메뉴 건너뛰기




Volumn 1-4, Issue , 2012, Pages 565-583

Neural networks in bioinformatics

Author keywords

[No Author keywords available]

Indexed keywords

BIOLOGY; COMPUTATIONAL METHODS; DNA SEQUENCES; FORECASTING; NETWORK ARCHITECTURE; NEURAL NETWORKS; NUCLEIC ACIDS; PROTEINS;

EID: 84979658037     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1007/978-3-540-92910-9_18     Document Type: Chapter
Times cited : (10)

References (65)
  • 1
    • 17844392864 scopus 로고    scopus 로고
    • Combining prediction of secondary structure and solvent accessibility in proteins
    • Adamczak R, Porollo A, Meller J (2005) Combining prediction of secondary structure and solvent accessibility in proteins. Proteins 59:467-475
    • (2005) Proteins , vol.59 , pp. 467-475
    • Adamczak, R.1    Porollo, A.2    Meller, J.3
  • 2
    • 0037340834 scopus 로고    scopus 로고
    • Real value prediction of solvent accessibility from amino acid sequence
    • Ahmad S, Gromiha MM, Sarai A (2003) Real value prediction of solvent accessibility from amino acid sequence. Proteins 50:629-635
    • (2003) Proteins , vol.50 , pp. 629-635
    • Ahmad, S.1    Gromiha, M.M.2    Sarai, A.3
  • 3
    • 1542400269 scopus 로고    scopus 로고
    • Analysis and prediction of DNA-binding proteins and their binding residues based on composition, sequence and structural information
    • Ahmad S, Gromiha MM, Sarai A (2004) Analysis and prediction of DNA-binding proteins and their binding residues based on composition, sequence and structural information. Bioinformatics 20:477-486
    • (2004) Bioinformatics , vol.20 , pp. 477-486
    • Ahmad, S.1    Gromiha, M.M.2    Sarai, A.3
  • 4
    • 25444524842 scopus 로고    scopus 로고
    • PSSM-based prediction of DNA binding sites in proteins
    • Ahmad S, Sarai A (2005) PSSM-based prediction of DNA binding sites in proteins. BMC Bioinformatics 6:33
    • (2005) BMC Bioinformatics , vol.6 , pp. 33
    • Ahmad, S.1    Sarai, A.2
  • 6
    • 0029846866 scopus 로고    scopus 로고
    • Cleavage site analysis in picornaviral polyproteins: discovering cellular targets by neural networks
    • Blom N, Hansen J, Blaas D, Brunak S (1996) Cleavage site analysis in picornaviral polyproteins: discovering cellular targets by neural networks. Protein Sci 5:2203-2216
    • (1996) Protein Sci , vol.5 , pp. 2203-2216
    • Blom, N.1    Hansen, J.2    Blaas, D.3    Brunak, S.4
  • 8
    • 0345040882 scopus 로고    scopus 로고
    • Support vector machine applications in bioinformatics
    • Byvatov E, Schneider G (2003) Support vector machine applications in bioinformatics. Appl Bioinformatics 2(2):67-77
    • (2003) Appl Bioinformatics , vol.2 , Issue.2 , pp. 67-77
    • Byvatov, E.1    Schneider, G.2
  • 9
    • 0033809190 scopus 로고    scopus 로고
    • Prediction of protein structural classes by neural network
    • Cai YD, Zhou GP (2000) Prediction of protein structural classes by neural network. Biochimie 82:783-785
    • (2000) Biochimie , vol.82 , pp. 783-785
    • Cai, Y.D.1    Zhou, G.P.2
  • 10
    • 0036006486 scopus 로고    scopus 로고
    • Artificial neural network model for predicting protein subcellular location
    • Cai YD, Liu XJ, Chou KC (2002) Artificial neural network model for predicting protein subcellular location. Comput Chem 26:179-182
    • (2002) Comput Chem , vol.26 , pp. 179-182
    • Cai, Y.D.1    Liu, X.J.2    Chou, K.C.3
  • 11
    • 0037473486 scopus 로고    scopus 로고
    • Prediction of protein secondary structure content by artificial neural network
    • Cai YD, Liu XJ, Chou KC (2003) Prediction of protein secondary structure content by artificial neural network. J Comput Chem 24:727-731
    • (2003) J Comput Chem , vol.24 , pp. 727-731
    • Cai, Y.D.1    Liu, X.J.2    Chou, K.C.3
