메뉴 건너뛰기




Volumn 10, Issue 5, 2015, Pages

Inferring broad regulatory biology from time course data: Have we reached an upper bound under constraints typical of in vivo studies?

Author keywords

[No Author keywords available]

Indexed keywords

ANALYTICAL PARAMETERS; ARTICLE; CELL CULTURE; COMPUTER MODEL; COMPUTER NETWORK; DATA MINING; FUZZY LOGIC; HUMAN; IN VIVO STUDY; INFORMATION PROCESSING; INTERMETHOD COMPARISON; MEDICAL TECHNOLOGIST; NONHUMAN; ORDINARY DIFFERENTIAL EQUATION MODEL; PERSONALIZED MEDICINE; PRINCIPAL COMPONENT ANALYSIS; PROCESS OPTIMIZATION; QUALITY CONTROL; SIMULATION; SYSTEM ANALYSIS; TIME; TIME SERIES NETWORK IDENTIFICATION; YEAST; ALGORITHM; CELL CYCLE; GENE EXPRESSION PROFILING; GENE REGULATORY NETWORK; GENETIC DATABASE; GENETICS; HELA CELL LINE; SACCHAROMYCES CEREVISIAE; SAMPLE SIZE; TIME FACTOR;

EID: 84930641486     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0127364     Document Type: Article
Times cited : (5)

