-disease associations from an integrated human functional linkage network
    • Linghu B., Snitkin E., Hu Z., Xia Y., DeLisi C. Genome-wide prioritization of disease genes and identification of disease-disease associations from an integrated human functional linkage network. Genome Biol. 2009, 10:R91.
    • (2009) Genome Biol. , vol.10
    • Linghu, B.1    Snitkin, E.2    Hu, Z.3    Xia, Y.4    DeLisi, C.5
  • 12
    • 77951953607 scopus 로고    scopus 로고
    • Prediction of human functional genetic networks from heterogeneous data using rvm-based ensemble learning
    • Wu C.-C., Asgharzadeh S., Triche T.J., D'Argenio D.Z. Prediction of human functional genetic networks from heterogeneous data using rvm-based ensemble learning. Bioinformatics 2010, 26:807-813.
    • (2010) Bioinformatics , vol.26 , pp. 807-813
    • Wu, C.-C.1    Asgharzadeh, S.2    Triche, T.J.3    D'Argenio, D.Z.4
  • 13
    • 78650539578 scopus 로고    scopus 로고
    • Network-based function prediction and interactomics: the case for metabolic enzymes
    • Janga S., Díaz-Mejía J.J., Moreno-Hagelsieb G. Network-based function prediction and interactomics: the case for metabolic enzymes. Metab. Eng. 2011, 13:1-10.
    • (2011) Metab. Eng. , vol.13 , pp. 1-10
    • Janga, S.1    Díaz-Mejía, J.J.2    Moreno-Hagelsieb, G.3
  • 14
    • 77956368930 scopus 로고    scopus 로고
    • Inference of functional relations in predicted protein networks with a machine learning approach
    • García-Jiménez B., Juan D., Ezkurdia I., Andrés-León E., Valencia A. Inference of functional relations in predicted protein networks with a machine learning approach. PLoS One 2010, 5:e9969.
    • (2010) PLoS One , vol.5
    • García-Jiménez, B.1    Juan, D.2    Ezkurdia, I.3    Andrés-León, E.4    Valencia, A.5
  • 15
    • 80052394788 scopus 로고    scopus 로고
    • Systematic prediction of gene function in Arabidopsis thaliana using a probabilistic functional gene network
    • Hwang S., Rhee S.Y., Marcotte E.M., Lee I. Systematic prediction of gene function in Arabidopsis thaliana using a probabilistic functional gene network. Nat.Protocols 2011, 6:1429-1442.
    • (2011) Nat.Protocols , vol.6 , pp. 1429-1442
    • Hwang, S.1    Rhee, S.Y.2    Marcotte, E.M.3    Lee, I.4
  • 16
    • 76449090623 scopus 로고    scopus 로고
    • Go-at: in silico prediction of gene function in Arabidopsis thaliana by combining heterogeneous data
    • Bradford J.R., Needham C.J., Tedder P., Care M.A., Bulpitt A.J., Westhead D.R. Go-at: in silico prediction of gene function in Arabidopsis thaliana by combining heterogeneous data. Plant J. 2010, 61:713-721.
    • (2010) Plant J. , vol.61 , pp. 713-721
    • Bradford, J.R.1    Needham, C.J.2    Tedder, P.3    Care, M.A.4    Bulpitt, A.J.5    Westhead, D.R.6
  • 18
    • 77649231429 scopus 로고    scopus 로고
    • Integration of heterogeneous data sources for gene function prediction using decision templates and ensembles of learning machines
    • Re M., Valentini G. Integration of heterogeneous data sources for gene function prediction using decision templates and ensembles of learning machines. Neurocomputing 2010, 73:1533-1537.
