메뉴 건너뛰기




Volumn 84, Issue , 2015, Pages 551-575

Structure, dynamics, assembly, and evolution of protein complexes

Author keywords

Heteromer; Homomer; Multimer; Oligomer; Protein interactions; Quaternary structure; Self assembly

Indexed keywords

PROTEIN; MULTIPROTEIN COMPLEX;

EID: 84930715900     PISSN: 00664154     EISSN: 15454509     Source Type: Book Series    
DOI: 10.1146/annurev-biochem-060614-034142     Document Type: Review
Times cited : (328)

References (144)
  • 1
    • 0035253217 scopus 로고    scopus 로고
    • Macromolecular crowding: An important but neglected aspect of the intracellular environment
    • Ellis RJ. 2001. Macromolecular crowding: an important but neglected aspect of the intracellular environment. Curr. Opin. Struct. Biol. 11:114-19
    • (2001) Curr. Opin. Struct. Biol. , vol.11 , pp. 114-119
    • Ellis, R.J.1
  • 2
    • 77950792003 scopus 로고    scopus 로고
    • Diffusion, crowding and protein stability in a dynamicmolecular model of the bacterial cytoplasm
    • McGuffee SR, Elcock AH. 2010. Diffusion, crowding and protein stability in a dynamicmolecular model of the bacterial cytoplasm. PLOS Comput. Biol. 6:e1000694
    • (2010) PLOS Comput. Biol. , vol.6 , pp. e1000694
    • McGuffee, S.R.1    Elcock, A.H.2
  • 3
    • 84870901239 scopus 로고    scopus 로고
    • Cellular crowding imposes global constraints on the chemistry and evolution of proteomes
    • Levy ED, De S, Teichmann SA. 2012. Cellular crowding imposes global constraints on the chemistry and evolution of proteomes. PNAS 109:20461-66
    • (2012) PNAS , vol.109 , pp. 20461-20466
    • Levy, E.D.1    De S Teichmann, S.A.2
  • 5
    • 77957771797 scopus 로고    scopus 로고
    • Transient protein-protein interactions: Structural, functional, and network properties
    • Perkins JR, Diboun I, Dessailly BH, Lees JG, Orengo C. 2010. Transient protein-protein interactions: structural, functional, and network properties. Structure 18:1233-43
    • (2010) Structure , vol.18 , pp. 1233-1243
    • Perkins, J.R.1    Diboun, I.2    Dessailly, B.H.3    Lees, J.G.4    Orengo, C.5
  • 6
    • 84904469894 scopus 로고    scopus 로고
    • A million peptide motifs for the molecular biologist
    • Tompa P, Davey NE, Gibson TJ, Babu MM. 2014. A million peptide motifs for the molecular biologist. Mol. Cell 55:161-69
    • (2014) Mol. Cell , vol.55 , pp. 161-169
    • Tompa, P.1    Davey, N.E.2    Gibson, T.J.3    Babu, M.M.4
  • 7
    • 33645453254 scopus 로고    scopus 로고
    • Global landscape of protein complexes in the yeast Saccharomyces cerevisiae
    • Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, et al. 2006. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440:637-43
    • (2006) Nature , vol.440 , pp. 637-643
    • Krogan, N.J.1    Cagney, G.2    Yu, H.3    Zhong, G.4    Guo, X.5
  • 8
    • 33644555054 scopus 로고    scopus 로고
    • Proteome survey reveals modularity of the yeast cell machinery
    • Gavin A-C, Aloy P, Grandi P, Krause R, Boesche M, et al. 2006. Proteome survey reveals modularity of the yeast cell machinery. Nature 440:631-36
    • (2006) Nature , vol.440 , pp. 631-636
    • Gavin, A.-C.1    Aloy, P.2    Grandi, P.3    Krause, R.4    Boesche, M.5
  • 10
    • 2942552459 scopus 로고    scopus 로고
    • An automated method for finding molecular complexes in large protein interaction networks
    • Bader GD, Hogue CW. 2003. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 4:2
    • (2003) BMC Bioinform. , vol.4 , pp. 2
    • Bader, G.D.1    Hogue, C.W.2
  • 12
    • 84896271802 scopus 로고    scopus 로고
    • Trends in structural coverage of the protein universe and the impact of the protein structure initiative
    • Khafizov K, Madrid-Aliste C, Almo SC, Fiser A. 2014. Trends in structural coverage of the protein universe and the impact of the protein structure initiative. PNAS 111:3733-38
    • (2014) PNAS , vol.111 , pp. 3733-3738
    • Khafizov, K.1    Madrid-Aliste, C.2    Almo, S.C.3    Fiser, A.4
  • 17
    • 0030501419 scopus 로고    scopus 로고
    • Use of non-crystallographic symmetry in protein structure refinement
    • Kleywegt GJ. 1996. Use of non-crystallographic symmetry in protein structure refinement. Acta Crystallogr. D 52:842-57
    • (1996) Acta Crystallogr. D , vol.52 , pp. 842-857
    • Kleywegt, G.J.1
  • 18
    • 83055165883 scopus 로고    scopus 로고
    • Solution NMR evidence for symmetry in functionally or crystallographically asymmetric homodimers
    • Godoy-Ruiz R, Krejcirikova A, Gallagher DT, Tugarinov V. 2011. Solution NMR evidence for symmetry in functionally or crystallographically asymmetric homodimers. J. Am. Chem. Soc. 133:19578-81
    • (2011) J. Am. Chem. Soc. , vol.133 , pp. 19578-19581
    • Godoy-Ruiz, R.1    Krejcirikova, A.2    Gallagher, D.T.3    Tugarinov, V.4
  • 19
    • 72049124287 scopus 로고    scopus 로고
    • X-ray structure, symmetry and mechanism of an AMPAsubtype glutamate receptor
    • Sobolevsky AI, Rosconi MP, Gouaux E. 2009. X-ray structure, symmetry and mechanism of an AMPAsubtype glutamate receptor. Nature 462:745-56
    • (2009) Nature , vol.462 , pp. 745-756
    • Sobolevsky, A.I.1    Rosconi, M.P.2    Gouaux, E.3
  • 20
    • 84861511557 scopus 로고    scopus 로고
    • The emergence of protein complexes: Quaternary structure, dynamics and allostery
    • Perica T, Marsh JA, Sousa FL, Natan E, Colwell LJ, et al. 2012. The emergence of protein complexes: quaternary structure, dynamics and allostery. Biochem. Soc. Trans. 40:475-91
    • (2012) Biochem. Soc. Trans. , vol.40 , pp. 475-491
    • Perica, T.1    Marsh, J.A.2    Sousa, F.L.3    Natan, E.4    Colwell, L.J.5
  • 21
    • 84901445186 scopus 로고    scopus 로고
    • Protein flexibility facilitates quaternary structure assembly and evolution
    • Marsh JA, Teichmann SA. 2014. Protein flexibility facilitates quaternary structure assembly and evolution. PLOS Biol. 12:e1001870
    • (2014) PLOS Biol. , vol.12 , pp. e1001870
    • Marsh, J.A.1    Teichmann, S.A.2
  • 24
    • 0035044995 scopus 로고    scopus 로고
    • Conformational change of proteins arising from normal mode calculations
    • Tama F, Sanejouand YH. 2001. Conformational change of proteins arising from normal mode calculations. Protein Eng. 14:1-6
    • (2001) Protein Eng. , vol.14 , pp. 1-6
    • Tama, F.1    Sanejouand, Y.H.2
  • 25
    • 30044434744 scopus 로고    scopus 로고