  • 12
    • 0028906598 scopus 로고
    • Neural networks for secondary structure and structural class predictions
    • Chandonia JM, Karplus M (1995) Neural networks for secondary structure and structural class predictions. Protein Sci 4:275-285
    • (1995) Protein Sci , vol.4 , pp. 275-285
    • Chandonia, J.M.1    Karplus, M.2
  • 13
    • 36249015378 scopus 로고    scopus 로고
    • Cascaded bidirectional recurrent neural networks for protein secondary structure prediction
    • Chen J, Chaudhari N (2007) Cascaded bidirectional recurrent neural networks for protein secondary structure prediction. IEEE/ACM Trans Comput Biol Bioinform 4:572-582
    • (2007) IEEE/ACM Trans Comput Biol Bioinform , vol.4 , pp. 572-582
    • Chen, J.1    Chaudhari, N.2
  • 14
    • 33847073796 scopus 로고    scopus 로고
    • Achieving 80% ten-fold crossvalidated accuracy for secondary structure prediction by large-scale training
    • Dor O, Zhou Y (2007a) Achieving 80% ten-fold crossvalidated accuracy for secondary structure prediction by large-scale training. Proteins 66:838-845
    • (2007) Proteins , vol.66 , pp. 838-845
    • Dor, O.1    Zhou, Y.2
  • 15
    • 34249914807 scopus 로고    scopus 로고
    • Real-SPINE: an integrated system of neural networks for real-value prediction of protein structural properties
    • Dor O, Zhou Y (2007b) Real-SPINE: an integrated system of neural networks for real-value prediction of protein structural properties. Proteins 68:76-81
    • (2007) Proteins , vol.68 , pp. 76-81
    • Dor, O.1    Zhou, Y.2
  • 16
    • 0034697980 scopus 로고    scopus 로고
    • Predicting subcellular localization of proteins based on their N-terminal amino acid sequence
    • Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005-1016
    • (2000) J Mol Biol , vol.300 , pp. 1005-1016
    • Emanuelsson, O.1    Nielsen, H.2    Brunak, S.3    von Heijne, G.4
  • 17
    • 45949096079 scopus 로고    scopus 로고
    • Computational intelligence approaches for pattern discovery in biological systems
    • Fogel GB (2008) Computational intelligence approaches for pattern discovery in biological systems. Brief Bioinform 9(4):307-316
    • (2008) Brief Bioinform , vol.9 , Issue.4 , pp. 307-316
    • Fogel, G.B.1
  • 18
    • 61449245515 scopus 로고    scopus 로고
    • Prediction of helix-helix contacts and interacting helices in polytopic membrane proteins using neural networks
    • Fuchs A, Kirschner A, Frishman D (2009) Prediction of helix-helix contacts and interacting helices in polytopic membrane proteins using neural networks. Proteins 74:857-871
    • (2009) Proteins , vol.74 , pp. 857-871
    • Fuchs, A.1    Kirschner, A.2    Frishman, D.3
  • 19
    • 26444473604 scopus 로고    scopus 로고
    • Real value prediction of solvent accessibility in proteins using multiple sequence alignment and secondary structure
    • Garg A, Kaur H, Raghava GP (2005) Real value prediction of solvent accessibility in proteins using multiple sequence alignment and secondary structure. Proteins 61:318-324
    • (2005) Proteins , vol.61 , pp. 318-324
    • Garg, A.1    Kaur, H.2    Raghava, G.P.3
  • 20
    • 23144463913 scopus 로고    scopus 로고
    • TMBETA-NET:discrimination and prediction of membrane spanning beta-strands in outer membrane proteins
    • Gromiha MM, Ahmad S, SuwaM (2005) TMBETA-NET:discrimination and prediction of membrane spanning beta-strands in outer membrane proteins. Nucleic Acids Res 33:W164-167
    • (2005) Nucleic Acids Res , vol.33 , pp. W164-W167
    • Gromiha, M.M.1    Ahmad, S.2    Suwa, M.3
  • 21
    • 0042622449 scopus 로고    scopus 로고
    • PROTINFO: secondary and tertiary protein structure prediction
    • Hung LH, Samudrala R (2003) PROTINFO: secondary and tertiary protein structure prediction. Nucleic Acids Res 31:3296-3299