    • (2010) Neurocomputing , vol.73 , pp. 1533-1537
    • Re, M.1    Valentini, G.2
  • 19
    • 82455199118 scopus 로고    scopus 로고
    • Improved competitive learning neural networks for network intrusion and fraud detection
    • (Brazilian Symposium on Neural Networks (SBRN 2010). International Conference on Hybrid Artificial Intelligence Systems (HAIS 2010))
    • Lei J.Z., Ghorbani A.A. Improved competitive learning neural networks for network intrusion and fraud detection. Neurocomputing 2012, 75:135-145. (Brazilian Symposium on Neural Networks (SBRN 2010). International Conference on Hybrid Artificial Intelligence Systems (HAIS 2010)).
    • (2012) Neurocomputing , vol.75 , pp. 135-145
    • Lei, J.Z.1    Ghorbani, A.A.2
  • 20
    • 78649484180 scopus 로고    scopus 로고
    • Multilayer neural networks-based direct adaptive control for switched nonlinear systems
    • Artificial Brains
    • Yu L., Fei S., Long F., Zhang M., Yu J. Multilayer neural networks-based direct adaptive control for switched nonlinear systems. Neurocomputing 2010, 74:481-486. Artificial Brains.
    • (2010) Neurocomputing , vol.74 , pp. 481-486
    • Yu, L.1    Fei, S.2    Long, F.3    Zhang, M.4    Yu, J.5
  • 21
    • 77958067568 scopus 로고    scopus 로고
    • Automated nonlinear system modeling with multiple fuzzy neural networks and kernel smoothing
    • Yu W., Li X. Automated nonlinear system modeling with multiple fuzzy neural networks and kernel smoothing. Int. J. Neural Syst. 2010, 429-435.
    • (2010) Int. J. Neural Syst. , pp. 429-435
    • Yu, W.1    Li, X.2
  • 22
    • 84855197447 scopus 로고    scopus 로고
    • An enhanced clustering function approximation technique for a radial basis function neural network
    • Pomares H., Rojas I., Awad M., Valenzuela O. An enhanced clustering function approximation technique for a radial basis function neural network. Math. Comput. Model. 2012, 55:286-302.
    • (2012) Math. Comput. Model. , vol.55 , pp. 286-302
    • Pomares, H.1    Rojas, I.2    Awad, M.3    Valenzuela, O.4
  • 23
    • 80052028861 scopus 로고    scopus 로고
    • Optimizing neural networks for river flow forecasting-evolutionary computation methods versus the Levenberg-Marquardt approach
    • Piotrowski A.P., Napiorkowski J.J. Optimizing neural networks for river flow forecasting-evolutionary computation methods versus the Levenberg-Marquardt approach. J. Hydrol. 2011, 407:12-27.
    • (2011) J. Hydrol. , vol.407 , pp. 12-27
    • Piotrowski, A.P.1    Napiorkowski, J.J.2
  • 24
    • 79956152987 scopus 로고    scopus 로고
    • Hourly forecasting of long term electric energy demand using novel mathematical models and neural networks
    • Filik U.B., Gerek O.N., Kurban M. Hourly forecasting of long term electric energy demand using novel mathematical models and neural networks. Int. J. Innovative Comput. Inf. Control 2011, 7:3545-3557.
    • (2011) Int. J. Innovative Comput. Inf. Control , vol.7 , pp. 3545-3557
    • Filik, U.B.1    Gerek, O.N.2    Kurban, M.3
  • 25
    • 77958505860 scopus 로고    scopus 로고
    • A comparative survey of artificial intelligence applications in finance: artificial neural networks, expert system and hybrid intelligent systems
    • Bahrammirzaee A. A comparative survey of artificial intelligence applications in finance: artificial neural networks, expert system and hybrid intelligent systems. Neural Comput. Appl. 2010, 19:1165-1195.
    • (2010) Neural Comput. Appl. , vol.19 , pp. 1165-1195
    • Bahrammirzaee, A.1
  • 26
    • 77952877024 scopus 로고    scopus 로고
    • Using near-infrared spectroscopy in the classification of white and iberian pork with neural networks
    • Guillén A., del Moral F., Herrera L., Rubio G., Rojas I., Valenzuela O., Pomares H. Using near-infrared spectroscopy in the classification of white and iberian pork with neural networks. Neural Comput. Appl. 2010, 19:465-470. http://dx.doi.org/10.1007/s00521-009-0327-2.