    • Structural changes involved in protein binding correlate with intrinsic motions of proteins in the unbound state
    • Tobi D, Bahar I. 2005. Structural changes involved in protein binding correlate with intrinsic motions of proteins in the unbound state. PNAS 102:18908-13
    • (2005) PNAS , vol.102 , pp. 18908-18913
    • Tobi, D.1    Bahar, I.2
  • 26
    • 48749126860 scopus 로고    scopus 로고
    • Insights into protein flexibility: The relationship between normal modes and conformational change upon protein-protein docking
    • Dobbins SE, Lesk VI, Sternberg MJE. 2008. Insights into protein flexibility: the relationship between normal modes and conformational change upon protein-protein docking. PNAS 105:10390-95
    • (2008) PNAS , vol.105 , pp. 10390-10395
    • Dobbins, S.E.1    Lesk, V.I.2    Mje, S.3
  • 27
    • 70149090164 scopus 로고    scopus 로고
    • The intrinsic dynamics of enzymes plays a dominant role in determining the structural changes induced upon inhibitor binding
    • Bakan A, Bahar I. 2009. The intrinsic dynamics of enzymes plays a dominant role in determining the structural changes induced upon inhibitor binding. PNAS 106:14349-54
    • (2009) PNAS , vol.106 , pp. 14349-14354
    • Bakan, A.1    Bahar, I.2
  • 28
    • 79958093841 scopus 로고    scopus 로고
    • Relative solvent accessible surface area predicts protein conformational changes upon binding
    • Marsh JA, Teichmann SA. 2011. Relative solvent accessible surface area predicts protein conformational changes upon binding. Structure 19:859-67
    • (2011) Structure , vol.19 , pp. 859-867
    • Marsh, J.A.1    Teichmann, S.A.2
  • 30
    • 0034345205 scopus 로고    scopus 로고
    • Crystallization and polymorphism of conformationally flexible molecules: Problems, patterns, and strategies
    • Yu L, Reutzel-Edens SM, Mitchell CA. 2000. Crystallization and polymorphism of conformationally flexible molecules: problems, patterns, and strategies. Org. Process Res. Dev. 4:396-402
    • (2000) Org. Process Res. Dev. , vol.4 , pp. 396-402
    • Yu, L.1    Reutzel-Edens, S.M.2    Mitchell, C.A.3
  • 31
    • 84881666267 scopus 로고    scopus 로고
    • Buried and accessible surface area control intrinsic protein flexibility
    • Marsh JA. 2013. Buried and accessible surface area control intrinsic protein flexibility. J. Mol. Biol. 425:3250-63
    • (2013) J. Mol. Biol. , vol.425 , pp. 3250-3263
    • Marsh, J.A.1
  • 32
    • 35748959334 scopus 로고    scopus 로고
    • PiQSi: Protein quaternary structure investigation
    • Levy ED. 2007. PiQSi: protein quaternary structure investigation. Structure 15:1364-67
    • (2007) Structure , vol.15 , pp. 1364-1367
    • Levy, E.D.1
  • 33
    • 79958164854 scopus 로고    scopus 로고
    • A systematic study of the energetics involved in structural changes upon association and connectivity in protein interaction networks
    • Stein A, Rueda M, Panjkovich A, Orozco M, Aloy P. 2011. A systematic study of the energetics involved in structural changes upon association and connectivity in protein interaction networks. Structure 19:881-89
    • (2011) Structure , vol.19 , pp. 881-889
    • Stein, A.1    Rueda, M.2    Panjkovich, A.3    Orozco, M.4    Aloy, P.5
  • 34
    • 79958830325 scopus 로고    scopus 로고
    • Conformational changes of rBTI from buckwheat upon binding to trypsin: Implications for the role of the P8-3 residue in the potato inhibitor i family
    • Wang L, Zhao F, Li M, Zhang H, Gao Y, et al. 2011. Conformational changes of rBTI from buckwheat upon binding to trypsin: implications for the role of the P8- residue in the potato inhibitor I family. PLOS ONE 6:e20950
    • (2011) PLOS ONE , vol.6 , pp. e20950
    • Wang, L.1    Zhao, F.2    Li, M.3    Zhang, H.4    Gao, Y.5
  • 35
    • 37549018044 scopus 로고    scopus 로고
    • Functional flexibility of human cyclin-dependent kinase 2 and its evolutionary conservation
    • Bartova I, Koca J, Otyepka M. 2008. Functional flexibility of human cyclin-dependent kinase 2 and its evolutionary conservation. Protein Sci. 17:22-33
    • (2008) Protein Sci. , vol.17 , pp. 22-33
    • Bartova, I.1    Koca, J.2    Otyepka, M.3
  • 36
    • 33747359918 scopus 로고    scopus 로고
    • The role of the phospho- CDK2/cyclin A recruitment site in substrate recognition
    • Cheng K-Y, Noble MEM, Skamnaki V, Brown NR, Lowe ED, et al. 2006. The role of the phospho- CDK2/cyclin A recruitment site in substrate recognition. J. Biol. Chem. 281:23167-79
    • (2006) J. Biol. Chem. , vol.281 , pp. 23167-23179
    • Cheng, K.-Y.1    Mem, N.2    Skamnaki, V.3    Brown, N.R.4    Lowe, E.D.5
  • 37
    • 0032749078 scopus 로고    scopus 로고
    • Intrinsically unstructured proteins: Re-assessing the protein structure-function paradigm
    • Wright PE, Dyson HJ. 1999. Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J. Mol. Biol. 293:321-31
    • (1999) J. Mol. Biol. , vol.293 , pp. 321-331
    • Wright, P.E.1    Dyson, H.J.2
  • 38
    • 0036468397 scopus 로고    scopus 로고
    • Coupling of folding and binding for unstructured proteins
    • Dyson HJ, Wright PE. 2002. Coupling of folding and binding for unstructured proteins. Curr. Opin. Struct. Biol. 12:54-60
    • (2002) Curr. Opin. Struct. Biol. , vol.12 , pp. 54-60
    • Dyson, H.J.1    Wright, P.E.2
  • 39
    • 38149063767 scopus 로고    scopus 로고
    • Structural disorder promotes assembly of protein complexes
    • Hegyi H, Schad E, Tompa P. 2007. Structural disorder promotes assembly of protein complexes. BMC Struct. Biol. 7:65
    • (2007) BMC Struct. Biol. , vol.7 , pp. 65
    • Hegyi, H.1    Schad, E.2    Tompa, P.3
  • 40
    • 77956332835 scopus 로고    scopus 로고
    • Structural diversity in free and bound states of intrinsically disordered protein phosphatase 1 regulators
    • Marsh JA, Dancheck B, Ragusa MJ, Allaire M, Forman-Kay JD, Peti W. 2010. Structural diversity in free and bound states of intrinsically disordered protein phosphatase 1 regulators. Structure 18:1094-103
    • (2010) Structure , vol.18 , pp. 1094-1103
    • Marsh, J.A.1    Dancheck, B.2    Ragusa, M.J.3    Allaire, M.4    Forman-Kay, J.D.5    Peti, W.6
  • 43
    • 1842298212 scopus 로고    scopus 로고
    • From Levinthal to pathways to funnels
    • Dill KA, Chan HS. 1997. From Levinthal to pathways to funnels. Nat. Struct. Biol. 4:10-19
    • (1997) Nat. Struct. Biol. , vol.4 , pp. 10-19
    • Dill, K.A.1    Chan, H.S.2
  • 44