    • (2003) Nucleic Acids Res , vol.31 , pp. 3296-3299
    • Hung, L.H.1    Samudrala, R.2
  • 22
    • 34248576306 scopus 로고    scopus 로고
    • Net-PhosYeast: prediction of protein phosphorylation sites in yeast
    • Ingrell CR, Miller ML, Jensen ON, Blom N (2007) Net-PhosYeast: prediction of protein phosphorylation sites in yeast. Bioinformatics 23:895-897
    • (2007) Bioinformatics , vol.23 , pp. 895-897
    • Ingrell, C.R.1    Miller, M.L.2    Jensen, O.N.3    Blom, N.4
  • 23
    • 0035078840 scopus 로고    scopus 로고
    • Prediction of the transmembrane regions of beta-barrel membrane proteins with a neural network-based predictor
    • Jacoboni I, Martelli PL, Fariselli P, De Pinto V, Casadio R (2001) Prediction of the transmembrane regions of beta-barrel membrane proteins with a neural network-based predictor. Protein Sci 10:779-787
    • (2001) Protein Sci , vol.10 , pp. 779-787
    • Jacoboni, I.1    Martelli, P.L.2    Fariselli, P.3    De Pinto, V.4    Casadio, R.5
  • 24
    • 18244362861 scopus 로고    scopus 로고
    • A neural network method for identification of RNA-interacting residues in protein
    • Jeong E, Chung IF, Miyano S (2004) A neural network method for identification of RNA-interacting residues in protein. Genome Inform 15:105-116
    • (2004) Genome Inform , vol.15 , pp. 105-116
    • Jeong, E.1    Chung, I.F.2    Miyano, S.3
  • 25
    • 0033578684 scopus 로고    scopus 로고
    • Protein secondary structure prediction based on position-specific scoring matrices
    • Jones DT (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292:195-202
    • (1999) J Mol Biol , vol.292 , pp. 195-202
    • Jones, D.T.1
  • 26
    • 0020997912 scopus 로고
    • Dictionary of protein secondary structure: pattern recognition of hydrogenbonded and geometrical features
    • Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogenbonded and geometrical features. Biopolymers 22:2577-2637
    • (1983) Biopolymers , vol.22 , pp. 2577-2637
    • Kabsch, W.1    Sander, C.2
  • 27
    • 2942609237 scopus 로고    scopus 로고
    • Overview of commonly used bioinformatics methods and their applications
    • Kapetanovic IM, Rosenfeld S, Izmirlian G (2004) Overview of commonly used bioinformatics methods and their applications. Ann NYAcad Sci 1020:10-21
    • (2004) Ann NYAcad Sci , vol.1020 , pp. 10-21
    • Kapetanovic, I.M.1    Rosenfeld, S.2    Izmirlian, G.3
  • 28
    • 0037407019 scopus 로고    scopus 로고
    • A neural-network based method for prediction of gamma-turns in proteins from multiple sequence alignment
    • Kaur H, Raghava GP (2003) A neural-network based method for prediction of gamma-turns in proteins from multiple sequence alignment. Protein Sci 12:923-929
    • (2003) Protein Sci , vol.12 , pp. 923-929
    • Kaur, H.1    Raghava, G.P.2
  • 29
    • 8844252295 scopus 로고    scopus 로고
    • A neural network method for prediction of beta-turn types in proteins using evolutionary information
    • Kaur H, Raghava GP (2004) A neural network method for prediction of beta-turn types in proteins using evolutionary information. Bioinformatics 20:2751-2758
    • (2004) Bioinformatics , vol.20 , pp. 2751-2758
    • Kaur, H.1    Raghava, G.P.2
  • 30
    • 49149096763 scopus 로고    scopus 로고
    • Prediction of beta-turns and beta-turn types by a novel bidirectional Elmantype recurrent neural network with multiple output layers (MOLEBRNN)
    • Kirschner A, Frishman D (2008) Prediction of beta-turns and beta-turn types by a novel bidirectional Elmantype recurrent neural network with multiple output layers (MOLEBRNN). Gene 422:22-29
    • (2008) Gene , vol.422 , pp. 22-29
    • Kirschner, A.1    Frishman, D.2
  • 31
    • 3543101355 scopus 로고    scopus 로고