    • (2010) Neural Comput. Appl. , vol.19 , pp. 465-470
    • Guillén, A.1    del Moral, F.2    Herrera, L.3    Rubio, G.4    Rojas, I.5    Valenzuela, O.6    Pomares, H.7
  • 27
    • 77951553244 scopus 로고    scopus 로고
    • Prediction of parkinson's disease tremor onset using a radial basis function neural network based on particle swarm optimization
    • Wu D., Warwick K., Ma Z., Gasson M., Burgess J.G., Pan S., Aziz T.Z. Prediction of parkinson's disease tremor onset using a radial basis function neural network based on particle swarm optimization. Int. J. Neural Syst. 2010, 20:109-116.
    • (2010) Int. J. Neural Syst. , vol.20 , pp. 109-116
    • Wu, D.1    Warwick, K.2    Ma, Z.3    Gasson, M.4    Burgess, J.G.5    Pan, S.6    Aziz, T.Z.7
  • 28
    • 61849142212 scopus 로고    scopus 로고
    • Nearly homogeneous multi-partitioning with a deterministic generator
    • (18th European Symposium on Artificial Neural Networks, Brugge, BELGIUM, APR, 2008)
    • Aupetit M. Nearly homogeneous multi-partitioning with a deterministic generator. Neurocomputing 2009, 72:1379-1389. (18th European Symposium on Artificial Neural Networks, Brugge, BELGIUM, APR, 2008).
    • (2009) Neurocomputing , vol.72 , pp. 1379-1389
    • Aupetit, M.1
  • 29
    • 84858110694 scopus 로고    scopus 로고
    • A deterministic model selection scheme for incremental rbfnn construction in time series forecasting
    • Florido J.P., Pomares H., Rojas I., Urquiza J., Lopez-Gordo M. A deterministic model selection scheme for incremental rbfnn construction in time series forecasting. Neural Comput. Appl. 2012, 21:595-610. http://dx.doi.org/10.1007/s00521-010-0466-5.
    • (2012) Neural Comput. Appl. , vol.21 , pp. 595-610
    • Florido, J.P.1    Pomares, H.2    Rojas, I.3    Urquiza, J.4    Lopez-Gordo, M.5
  • 30
    • 79960070992 scopus 로고    scopus 로고
    • Generating balanced learning and test sets for function approximation problems
    • Florido J.P., Pomares H., Rojas I. Generating balanced learning and test sets for function approximation problems. Int. J. Neural Syst. 2011, 21:247-263.
    • (2011) Int. J. Neural Syst. , vol.21 , pp. 247-263
    • Florido, J.P.1    Pomares, H.2    Rojas, I.3
  • 32
    • 31344442851 scopus 로고    scopus 로고
    • Training cost-sensitive neural networks with methods addressing the class imbalance problem
    • Zhou Z.-H., Liu X.-Y. Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Trans. Knowl. Data Eng. 2006, 18:63-77.
    • (2006) IEEE Trans. Knowl. Data Eng. , vol.18 , pp. 63-77
    • Zhou, Z.-H.1    Liu, X.-Y.2
  • 33
    • 37549031189 scopus 로고    scopus 로고
    • Classification algorithms for phenotype prediction in genomics and proteomics
    • Ressom H., Varghese R., Zhang Z., Xuan J., Clarke R. Classification algorithms for phenotype prediction in genomics and proteomics. Front. Biosci. 2008, 13:691-708.
    • (2008) Front. Biosci. , vol.13 , pp. 691-708
    • Ressom, H.1    Varghese, R.2    Zhang, Z.3    Xuan, J.4    Clarke, R.5
  • 40
    • 33646018046 scopus 로고    scopus 로고
    • Evaluation of different biological data and computational classification methods for use in protein interaction prediction
    • Qi Y., Bar-joseph Z., Klein-seetharaman J. Evaluation of different biological data and computational classification methods for use in protein interaction prediction. Proteins 2006, 63:490-500.