    • 34347228701 scopus 로고    scopus 로고
    • Determining the stoichiometry and interactions of macromolecular assemblies from mass spectrometry
    • Hernández H, Robinson CV. 2007. Determining the stoichiometry and interactions of macromolecular assemblies from mass spectrometry. Nat. Protoc. 2:715-26
    • (2007) Nat. Protoc. , vol.2 , pp. 715-726
    • Hernández, H.1    Robinson, C.V.2
  • 46
    • 84881418240 scopus 로고    scopus 로고
    • The role of salt bridges, charge density, and subunit flexibility in determining disassembly routes of protein complexes
    • Hall Z, Hernández H, Marsh JA, Teichmann SA, Robinson CV. 2013. The role of salt bridges, charge density, and subunit flexibility in determining disassembly routes of protein complexes. Structure 21:1325-37
    • (2013) Structure , vol.21 , pp. 1325-1337
    • Hall, Z.1    Hernández, H.2    Marsh, J.A.3    Teichmann, S.A.4    Robinson, C.V.5
  • 48
    • 84865788284 scopus 로고    scopus 로고
    • Structural modeling of heteromeric protein complexes from disassembly pathways and ion mobility-mass spectrometry
    • Hall Z, Politis A, Robinson CV. 2012. Structural modeling of heteromeric protein complexes from disassembly pathways and ion mobility-mass spectrometry. Structure 20:1596-609
    • (2012) Structure , vol.20 , pp. 1596-1609
    • Hall, Z.1    Politis, A.2    Robinson, C.V.3
  • 49
    • 84876272531 scopus 로고    scopus 로고
    • Protein complexes are under evolutionary selection to assemble via ordered pathways
    • Marsh JA, Hernández H, Hall Z, Ahnert S, Perica T, et al. 2013. Protein complexes are under evolutionary selection to assemble via ordered pathways. Cell 153:461-70
    • (2013) Cell , vol.153 , pp. 461-470
    • Marsh, J.A.1    Hernández, H.2    Hall, Z.3    Ahnert, S.4    Perica, T.5
  • 50
    • 28444479853 scopus 로고    scopus 로고
    • An assembly landscape for the 30S ribosomal subunit
    • Talkington MWT, Siuzdak G, Williamson JR. 2005. An assembly landscape for the 30S ribosomal subunit. Nature 438:628-32
    • (2005) Nature , vol.438 , pp. 628-632
    • Mwt, T.1    Siuzdak, G.2    Williamson, J.R.3
  • 51
    • 0036721253 scopus 로고    scopus 로고
    • Stability of macromolecular complexes
    • Brooijmans N, Sharp KA, Kuntz ID. 2002. Stability of macromolecular complexes. Proteins 48:645-53
    • (2002) Proteins , vol.48 , pp. 645-653
    • Brooijmans, N.1    Sharp, K.A.2    Kuntz, I.D.3
  • 52
    • 84892442038 scopus 로고    scopus 로고
    • Parallel dynamics and evolution: Protein conformational fluctuations and assembly reflect evolutionary changes in sequence and structure
    • Marsh JA, Teichmann SA. 2014. Parallel dynamics and evolution: protein conformational fluctuations and assembly reflect evolutionary changes in sequence and structure. BioEssays 36:209-18
    • (2014) BioEssays , vol.36 , pp. 209-218
    • Marsh, J.A.1    Teichmann, S.A.2
  • 53
    • 76649114676 scopus 로고    scopus 로고
    • Protein dynamics and conformational disorder in molecular recognition
    • Mittag T, Kay LE, Forman-Kay JD. 2010. Protein dynamics and conformational disorder in molecular recognition. J. Mol. Recognit. 23:105-16
    • (2010) J. Mol. Recognit. , vol.23 , pp. 105-116
    • Mittag, T.1    Kay, L.E.2    Forman-Kay, J.D.3
  • 54
    • 37749053887 scopus 로고    scopus 로고
    • Fuzzy complexes: Polymorphism and structural disorder in protein-protein interactions
    • Tompa P, Fuxreiter M. 2008. Fuzzy complexes: polymorphism and structural disorder in protein-protein interactions. Trends Biochem. Sci. 33:2-8
    • (2008) Trends Biochem. Sci. , vol.33 , pp. 2-8
    • Tompa, P.1    Fuxreiter, M.2
  • 56
    • 0032489015 scopus 로고    scopus 로고
    • The cell as a collection of protein machines: Preparing the next generation of molecular biologists
    • Alberts B. 1998. The cell as a collection of protein machines: preparing the next generation of molecular biologists. Cell 92:291-94
    • (1998) Cell , vol.92 , pp. 291-294
    • Alberts, B.1
  • 57
    • 0033607504 scopus 로고    scopus 로고
    • Molecular architecture of the rotary motor in ATP synthase
    • Stock D, Leslie AG, Walker JE. 1999. Molecular architecture of the rotary motor in ATP synthase. Science 286:1700-5
    • (1999) Science , vol.286 , pp. 1700-1705
    • Stock, D.1    Leslie, A.G.2    Walker, J.E.3
  • 58
    • 0032478545 scopus 로고    scopus 로고
    • Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT
    • Ditzel L, Löwe J, Stock D, Stetter KO, Huber H, et al. 1998. Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT. Cell 93:125-38
    • (1998) Cell , vol.93 , pp. 125-138
    • Ditzel, L.1    Löwe, J.2    Stock, D.3    Stetter, K.O.4    Huber, H.5
  • 59
    • 0035827346 scopus 로고    scopus 로고
    • Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution
    • Cramer P, Bushnell DA, Kornberg RD. 2001. Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution. Science 292:1863-76
    • (2001) Science , vol.292 , pp. 1863-1876
    • Cramer, P.1    Bushnell, D.A.2    Kornberg, R.D.3
  • 60
    • 2542428546 scopus 로고    scopus 로고
    • Structure and mechanism of the RNA polymerase II transcription machinery
    • Hahn S. 2004. Structure and mechanism of the RNA polymerase II transcription machinery. Nat. Struct. Mol. Biol. 11:394-403
    • (2004) Nat. Struct. Mol. Biol. , vol.11 , pp. 394-403
    • Hahn, S.1
  • 61
    • 34548304719 scopus 로고    scopus 로고
    • Solution NMR of supramolecular complexes: Providing new insights into function
    • Sprangers R, Velyvis A, Kay LE. 2007. Solution NMR of supramolecular complexes: providing new insights into function. Nat. Methods 4:697-703
    • (2007) Nat. Methods , vol.4 , pp. 697-703
    • Sprangers, R.1    Velyvis, A.2    Kay, L.E.3
  • 62
    • 33846928691 scopus 로고    scopus 로고
    • Quantitative dynamics and binding studies of the 20S proteasome by NMR
    • Sprangers R, Kay LE. 2007. Quantitative dynamics and binding studies of the 20S proteasome by NMR. Nature 445:618-22
    • (2007) Nature , vol.445 , pp. 618-622
    • Sprangers, R.1    Kay, L.E.2
  • 63
    • 77950497745 scopus 로고    scopus 로고
    • Dynamic regulation of archaeal proteasome gate opening as studied by TROSY NMR
    • Religa TL, Sprangers R, Kay LE. 2010. Dynamic regulation of archaeal proteasome gate opening as studied by TROSY NMR. Science 328:98-102
    • (2010) Science , vol.328 , pp. 98-102