    • Protein backbone angle prediction with machine learning approaches
    • Kuang R, Leslie CS, Yang AS (2004) Protein backbone angle prediction with machine learning approaches. Bioinformatics 20:1612-1621
    • (2004) Bioinformatics , vol.20 , pp. 1612-1621
    • Kuang, R.1    Leslie, C.S.2    Yang, A.S.3
  • 32
    • 33744817325 scopus 로고    scopus 로고
    • Using evolutionary and structural information to predict DNA-binding sites on DNA-binding proteins
    • Kuznetsov IB, Gou Z, Li R, Hwang S (2006) Using evolutionary and structural information to predict DNA-binding sites on DNA-binding proteins. Proteins 64:19-27
    • (2006) Proteins , vol.64 , pp. 19-27
    • Kuznetsov, I.B.1    Gou, Z.2    Li, R.3    Hwang, S.4
  • 35
    • 48449106045 scopus 로고    scopus 로고
    • NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8-11
    • Lundegaard C, Lamberth K, HarndahlM, Buus S, Lund O, NielsenM (2008) NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8-11. Nucleic Acids Res 36:W509-512
    • (2008) Nucleic Acids Res , vol.36 , pp. W509-W512
    • Lundegaard, C.1    Lamberth, K.2    Harndahl, M.3    Buus, S.4    Lund, O.5    Nielsen, M.6
  • 36
    • 0034868592 scopus 로고    scopus 로고
    • What is bioinformatics? A proposed definition and overview of the field
    • Luscombe NM, Greenbaum D, Gerstein M (2001) What is bioinformatics? A proposed definition and overview of the field. Methods Inf Med 40:346-358
    • (2001) Methods Inf Med , vol.40 , pp. 346-358
    • Luscombe, N.M.1    Greenbaum, D.2    Gerstein, M.3
  • 37
    • 2942624211 scopus 로고    scopus 로고
    • Prediction of disulfide-bonded cysteines in proteomes with a hidden neural network
    • Martelli PL, Fariselli P, Casadio R (2004) Prediction of disulfide-bonded cysteines in proteomes with a hidden neural network. Proteomics 4:1665-1671
    • (2004) Proteomics , vol.4 , pp. 1665-1671
    • Martelli, P.L.1    Fariselli, P.2    Casadio, R.3
  • 38
    • 37549070609 scopus 로고    scopus 로고
    • Emergent unsupervised clustering paradigms with potential application to bioinformatics
    • Miller DJ, Wang Y, Kesidis G (2008) Emergent unsupervised clustering paradigms with potential application to bioinformatics. Front Biosci 13:677-690
    • (2008) Front Biosci , vol.13 , pp. 677-690
    • Miller, D.J.1    Wang, Y.2    Kesidis, G.3
  • 39
    • 0026632379 scopus 로고
    • Predicting protein secondary structure content A tandem neural network approach
    • Muskal SM, Kim SH (1992) Predicting protein secondary structure content A tandem neural network approach. J Mol Biol 225:713-727
    • (1992) J Mol Biol , vol.225 , pp. 713-727
    • Muskal, S.M.1    Kim, S.H.2
  • 41
    • 2442685760 scopus 로고    scopus 로고
    • Artificial intelligence techniques for bioinformatics
    • Narayanan A, Keedwell EC, Olsson B (2002) Artificial intelligence techniques for bioinformatics. Appl Bioinformatics 1(4):191-222
    • (2002) Appl Bioinformatics , vol.1 , Issue.4 , pp. 191-222
    • Narayanan, A.1    Keedwell, E.C.2    Olsson, B.3
  • 42
    • 2642587355 scopus 로고    scopus 로고
    • Prediction of transmembrane regions of beta-barrel proteins using ANN-and SVM-based methods
    • Natt NK, Kaur H, Raghava GP (2004) Prediction of transmembrane regions of beta-barrel proteins using ANN-and SVM-based methods. Proteins 56:11-18
    • (2004) Proteins , vol.56 , pp. 11-18
    • Natt, N.K.1    Kaur, H.2    Raghava, G.P.3
  • 43
    • 85028442368 scopus 로고    scopus 로고
    • NIH Working Definition of Bioinformatics and Computational Biology (2000) BISTIC Definition Committee, http://www.bisti.nih.gov/
    • (2000) BISTIC Definition Committee
  • 44
    • 2342565108 scopus 로고    scopus 로고