References (92)
  • 1
    • 0742305866 scopus 로고    scopus 로고
    • Network Biology: Understanding the cell's functional organization
    • PMID: 14735121
    • Barabasi A-L, Oltvai ZN. Network Biology: Understanding the cell's functional organization. Nat Rev Genet. 2004; 5(2):101-13. PMID: 14735121
    • (2004) Nat Rev Genet , vol.5 , Issue.2 , pp. 101-113
    • Barabasi, A.-L.1    Oltvai, Z.N.2
  • 2
    • 78650373804 scopus 로고    scopus 로고
    • Network medicine: A network-based approach to human disease
    • PMID: 21164525
    • Barabasi A-L, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev Genet. 2011; 12(1):56-68. doi: 10.1038/nrg2918 PMID: 21164525
    • (2011) Nat Rev Genet , vol.12 , Issue.1 , pp. 56-68
    • Barabasi, A.-L.1    Gulbahce, N.2    Loscalzo, J.3
  • 3
    • 34247587012 scopus 로고    scopus 로고
    • Getting Closer to the Whole Picture
    • PMID: 17463274
    • Sauer U, Heinemann M, Zamboni N. Getting Closer to the Whole Picture. Science. 2007; 316(5824):550-1. PMID: 17463274
    • (2007) Science , vol.316 , Issue.5824 , pp. 550-551
    • Sauer, U.1    Heinemann, M.2    Zamboni, N.3
  • 4
    • 0032616683 scopus 로고    scopus 로고
    • Identification of genetic networks from a small number of gene expression patterns under the Boolean network model
    • PMID: 10380182
    • Akutsu T, Miyano S, Kuhara S. Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. Pac Symp Biocomput. 1999:17-28. PMID: 10380182
    • (1999) Pac Symp Biocomput , pp. 17-28
    • Akutsu, T.1    Miyano, S.2    Kuhara, S.3
  • 5
    • 0033737840 scopus 로고    scopus 로고
    • Inferring qualitative relations in genetic networks and metabolic pathways
    • PMID: 11099258
    • Akutsu T, Miyano S, Kuhara S. Inferring qualitative relations in genetic networks and metabolic pathways. Bioinformatics. 2000; 16(8):727-34. PMID: 11099258
    • (2000) Bioinformatics , vol.16 , Issue.8 , pp. 727-734
    • Akutsu, T.1    Miyano, S.2    Kuhara, S.3
  • 6
    • 0031616241 scopus 로고    scopus 로고
    • Reveal, a general reverse engineering algorithm for inference of genetic network architectures
    • PMID: 9697168
    • Liang S, Fuhrman S, Somogyi R. Reveal, a general reverse engineering algorithm for inference of genetic network architectures. Pac Symp Biocomput1998. p. 18-29. PMID: 9697168
    • (1998) Pac Symp Biocomput , pp. 18-29
    • Liang, S.1    Fuhrman, S.2    Somogyi, R.3
  • 7
    • 0036184629 scopus 로고    scopus 로고
    • Probabilistic Boolean networks: A rule-based uncertainty model for gene regulatory networks
    • PMID: 11847074
    • Shmulevich I, Dougherty ER, Kim S, Zhang W. Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics. 2002; 18(2):261-74. PMID: 11847074
    • (2002) Bioinformatics , vol.18 , Issue.2 , pp. 261-274
    • Shmulevich, I.1    Dougherty, E.R.2    Kim, S.3    Zhang, W.4
  • 8
    • 34248572623 scopus 로고    scopus 로고
    • Boolean dynamics of genetic regulatory networks inferred from microarray time series data
    • PMID: 17267426
    • Martin S, Zhang Z, Martino A, Faulon J-L. Boolean dynamics of genetic regulatory networks inferred from microarray time series data. Bioinformatics. 2007; 23(7):866-74. PMID: 17267426
    • (2007) Bioinformatics , vol.23 , Issue.7 , pp. 866-874
    • Martin, S.1    Zhang, Z.2    Martino, A.3    Faulon, J.-L.4
  • 9
    • 33847260655 scopus 로고    scopus 로고
    • Boolean networks using the chi-square test for inferring large-scale gene regulatory networks
    • Kim H, Lee J, Park T. Boolean networks using the chi-square test for inferring large-scale gene regulatory networks. BMC Bioinformatics. 2007; 8(1):37.
    • (2007) BMC Bioinformatics , vol.8 , Issue.1 , pp. 37
    • Kim, H.1    Lee, J.2    Park, T.3
  • 10
    • 12344259602 scopus 로고    scopus 로고
    • Advances to Bayesian network inference for generating causal networks from observational biological data
    • PMID: 15284094
    • Yu J, Smith VA, Wang PP, Hartemink AJ, Jarvis ED. Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics. 2004; 20(18):3594-603. PMID: 15284094
    • (2004) Bioinformatics , vol.20 , Issue.18 , pp. 3594-3603
    • Yu, J.1    Smith, V.A.2    Wang, P.P.3    Hartemink, A.J.4    Jarvis, E.D.5
  • 11
    • 12744261506 scopus 로고    scopus 로고
    • A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data
    • PMID: 15308537
    • Zou M, Conzen SD. A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics. 2005; 21(1):71-9. PMID: 15308537
    • (2005) Bioinformatics , vol.21 , Issue.1 , pp. 71-79
    • Zou, M.1    Conzen, S.D.2
  • 12