    • Religa, T.L.1    Sprangers, R.2    Kay, L.E.3
  • 64
    • 84898821640 scopus 로고    scopus 로고
    • Understanding the mechanism of proteasome 20S core particle gating
    • Latham MP, Sekhar A, Kay LE. 2014. Understanding the mechanism of proteasome 20S core particle gating. PNAS 111:5532-37
    • (2014) PNAS , vol.111 , pp. 5532-5537
    • Latham, M.P.1    Sekhar, A.2    Kay, L.E.3
  • 65
    • 84882260795 scopus 로고    scopus 로고
    • The archaeal exosome: Identification and quantification of site-specific motions that correlate with cap and RNA binding
    • Audin MJC, Dorn G, Fromm SA, Reiss K, Schütz S, et al. 2013. The archaeal exosome: identification and quantification of site-specific motions that correlate with cap and RNA binding. Angew. Chem. Int. Ed. Engl. 52:8312-16
    • (2013) Angew. Chem. Int. Ed. Engl. , vol.52 , pp. 8312-8316
    • Mjc, A.1    Dorn, G.2    Fromm, S.A.3    Reiss, K.4    Schütz, S.5
  • 66
    • 84890856588 scopus 로고    scopus 로고
    • The cytoplasmic domain of the T-cell receptor ζ subunit does not form disordered dimers
    • Nourse A, Mittag T. 2014. The cytoplasmic domain of the T-cell receptor ζ subunit does not form disordered dimers. J. Mol. Biol. 426:62-70
    • (2014) J. Mol. Biol. , vol.426 , pp. 62-70
    • Nourse, A.1    Mittag, T.2
  • 67
    • 44449116120 scopus 로고    scopus 로고
    • Structure of tumor suppressor p53 and its intrinsically disordered N-terminal transactivation domain
    • Wells M, Tidow H, Rutherford TJ, Markwick P, Jensen MR, et al. 2008. Structure of tumor suppressor p53 and its intrinsically disordered N-terminal transactivation domain. PNAS 105:5762-67
    • (2008) PNAS , vol.105 , pp. 5762-5767
    • Wells, M.1    Tidow, H.2    Rutherford, T.J.3    Markwick, P.4    Jensen, M.R.5
  • 68
    • 77951631601 scopus 로고    scopus 로고
    • Structure/function implications in a dynamic complex of the intrinsically disordered SIC1 with theCDC4 subunit of an SCF ubiquitin ligase
    • Mittag T, Marsh J, Grishaev A, Orlicky S, Lin H, et al. 2010. Structure/function implications in a dynamic complex of the intrinsically disordered SIC1 with theCDC4 subunit of an SCF ubiquitin ligase. Structure 18:494-506
    • (2010) Structure , vol.18 , pp. 494-506
    • Mittag, T.1    Marsh, J.2    Grishaev, A.3    Orlicky, S.4    Lin, H.5
  • 69
    • 84888085224 scopus 로고    scopus 로고
    • Regulatory R region of the CFTR chloride channel is a dynamic integrator of phospho-dependent intra- and intermolecular interactions
    • Bozoky Z, Krzeminski M, Muhandiram R, Birtley JR, Al-Zahrani A, et al. 2013. Regulatory R region of the CFTR chloride channel is a dynamic integrator of phospho-dependent intra- and intermolecular interactions. PNAS 110:e4427-36
    • (2013) PNAS , vol.110 , pp. e4427-e4436
    • Bozoky, Z.1    Krzeminski, M.2    Muhandiram, R.3    Birtley, J.R.4    Al-Zahrani, A.5
  • 70
    • 34547652267 scopus 로고    scopus 로고
    • CFTR regulatory region interacts with NBD1 predominantly via multiple transient helices
    • Baker JMR, Hudson RP, Kanelis V, Choy W-Y, Thibodeau PH, et al. 2007. CFTR regulatory region interacts with NBD1 predominantly via multiple transient helices. Nat. Struct. Mol. Biol. 14:738-45
    • (2007) Nat. Struct. Mol. Biol. , vol.14 , pp. 738-745
    • Jmr, B.1    Hudson, R.P.2    Kanelis, V.3    Choy, W.-Y.4    Thibodeau, P.H.5
  • 71
    • 0034622521 scopus 로고    scopus 로고
    • Oligomeric states of the HIV-1 integrase as measured by time-resolved fluorescence anisotropy
    • Deprez E, Tauc P, Leh H, Mouscadet JF, Auclair C, Brochon JC. 2000. Oligomeric states of the HIV-1 integrase as measured by time-resolved fluorescence anisotropy. Biochemistry 39:9275-84
    • (2000) Biochemistry , vol.39 , pp. 9275-9284
    • Deprez, E.1    Tauc, P.2    Leh, H.3    Mouscadet, J.F.4    Auclair, C.5    Brochon, J.C.6
  • 72
    • 23944437104 scopus 로고    scopus 로고
    • Morpheeins - A new structural paradigm for allosteric regulation
    • Jaffe EK. 2005. Morpheeins-a new structural paradigm for allosteric regulation. Trends Biochem. Sci. 30:490-97
    • (2005) Trends Biochem. Sci. , vol.30 , pp. 490-497
    • Jaffe, E.K.1
  • 73
    • 77950867698 scopus 로고    scopus 로고
    • The subunit interfaces of weakly associated homodimeric proteins
    • Dey S, Pal A, Chakrabarti P, Janin J. 2010. The subunit interfaces of weakly associated homodimeric proteins. J. Mol. Biol. 398:146-60
    • (2010) J. Mol. Biol. , vol.398 , pp. 146-160
    • Dey, S.1    Pal, A.2    Chakrabarti, P.3    Janin, J.4
  • 74
    • 0032549677 scopus 로고    scopus 로고
    • The small heat-shock protein, αb-crystallin, has a variable quaternary structure
    • Haley DA, Horwitz J, Stewart PL. 1998. The small heat-shock protein, αB-crystallin, has a variable quaternary structure. J. Mol. Biol. 277:27-35
    • (1998) J. Mol. Biol. , vol.277 , pp. 27-35
    • Haley, D.A.1    Horwitz, J.2    Stewart, P.L.3
  • 75
    • 0141703310 scopus 로고    scopus 로고
    • Polydispersity of amammalian chaperone: Mass spectrometry reveals the population of oligomers inαB-crystallin
    • Aquilina JA, Benesch JLP, Bateman OA, Slingsby C, Robinson CV. 2003. Polydispersity of amammalian chaperone: Mass spectrometry reveals the population of oligomers inαB-crystallin. PNAS 100:10611-16
    • (2003) PNAS , vol.100 , pp. 10611-10616
    • Aquilina, J.A.1    Jlp, B.2    Bateman, O.A.3    Slingsby, C.4    Robinson, C.V.5
  • 76
    • 76649084269 scopus 로고    scopus 로고
    • Quaternary dynamics and plasticity underlie small heat shock protein chaperone function
    • Stengel F, Baldwin AJ, Painter AJ, Jaya N, Basha E, et al. 2010. Quaternary dynamics and plasticity underlie small heat shock protein chaperone function. PNAS 107:2007-12
    • (2010) PNAS , vol.107 , pp. 2007-2012
    • Stengel, F.1    Baldwin, A.J.2    Painter, A.J.3    Jaya, N.4    Basha, E.5
  • 77
    • 84861450634 scopus 로고    scopus 로고
    • Evolution of oligomeric state through geometric coupling of protein interfaces
    • Perica T, Chothia C, Teichmann SA. 2012. Evolution of oligomeric state through geometric coupling of protein interfaces. PNAS 109:8127-32
    • (2012) PNAS , vol.109 , pp. 8127-8132
    • Perica, T.1    Chothia, C.2    Teichmann, S.A.3
  • 78
    • 33749337098 scopus 로고    scopus 로고
    • The many faces of protein-protein interactions: A compendium of interface geometry