    • Prediction of biological targets using probabilistic neural networks and atom-type descriptors
    • Niwa T (2004) Prediction of biological targets using probabilistic neural networks and atom-type descriptors. J Med Chem 47:2645-2650
    • (2004) J Med Chem , vol.47 , pp. 2645-2650
    • Niwa, T.1
  • 45
    • 34547573955 scopus 로고    scopus 로고
    • Protein-protein interaction hotspots carved into sequences
    • Ofran Y, Rost B (2007) Protein-protein interaction hotspots carved into sequences. PLoS Comput Biol 3:e119
    • (2007) PLoS Comput Biol , vol.3 , pp. e119
    • Ofran, Y.1    Rost, B.2
  • 48
    • 0036568293 scopus 로고    scopus 로고
    • Prediction of coordination number and relative solvent accessibility in proteins
    • Pollastri G, Baldi P, Fariselli P, Casadio R (2002a) Prediction of coordination number and relative solvent accessibility in proteins. Proteins 47:142-153
    • (2002) Proteins , vol.47 , pp. 142-153
    • Pollastri, G.1    Baldi, P.2    Fariselli, P.3    Casadio, R.4
  • 49
    • 0036568293 scopus 로고    scopus 로고
    • Prediction of coordination number and relative solvent accessibility in proteins
    • Pollastri G, Baldi P, Fariselli P, Casadio R (2002b) Prediction of coordination number and relative solvent accessibility in proteins. Proteins 47:142-153
    • (2002) Proteins , vol.47 , pp. 142-153
    • Pollastri, G.1    Baldi, P.2    Fariselli, P.3    Casadio, R.4
  • 50
    • 0023803244 scopus 로고
    • Predicting the secondary structure of globular proteins using neural network models
    • Qian N, Sejnowski TJ (1988) Predicting the secondary structure of globular proteins using neural network models. J Mol Biol 202:865-884
    • (1988) J Mol Biol , vol.202 , pp. 865-884
    • Qian, N.1    Sejnowski, T.J.2
  • 51
    • 0032077533 scopus 로고    scopus 로고
    • Using neural networks for prediction of the subcellular location of proteins
    • Reinhardt A, Hubbard T (1998) Using neural networks for prediction of the subcellular location of proteins. Nucleic Acids Res 26:2230-2236
    • (1998) Nucleic Acids Res , vol.26 , pp. 2230-2236
    • Reinhardt, A.1    Hubbard, T.2
  • 52
    • 0028109886 scopus 로고
    • Conservation and prediction of solvent accessibility in protein families
    • Rost B, Sander C (1994) Conservation and prediction of solvent accessibility in protein families. Proteins 20:216-226
    • (1994) Proteins , vol.20 , pp. 216-226
    • Rost, B.1    Sander, C.2
  • 53
    • 0028158628 scopus 로고
    • PHD-an automatic mail server for protein secondary structure prediction
    • Rost B, Sander C, Schneider R (1994) PHD-an automatic mail server for protein secondary structure prediction. Comput Appl Biosci 10:53-60
    • (1994) Comput Appl Biosci , vol.10 , pp. 53-60
    • Rost, B.1    Sander, C.2    Schneider, R.3
  • 54
    • 24144446995 scopus 로고    scopus 로고
    • Highly accurate and consistent method for prediction of helix and strand content from primary protein sequences
    • Ruan J, Wang K, Yang J, Kurgan LA, Cios KJ (2005) Highly accurate and consistent method for prediction of helix and strand content from primary protein sequences. Artif Intell Med 35:19-35
    • (2005) Artif Intell Med , vol.35 , pp. 19-35
    • Ruan, J.1    Wang, K.2    Yang, J.3    Kurgan, L.A.4    Cios, K.J.5
  • 55
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys Y, Inza I, Larrañaga P (2007) A review of feature selection techniques in bioinformatics. Bioinformatics 23(19):2507-2517
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larrañaga, P.3
  • 56
    • 33748254730 scopus 로고    scopus 로고
    • Prediction of continuous B-cell epitopes in an antigen using recurrent neural network
    • Saha S, Raghava GP (2006) Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins 65:40-48