    • (2006) Proteins , vol.63 , pp. 490-500
    • Qi, Y.1    Bar-joseph, Z.2    Klein-seetharaman, J.3
  • 43
    • 77549085334 scopus 로고    scopus 로고
    • A knowledge-driven probabilistic framework for the prediction of protein-protein interaction networks
    • Browne F., Wang H., Zheng H., Azuaje F. A knowledge-driven probabilistic framework for the prediction of protein-protein interaction networks. Comput. Biol. Med. 2010, 40:306-317.
    • (2010) Comput. Biol. Med. , vol.40 , pp. 306-317
    • Browne, F.1    Wang, H.2    Zheng, H.3    Azuaje, F.4
  • 44
    • 84944811700 scopus 로고
    • The use of ranks to avoid the assumption of normality implicit in the analysis of variance
    • Friedman M. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 1937, 32:675-701.
    • (1937) J. Am. Stat. Assoc. , vol.32 , pp. 675-701
    • Friedman, M.1
  • 50
    • 80054867806 scopus 로고    scopus 로고
    • Integrative computational biology for cancer research
    • Fortney K., Jurisica I. Integrative computational biology for cancer research. Hum. Genet. 2011, 130:465-481. http://dx.doi.org/10.1007/s00439-011-0983-z.
    • (2011) Hum. Genet. , vol.130 , pp. 465-481
    • Fortney, K.1    Jurisica, I.2
  • 52
    • 84861223047 scopus 로고    scopus 로고
    • Using machine learning techniques and genomic/proteomic information from known databases for defining relevant features for ppi classification
    • Urquiza J.M., Rojas I., Pomares H., Herrera J., Florido J.P., Valenzuela O., Cepero M. Using machine learning techniques and genomic/proteomic information from known databases for defining relevant features for ppi classification. Comput. Biol. Med. 2012, 42:639-650.
    • (2012) Comput. Biol. Med. , vol.42 , pp. 639-650
    • Urquiza, J.M.1    Rojas, I.2    Pomares, H.3    Herrera, J.4    Florido, J.P.5    Valenzuela, O.6    Cepero, M.7
  • 53
    • 80051602199 scopus 로고    scopus 로고
    • Method for prediction of protein-protein interactions in yeast using genomics/proteomics information and feature selection
    • Urquiza J., Rojas I., Pomares H., Herrera L., Ortega J., Prieto A. Method for prediction of protein-protein interactions in yeast using genomics/proteomics information and feature selection. Neurocomputing 2011, 74:2683-2690.
    • (2011) Neurocomputing , vol.74 , pp. 2683-2690
    • Urquiza, J.1    Rojas, I.2    Pomares, H.3    Herrera, L.4    Ortega, J.5    Prieto, A.6
  • 54
    • 79960944407 scopus 로고    scopus 로고
    • Bayesian inference for genomic data integration reduces misclassification rate in predicting protein-protein interactions
    • Xing C., Dunson D.B. Bayesian inference for genomic data integration reduces misclassification rate in predicting protein-protein interactions. PLoS Comput. Biol. 2011, 7:e1002110.
    • (2011) PLoS Comput. Biol. , vol.7
    • Xing, C.1    Dunson, D.B.2
  • 57
    • 77958527056 scopus 로고    scopus 로고
    • Information technology solutions for integration of biomolecular and clinical data in the identification of new cancer biomarkers and targets for therapy
    • Hackl H., Stocker G., Charoentong P., Mlecnik B., Bindea G., Galon J., Trajanoski Z. Information technology solutions for integration of biomolecular and clinical data in the identification of new cancer biomarkers and targets for therapy. Pharmacol. Ther. 2010, 128:488-498.
    • (2010) Pharmacol. Ther. , vol.128 , pp. 488-498
    • Hackl, H.1    Stocker, G.2    Charoentong, P.3    Mlecnik, B.4    Bindea, G.5    Galon, J.6    Trajanoski, Z.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.