    • Kim WK, Henschel A, Winter C, Schroeder M. 2006. The many faces of protein-protein interactions: a compendium of interface geometry. PLOS Comput. Biol. 2:e124
    • (2006) PLOS Comput. Biol. , vol.2 , pp. e124
    • Kim, W.K.1    Henschel, A.2    Winter, C.3    Schroeder, M.4
  • 80
    • 14144250670 scopus 로고    scopus 로고
    • Structure of the thermolabile mutant aldolase B, A149P: Molecular basis of hereditary fructose intolerance
    • Malay AD, Allen KN, Tolan DR. 2005. Structure of the thermolabile mutant aldolase B, A149P: molecular basis of hereditary fructose intolerance. J. Mol. Biol. 347:135-44
    • (2005) J. Mol. Biol. , vol.347 , pp. 135-144
    • Malay, A.D.1    Allen, K.N.2    Tolan, D.R.3
  • 81
    • 77951243441 scopus 로고    scopus 로고
    • Amino acid substitutions at protein-protein interfaces that modulate the oligomeric state
    • Nishi H, Ota M. 2010. Amino acid substitutions at protein-protein interfaces that modulate the oligomeric state. Proteins 78:1563-74
    • (2010) Proteins , vol.78 , pp. 1563-1574
    • Nishi, H.1    Ota, M.2
  • 82
  • 83
    • 84862793055 scopus 로고    scopus 로고
    • Three-dimensional domain swapping in the protein structure space
    • Huang Y, Cao H, Liu Z. 2012. Three-dimensional domain swapping in the protein structure space. Proteins 80:1610-19
    • (2012) Proteins , vol.80 , pp. 1610-1619
    • Huang, Y.1    Cao, H.2    Liu, Z.3
  • 84
    • 84875901122 scopus 로고    scopus 로고
    • Intertwined associations in structures of homooligomeric proteins
    • Mackinnon SS, Malevanets A, Wodak SJ. 2013. Intertwined associations in structures of homooligomeric proteins. Structure 21:638-49
    • (2013) Structure , vol.21 , pp. 638-649
    • Mackinnon, S.S.1    Malevanets, A.2    Wodak, S.J.3
  • 85
    • 51649094321 scopus 로고    scopus 로고
    • Built-in loops allow versatility in domain-domain interactions: Lessons from self-interacting domains
    • Akiva E, Itzhaki Z, Margalit H. 2008. Built-in loops allow versatility in domain-domain interactions: lessons from self-interacting domains. PNAS 105:13292-97
    • (2008) PNAS , vol.105 , pp. 13292-13297
    • Akiva, E.1    Itzhaki, Z.2    Margalit, H.3
  • 86
    • 78650537920 scopus 로고    scopus 로고
    • Mechanisms of protein oligomerization, the critical role of insertions and deletions in maintaining different oligomeric states
    • Hashimoto K, Panchenko AR. 2010. Mechanisms of protein oligomerization, the critical role of insertions and deletions in maintaining different oligomeric states. PNAS 107:20352-57
    • (2010) PNAS , vol.107 , pp. 20352-20357
    • Hashimoto, K.1    Panchenko, A.R.2
  • 87
    • 77953081364 scopus 로고    scopus 로고
    • Functional states of homooligomers: Insights from the evolution of glycosyltransferases
    • Hashimoto K, Madej T, Bryant SH, Panchenko AR. 2010. Functional states of homooligomers: insights from the evolution of glycosyltransferases. J. Mol. Biol. 399:196-206
    • (2010) J. Mol. Biol. , vol.399 , pp. 196-206
    • Hashimoto, K.1    Madej, T.2    Bryant, S.H.3    Panchenko, A.R.4
  • 88
    • 79960090510 scopus 로고    scopus 로고
    • Cover and spacer insertions: Small nonhydrophobic accessories that assist protein oligomerization
    • Nishi H, Koike R, Ota M. 2011. Cover and spacer insertions: small nonhydrophobic accessories that assist protein oligomerization. Proteins 79:2372-79
    • (2011) Proteins , vol.79 , pp. 2372-2379
    • Nishi, H.1    Koike, R.2    Ota, M.3
  • 89
    • 0033598189 scopus 로고    scopus 로고
    • Recurrent paralogy in the evolution of archaeal chaperonins
    • Archibald JM, Logsdon JM Jr, Doolittle WF. 1999. Recurrent paralogy in the evolution of archaeal chaperonins. Curr. Biol. 9:1053-56
    • (1999) Curr. Biol. , vol.9 , pp. 1053-1056
    • Archibald, J.M.1    Logsdon, J.M.2    Doolittle, W.F.3
  • 90
    • 0033800261 scopus 로고    scopus 로고
    • Origin and evolution of eukaryotic chaperonins: Phylogenetic evidence for ancient duplications in CCT genes
    • Archibald JM, Logsdon JM Jr, Doolittle WF. 2000. Origin and evolution of eukaryotic chaperonins: phylogenetic evidence for ancient duplications in CCT genes. Mol. Biol. Evol. 17:1456-66
    • (2000) Mol. Biol. Evol. , vol.17 , pp. 1456-1466
    • Archibald, J.M.1    Logsdon, J.M.2    Doolittle, W.F.3
  • 91
    • 21244464335 scopus 로고    scopus 로고
    • Binding properties and evolution of homodimers in protein-protein interaction networks
    • Ispolatov I, Yuryev A, Mazo I, Maslov S. 2005. Binding properties and evolution of homodimers in protein-protein interaction networks. Nucleic Acids Res. 33:3629-35
    • (2005) Nucleic Acids Res. , vol.33 , pp. 3629-3635
    • Ispolatov, I.1    Yuryev, A.2    Mazo, I.3    Maslov, S.4
  • 92
    • 34848913963 scopus 로고    scopus 로고
    • Evolution of protein complexes by duplication of homomeric interactions
    • Pereira-Leal JB, Levy ED, Kamp C, Teichmann SA. 2007. Evolution of protein complexes by duplication of homomeric interactions. Genome Biol. 8:R51
    • (2007) Genome Biol. , vol.8 , pp. R51
    • Pereira-Leal, J.B.1    Levy, E.D.2    Kamp, C.3    Teichmann, S.A.4
  • 93
    • 77949902801 scopus 로고    scopus 로고
    • Comparative evolutionary analysis of protein complexes in E. Coli and yeast
    • Reid AJ, Ranea JA, Orengo CA. 2010. Comparative evolutionary analysis of protein complexes in E. Coli and yeast. BMC Genomics 11:79
    • (2010) BMC Genomics , vol.11 , pp. 79
    • Reid, A.J.1    Ranea, J.A.2    Orengo, C.A.3
  • 94
    • 17444385984 scopus 로고    scopus 로고
    • Tracing the evolution of a large protein complex in the eukaryotes, NADH:ubiquinone oxidoreductase (complex I)
    • Gabald ón T, Rainey D, Huynen MA. 2005. Tracing the evolution of a large protein complex in the eukaryotes, NADH:ubiquinone oxidoreductase (complex I). J. Mol. Biol. 348:857-70
    • (2005) J. Mol. Biol. , vol.348 , pp. 857-870
    • Gabaldón, T.1    Rainey, D.2    Huynen, M.A.3
  • 95
    • 33644862361 scopus 로고    scopus 로고
    • Stepwise evolution of the sec machinery in Proteobacteria
    • Van der Sluis EO, Driessen AJM. 2006. Stepwise evolution of the sec machinery in Proteobacteria. Trends Microbiol. 14:105-8
    • (2006) Trends Microbiol. , vol.14 , pp. 105-108
    • Van Der Sluis, E.O.1    Driessen, A.J.M.2
  • 96
    • 0034782745 scopus 로고    scopus 로고
    • Complex I: A chimaera of a redox and conformation-driven proton pump?