    • (2006) Proteins , vol.65 , pp. 40-48
    • Saha, S.1    Raghava, G.P.2
  • 57
    • 33645021017 scopus 로고    scopus 로고
    • Prediction of signal peptides using bio-basis function neural networks and decision trees
    • Sidhu A, Yang ZR (2006) Prediction of signal peptides using bio-basis function neural networks and decision trees. Appl Bioinformatics 5:13-19
    • (2006) Appl Bioinformatics , vol.5 , pp. 13-19
    • Sidhu, A.1    Yang, Z.R.2
  • 58
    • 0033757255 scopus 로고    scopus 로고
    • Multi-dimensional QSAR in drug research. Predicting binding affinities, toxicity and pharmacokinetic parameters
    • Vedani A, Dobler M (2000) Multi-dimensional QSAR in drug research. Predicting binding affinities, toxicity and pharmacokinetic parameters. Prog Drug Res 55:105-135
    • (2000) Prog Drug Res , vol.55 , pp. 105-135
    • Vedani, A.1    Dobler, M.2
  • 59
    • 34250658998 scopus 로고    scopus 로고
    • Bayesian methods in bioinformatics and computational systems biology
    • Wilkinson DJ (2007) Bayesian methods in bioinformatics and computational systems biology. Brief Bioinformatics 8(2):109-116
    • (2007) Brief Bioinformatics , vol.8 , Issue.2 , pp. 109-116
    • Wilkinson, D.J.1
  • 60
    • 44949201613 scopus 로고    scopus 로고
    • Real-value prediction of backbone torsion angles
    • Xue B, Dor O, Faraggi E, Zhou Y (2008) Real-value prediction of backbone torsion angles. Proteins 72:427-433
    • (2008) Proteins , vol.72 , pp. 427-433
    • Xue, B.1    Dor, O.2    Faraggi, E.3    Zhou, Y.4
  • 61
    • 13844272392 scopus 로고    scopus 로고
    • Bio-basis function neural network for prediction of protease cleavage sites in proteins
    • Yang ZR, Thomson R (2005) Bio-basis function neural network for prediction of protease cleavage sites in proteins. IEEE Trans Neural Netw 16:263-274
    • (2005) IEEE Trans Neural Netw , vol.16 , pp. 263-274
    • Yang, Z.R.1    Thomson, R.2
  • 62
    • 40549099733 scopus 로고    scopus 로고
    • Sequence-based protein domain boundary prediction using BP neural network with various property profiles
    • Ye L, Liu T, Wu Z, Zhou R (2008) Sequence-based protein domain boundary prediction using BP neural network with various property profiles. Proteins 71:300-307
    • (2008) Proteins , vol.71 , pp. 300-307
    • Ye, L.1    Liu, T.2    Wu, Z.3    Zhou, R.4
  • 63
    • 22144489879 scopus 로고    scopus 로고
    • Prediction of inter-residue contacts map based on genetic algorithm optimized radial basis function neural network and binary input encoding scheme
    • Zhang GZ, Huang DS (2004) Prediction of inter-residue contacts map based on genetic algorithm optimized radial basis function neural network and binary input encoding scheme. J Comput Aided Mol Des 18:797-810
    • (2004) J Comput Aided Mol Des , vol.18 , pp. 797-810
    • Zhang, G.Z.1    Huang, D.S.2
  • 64
    • 0035882570 scopus 로고    scopus 로고
    • Prediction of protein interaction sites from sequence profile and residue neighbor list
    • Zhou HX, Shan Y (2001) Prediction of protein interaction sites from sequence profile and residue neighbor list. Proteins 44:336-343
    • (2001) Proteins , vol.44 , pp. 336-343
    • Zhou, H.X.1    Shan, Y.2
  • 65
    • 37249082479 scopus 로고    scopus 로고
    • Prediction of subcellular localization of eukaryotic proteins using positionspecific profiles and neural network with weighted inputs
    • Zou L, Wang Z, Huang J (2007) Prediction of subcellular localization of eukaryotic proteins using positionspecific profiles and neural network with weighted inputs. J Genet Genomics 34:1080-1087
    • (2007) J Genet Genomics , vol.34 , pp. 1080-1087
    • Zou, L.1    Wang, Z.2    Huang, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.