    • Friedrich T. 2001. Complex I: a chimaera of a redox and conformation-driven proton pump? J. Bioenerg. Biomembr. 33:169-77
    • (2001) J. Bioenerg. Biomembr. , vol.33 , pp. 169-177
    • Friedrich, T.1
  • 97
    • 0041563699 scopus 로고    scopus 로고
    • The "antiporter module" of respiratory chain complex i includes the MRPC/NUOK subunit - A revision of the modular evolution scheme
    • Mathiesen C, Hägerhäll C. 2003. The "antiporter module" of respiratory chain complex I includes the MRPC/NUOK subunit-a revision of the modular evolution scheme. FEBS Lett. 549:7-13
    • (2003) FEBS Lett. , vol.549 , pp. 7-13
    • Mathiesen, C.1    Hägerhäll, C.2
  • 98
    • 0035211290 scopus 로고    scopus 로고
    • Identification of potential interaction networks using sequence-based searches for conserved protein-protein interactions or "interologs"
    • Matthews LR, Vaglio P, Reboul J, Ge H, Davis BP, et al. 2001. Identification of potential interaction networks using sequence-based searches for conserved protein-protein interactions or "interologs." Genome Res. 11:2120-26
    • (2001) Genome Res. , vol.11 , pp. 2120-2126
    • Matthews, L.R.1    Vaglio, P.2    Reboul, J.3    Ge, H.4    Davis, B.P.5
  • 99
    • 0042386609 scopus 로고    scopus 로고
    • The relationship between sequence and interaction divergence in proteins
    • Aloy P, Ceulemans H, Stark A, Russell RB. 2003. The relationship between sequence and interaction divergence in proteins. J. Mol. Biol. 332:989-98
    • (2003) J. Mol. Biol. , vol.332 , pp. 989-998
    • Aloy, P.1    Ceulemans, H.2    Stark, A.3    Russell, R.B.4
  • 100
    • 3042569597 scopus 로고    scopus 로고
    • Annotation transfer between genomes: Protein-protein interologs and protein-DNA regulogs
    • Yu H, Luscombe NM, Lu HX, Zhu X, Xia Y, et al. 2004. Annotation transfer between genomes: protein-protein interologs and protein-DNA regulogs. Genome Res. 14:1107-18
    • (2004) Genome Res. , vol.14 , pp. 1107-1118
    • Yu, H.1    Luscombe, N.M.2    Lu, H.X.3    Zhu, X.4    Xia, Y.5
  • 101
    • 33847249901 scopus 로고    scopus 로고
    • Specificity and evolvability in eukaryotic protein interaction networks
    • Beltrao P, Serrano L. 2007. Specificity and evolvability in eukaryotic protein interaction networks. PLOS Comput. Biol. 3:e25
    • (2007) PLOS Comput. Biol. , vol.3 , pp. e25
    • Beltrao, P.1    Serrano, L.2
  • 102
    • 84866928522 scopus 로고    scopus 로고
    • What evidence is there for the homology of protein-protein interactions?
    • Lewis ACF, Jones NS, Porter MA, Deane CM. 2012. What evidence is there for the homology of protein-protein interactions? PLOS Comput. Biol. 8:e1002645
    • (2012) PLOS Comput. Biol. , vol.8 , pp. e1002645
    • Acf, L.1    Jones, N.S.2    Porter, M.A.3    Deane, C.M.4
  • 103
    • 84902077293 scopus 로고    scopus 로고
    • Evolution of protein interactions: From interactomes to interfaces
    • Andreani J, Guerois R. 2014. Evolution of protein interactions: from interactomes to interfaces. Arch. Biochem. Biophys. 554:65-75
    • (2014) Arch. Biochem. Biophys. , vol.554 , pp. 65-75
    • Andreani, J.1    Guerois, R.2
  • 104
    • 48249124644 scopus 로고    scopus 로고
    • Protein complex evolution does not involve extensive network rewiring
    • Van Dam TJP, Snel B. 2008. Protein complex evolution does not involve extensive network rewiring. PLOS Comput. Biol. 4:e1000132
    • (2008) PLOS Comput. Biol. , vol.4 , pp. e1000132
    • Van Dam Tjp1    Snel, B.2
  • 106
    • 33745611416 scopus 로고    scopus 로고
    • Gene fusion/fission is a major contributor to evolution of multidomain bacterial proteins
    • Pasek S, Risler J-L, Brézellec P. 2006. Gene fusion/fission is a major contributor to evolution of multidomain bacterial proteins. Bioinformatics 22:1418-23
    • (2006) Bioinformatics , vol.22 , pp. 1418-1423
    • Pasek, S.1    Risler, J.-L.2    Brézellec, P.3
  • 107
    • 84155175837 scopus 로고    scopus 로고
    • Quantifying themechanisms of domain gain in animal proteins
    • Buljan M, Frankish A, Bateman A. 2010. Quantifying themechanisms of domain gain in animal proteins. Genome Biol. 11:R74
    • (2010) Genome Biol. , vol.11 , pp. R74
    • Buljan, M.1    Frankish, A.2    Bateman, A.3
  • 108
    • 77958156358 scopus 로고    scopus 로고
    • How do proteins gain new domains?
    • Marsh JA, Teichmann SA. 2010. How do proteins gain new domains? Genome Biol. 11:126
    • (2010) Genome Biol. , vol.11 , pp. 126
    • Marsh, J.A.1    Teichmann, S.A.2
  • 110
    • 0033523989 scopus 로고    scopus 로고
    • Protein interaction maps for complete genomes based on gene fusion events
    • Enright AJ, Iliopoulos I, Kyrpides NC, Ouzounis CA. 1999. Protein interaction maps for complete genomes based on gene fusion events. Nature 402:86-90
    • (1999) Nature , vol.402 , pp. 86-90
    • Enright, A.J.1    Iliopoulos, I.2    Kyrpides, N.C.3    Ouzounis, C.A.4
  • 111
    • 13144259695 scopus 로고    scopus 로고
    • Relative rates of gene fusion and fission in multi-domain proteins
    • Kummerfeld SK, Teichmann SA. 2005. Relative rates of gene fusion and fission in multi-domain proteins. Trends Genet. 21:25-30
    • (2005) Trends Genet. , vol.21 , pp. 25-30
    • Kummerfeld, S.K.1    Teichmann, S.A.2
  • 112
    • 33846266906 scopus 로고    scopus 로고
    • Modeling the evolution of protein domain architectures using maximum parsimony
    • Fong JH, Geer LY, Panchenko AR, Bryant SH. 2007. Modeling the evolution of protein domain architectures using maximum parsimony. J. Mol. Biol. 366:307-15
    • (2007) J. Mol. Biol. , vol.366 , pp. 307-315
    • Fong, J.H.1    Geer, L.Y.2    Panchenko, A.R.3    Bryant, S.H.4
  • 113
    • 1842452651 scopus 로고    scopus 로고
    • The crystal structure of three site-directed mutants of Escherichia coli dihydrodipicolinate synthase: Further evidence for a catalytic triad
    • Dobson RCJ, Valegard K, Gerrard JA. 2004. The crystal structure of three site-directed mutants of Escherichia coli dihydrodipicolinate synthase: further evidence for a catalytic triad. J. Mol. Biol. 338:329-39
    • (2004) J. Mol. Biol. , vol.338 , pp. 329-339
    • Rcj, D.1    Valegard, K.2    Gerrard, J.A.3
  • 114
    • 0024555898 scopus 로고
    • Three-dimensional structure of aspartyl protease from human immunodeficiency virus HIV-1
    • Navia MA, Fitzgerald PMD, McKeever BM, Leu C-T, Heimbach JC, et al. 1989. Three-dimensional structure of aspartyl protease from human immunodeficiency virus HIV-1. Nature 337:615-20
    • (1989) Nature , vol.337 , pp. 615-620
    • Navia, M.A.1    Pmd, F.2    McKeever, B.M.3    Leu, C.-T.4    Heimbach, J.C.5
  • 115
    • 0028838012 scopus 로고
    • Dimerization of cell surface receptors in signal transduction
    • Heldin C-H. 1995. Dimerization of cell surface receptors in signal transduction. Cell 80:213-23
    • (1995) Cell , vol.80 , pp. 213-223
    • Heldin, C.-H.1
  • 116
    • 0026332810 scopus 로고
    • Dimerization of the extracellular domain of the human growth hormone receptor by a single hormone molecule
    • Cunningham BC, Ultsch M, Vos AD, Mulkerrin MG, Clauser KR, Wells JA. 1991. Dimerization of the extracellular domain of the human growth hormone receptor by a single hormone molecule. Science 254:821-25
    • (1991) Science , vol.254 , pp. 821-825
    • Cunningham, B.C.1    Ultsch, M.2    Vos, A.D.3    Mulkerrin, M.G.4    Clauser, K.R.5    Wells, J.A.6
  • 117
    • 6344219895 scopus 로고    scopus 로고
    • Is allostery an intrinsic property of all dynamic proteins?
    • Gunasekaran K, Ma B, Nussinov R. 2004. Is allostery an intrinsic property of all dynamic proteins? Proteins 57:433-43
    • (2004) Proteins , vol.57 , pp. 433-443
    • Gunasekaran, K.1    Ma, B.2    Nussinov, R.3
  • 118
    • 78651189765 scopus 로고
    • On the nature of allosteric transitions: A plausible model
    • Monod J, Wyman J, Changeux J-P. 1965. On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12:88-118
    • (1965) J. Mol. Biol. , vol.12 , pp. 88-118
    • Monod, J.1    Wyman, J.2    Changeux, J.-P.3
  • 119
    • 0013863816 scopus 로고
    • Comparison of experimental binding data and theoretical models in proteins containing subunits
    • Koshland DE, Némethy G, Filmer D. 1966. Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry 5:365-85
    • (1966) Biochemistry , vol.5 , pp. 365-385
    • Koshland, D.E.1    Némethy, G.2    Filmer, D.3
  • 120
    • 36949077319 scopus 로고
    • Structure of small viruses
    • Crick FHC, Watson JD. 1956. Structure of small viruses. Nature 177:473-75
    • (1956) Nature , vol.177 , pp. 473-475
    • Fhc, C.1    Watson, J.D.2
  • 121
    • 84859476261 scopus 로고    scopus 로고
    • Soluble oligomerization provides a beneficial fitness effect on destabilizing mutations
    • Bershtein S, Mu W, Wu W, Shakhnovich EI. 2012. Soluble oligomerization provides a beneficial fitness effect on destabilizing mutations. PNAS 109:4857-62
    • (2012) PNAS , vol.109 , pp. 4857-4862
    • Bershtein, S.1    Mu, W.2    Wu, W.3    Shakhnovich, E.I.4
  • 122
    • 84859473329 scopus 로고    scopus 로고
    • Protein misinteraction avoidance causes highly expressed proteins to evolve slowly
    • Yang J-R, Liao B-Y, Zhuang S-M, Zhang J. 2012. Protein misinteraction avoidance causes highly expressed proteins to evolve slowly. PNAS 109:e831-40
    • (2012) PNAS , vol.109 , pp. e831-e840
    • Yang, J.-R.1    Liao, B.-Y.2    Zhuang, S.-M.3    Zhang, J.4
  • 123
    • 84880659609 scopus 로고    scopus 로고
    • Evolutionary diversification of the multimeric states of proteins
    • Lynch M. 2013. Evolutionary diversification of the multimeric states of proteins. PNAS 110:e2821-28
    • (2013) PNAS , vol.110 , pp. e2821-e2828
    • Lynch, M.1
  • 124
    • 84862839039 scopus 로고    scopus 로고
    • The evolution of multimeric protein assemblages
    • Lynch M. 2012. The evolution of multimeric protein assemblages. Mol. Biol. Evol. 29:1353-66
    • (2012) Mol. Biol. Evol. , vol.29 , pp. 1353-1366
    • Lynch, M.1
  • 126
    • 55849144771 scopus 로고    scopus 로고
    • Emergence of symmetry in homooligomeric biological assemblies
    • André I, Strauss CEM, Kaplan DB, Bradley P, Baker D. 2008. Emergence of symmetry in homooligomeric biological assemblies. PNAS 105:16148-52
    • (2008) PNAS , vol.105 , pp. 16148-16152
    • André, I.1    Cem, S.2    Kaplan, D.B.3    Bradley, P.4    Baker, D.5
  • 128
    • 84901355639 scopus 로고    scopus 로고
    • The amyloid state and its association with protein misfolding diseases
    • Knowles TPJ, Vendruscolo M, Dobson CM. 2014. The amyloid state and its association with protein misfolding diseases. Nat. Rev. Mol. Cell Biol. 15:384-96
    • (2014) Nat. Rev. Mol. Cell Biol. , vol.15 , pp. 384-396
    • Tpj, K.1    Vendruscolo, M.2    Dobson, C.M.3
  • 129
    • 34548056793 scopus 로고    scopus 로고
    • Testing the neutral fixation of hetero-oligomerism in the archaeal chaperonin CCT
    • Ruano-Rubio V, Fares MA. 2007. Testing the neutral fixation of hetero-oligomerism in the archaeal chaperonin CCT. Mol. Biol. Evol. 24:1384-96
    • (2007) Mol. Biol. Evol. , vol.24 , pp. 1384-1396
    • Ruano-Rubio, V.1    Fares, M.A.2
  • 130
    • 84856001089 scopus 로고    scopus 로고
    • Evolutionary biology: A ratchet for protein complexity
    • Doolittle WF. 2012. Evolutionary biology: a ratchet for protein complexity. Nature 481:270-71
    • (2012) Nature , vol.481 , pp. 270-271
    • Doolittle, W.F.1
  • 132
    • 34547396004 scopus 로고    scopus 로고
    • The frailty of adaptive hypotheses for the origins of organismal complexity
    • Lynch M. 2007. The frailty of adaptive hypotheses for the origins of organismal complexity. PNAS 104(Suppl. 1):8597-604
    • (2007) PNAS , vol.104 , pp. 8597-8604
    • Lynch, M.1
  • 133
    • 79959543603 scopus 로고    scopus 로고
    • Non-adaptive origins of interactome complexity
    • Fernández A, Lynch M. 2011. Non-adaptive origins of interactome complexity. Nature 474:502-5
    • (2011) Nature , vol.474 , pp. 502-505
    • Fernández, A.1    Lynch, M.2
  • 134
    • 48749103296 scopus 로고    scopus 로고
    • Integrating diverse data for structure determination of macromolecular assemblies
    • Alber F, Förster F, Korkin D, Topf M, Sali A. 2008. Integrating diverse data for structure determination of macromolecular assemblies. Annu. Rev. Biochem. 77:443-77
    • (2008) Annu. Rev. Biochem. , vol.77 , pp. 443-477
    • Alber, F.1    Förster, F.2    Korkin, D.3    Topf, M.4    Sali, A.5
  • 135
    • 37249065351 scopus 로고    scopus 로고
    • The molecular sociology of the cell
    • Robinson CV, Sali A, Baumeister W. 2007. The molecular sociology of the cell. Nature 450:973-82
    • (2007) Nature , vol.450 , pp. 973-982
    • Robinson, C.V.1    Sali, A.2    Baumeister, W.3
  • 136
    • 79960164372 scopus 로고    scopus 로고
    • Protein-protein complex structure predictions by multimeric threading and template recombination
    • Mukherjee S, Zhang Y. 2011. Protein-protein complex structure predictions by multimeric threading and template recombination. Structure 19:955-66
    • (2011) Structure , vol.19 , pp. 955-966
    • Mukherjee, S.1    Zhang, Y.2
  • 137
    • 79953071469 scopus 로고    scopus 로고
    • Three-dimensional modeling of protein interactions and complexes is going 'omics
    • Stein A, Mosca R, Aloy P. 2011. Three-dimensional modeling of protein interactions and complexes is going 'omics. Curr. Opin. Struct. Biol. 21:200-8
    • (2011) Curr. Opin. Struct. Biol. , vol.21 , pp. 200-208
    • Stein, A.1    Mosca, R.2    Aloy, P.3
  • 138
    • 84862233055 scopus 로고    scopus 로고
    • Templates are available to model nearly all complexes of structurally characterized proteins
    • Kundrotas PJ, Zhu Z, Janin J, Vakser IA. 2012. Templates are available to model nearly all complexes of structurally characterized proteins. PNAS 109:9438-41
    • (2012) PNAS , vol.109 , pp. 9438-9441
    • Kundrotas, P.J.1    Zhu, Z.2    Janin, J.3    Vakser, I.A.4
  • 139
    • 84871967106 scopus 로고    scopus 로고
    • Interactome3D: Adding structural details to protein networks
    • Mosca R, Céol A, Aloy P. 2013. Interactome3D: adding structural details to protein networks. Nat. Methods 10:47-53
    • (2013) Nat. Methods , vol.10 , pp. 47-53
    • Mosca, R.1    Céol, A.2    Aloy, P.3
  • 140
    • 18844453949 scopus 로고    scopus 로고
    • Prediction of multimolecular assemblies by multiple docking
    • Inbar Y, Benyamini H, Nussinov R, Wolfson HJ. 2005. Prediction of multimolecular assemblies by multiple docking. J. Mol. Biol. 349:435-47
    • (2005) J. Mol. Biol. , vol.349 , pp. 435-447
    • Inbar, Y.1    Benyamini, H.2    Nussinov, R.3    Wolfson, H.J.4
  • 141
    • 84862196732 scopus 로고    scopus 로고
    • Multi-LZerD:multiple protein docking for asymmetric complexes
    • Esquivel-Rodríguez J, Yang YD, Kihara D. 2012. Multi-LZerD:multiple protein docking for asymmetric complexes. Proteins 80:1818-33
    • (2012) Proteins , vol.80 , pp. 1818-1833
    • Esquivel-Rodríguez, J.1    Yang, Y.D.2    Kihara, D.3
  • 142
    • 79851513173 scopus 로고    scopus 로고
    • The beginning of a beautiful friendship: Cross-linking/mass spectrometry and modelling of proteins and multi-protein complexes
    • Rappsilber J. 2011. The beginning of a beautiful friendship: cross-linking/mass spectrometry and modelling of proteins and multi-protein complexes. J. Struct. Biol. 173:530-40
    • (2011) J. Struct. Biol. , vol.173 , pp. 530-540
    • Rappsilber, J.1
  • 143
    • 84884239080 scopus 로고    scopus 로고
    • Cryo-electron tomography: The challenge of doing structural biology in situ
    • Lučić V, Rigort A, Baumeister W. 2013. Cryo-electron tomography: the challenge of doing structural biology in situ. J. Cell Biol. 202:407-19
    • (2013) J. Cell Biol. , vol.202 , pp. 407-419
    • Lučić, V.1    Rigort, A.2    Baumeister, W.3
  • 144
    • 84855261941 scopus 로고    scopus 로고
    • Widespread cotranslational formation of protein complexes
    • Duncan CDS, Mata J. 2011. Widespread cotranslational formation of protein complexes. PLOS Genet. 7:e1002398
    • (2011) PLOS Genet. , vol.7 , pp. e1002398
    • Duncan, C.D.S.1    Mata, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.