    • 0842309206 scopus 로고    scopus 로고
    • Inferring gene networks from time series microarray data using dynamic Bayesian networks
    • PMID: 14582517
    • Kim SY, Imoto S, Miyano S. Inferring gene networks from time series microarray data using dynamic Bayesian networks. Brief Bioinform. 2003; 4(3):228-35. PMID: 14582517
    • (2003) Brief Bioinform , vol.4 , Issue.3 , pp. 228-235
    • Kim, S.Y.1    Imoto, S.2    Miyano, S.3
  • 13
    • 80053452578 scopus 로고    scopus 로고
    • GlobalMIT: Learning globally optimal dynamic bayesian network with the mutual information test criterion
    • PMID: 21813478
    • Vinh NX, Chetty M, Coppel R, Wangikar PP. GlobalMIT: learning globally optimal dynamic bayesian network with the mutual information test criterion. Bioinformatics. 2011; 27(19):2765-6. doi: 10.1093/bioinformatics/btr457 PMID: 21813478
    • (2011) Bioinformatics , vol.27 , Issue.19 , pp. 2765-2766
    • Vinh, N.X.1    Chetty, M.2    Coppel, R.3    Wangikar, P.P.4
  • 14
    • 58349093534 scopus 로고    scopus 로고
    • BNFinder: Exact and efficient method for learning Bayesian networks
    • PMID: 18826957
    • Wilczyński B, Dojer N. BNFinder: exact and efficient method for learning Bayesian networks. Bioinformatics. 2009; 25(2):286-7. doi: 10.1093/bioinformatics/btn505 PMID: 18826957
    • (2009) Bioinformatics , vol.25 , Issue.2 , pp. 286-287
    • Wilczyński, B.1    Dojer, N.2
  • 15
    • 84880999420 scopus 로고    scopus 로고
    • BNFinder2: Faster Bayesian network learning and Bayesian classification
    • PMID: 23818512
    • Dojer N, Bednarz P, Podsiadło A, Wilczyński B. BNFinder2: Faster Bayesian network learning and Bayesian classification. Bioinformatics. 2013; 29(16):2068-70. doi: 10.1093/bioinformatics/btt323 PMID: 23818512
    • (2013) Bioinformatics , vol.29 , Issue.16 , pp. 2068-2070
    • Dojer, N.1    Bednarz, P.2    Podsiadło, A.3    Wilczyński, B.4
  • 17
    • 84864921682 scopus 로고    scopus 로고
    • DREM 2.0: Improved reconstruction of dynamic regulatory networks from time-series expression data
    • Schulz M, Devanny W, Gitter A, Zhong S, Ernst J, Bar-Joseph Z. DREM 2.0: Improved reconstruction of dynamic regulatory networks from time-series expression data. BMC Syst Biol. 2012; 6(1):104.
    • (2012) BMC Syst Biol , vol.6 , Issue.1 , pp. 104
    • Schulz, M.1    Devanny, W.2    Gitter, A.3    Zhong, S.4    Ernst, J.5    Bar-Joseph, Z.6
  • 18
    • 78149461178 scopus 로고    scopus 로고
    • DREAM3: Network Inference Using Dynamic Context Likelihood of Relatedness and the Inferelator
    • PMID: 20339551
    • Madar A, Greenfield A, Vanden-Eijnden E, Bonneau R. DREAM3: Network Inference Using Dynamic Context Likelihood of Relatedness and the Inferelator. PLoS ONE. 2010; 5(3):e9803. doi: 10.1371/journal.pone.0009803 PMID: 20339551
    • (2010) PLoS ONE , vol.5 , Issue.3 , pp. e9803
    • Madar, A.1    Greenfield, A.2    Vanden-Eijnden, E.3    Bonneau, R.4
  • 19
    • 77952663448 scopus 로고    scopus 로고
    • TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach
    • Zoppoli P, Morganella S, Ceccarelli M. TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach. BMC Bioinform. 2010; 11(1):154.
    • (2010) BMC Bioinform , vol.11 , Issue.1 , pp. 154
    • Zoppoli, P.1    Morganella, S.2    Ceccarelli, M.3
  • 20
    • 34548388925 scopus 로고    scopus 로고
    • Inference of gene networks from temporal gene expression profiles
    • PMID: 17907680
    • Bansal M, di Bernardo D. Inference of gene networks from temporal gene expression profiles. IET Syst Biol. 2007; 1(5):306-12. PMID: 17907680
    • (2007) IET Syst Biol , vol.1 , Issue.5 , pp. 306-312
    • Bansal, M.1    Di Bernardo, D.2
  • 21
    • 0037197936 scopus 로고    scopus 로고
    • Reverse engineering gene networks using singular value decomposition and robust regression
    • PMID: 11983907
    • Yeung MKS, Tegner J, Collins JJ. Reverse engineering gene networks using singular value decomposition and robust regression. Proc Natl Acad Sci USA. 2002; 99(9):6163-8. PMID: 11983907
    • (2002) Proc Natl Acad Sci USA , vol.99 , Issue.9 , pp. 6163-6168
    • Yeung, M.K.S.1    Tegner, J.2    Collins, J.J.3
  • 22
    • 0038048325 scopus 로고    scopus 로고
    • Inferring Genetic Networks and Identifying Compound Mode of Action via Expression Profiling
    • PMID: 12843395
    • Gardner TS, di Bernardo D, Lorenz D, Collins JJ. Inferring Genetic Networks and Identifying Compound Mode of Action via Expression Profiling. Science. 2003; 301(5629):102-5. PMID: 12843395
    • (2003) Science , vol.301 , Issue.5629 , pp. 102-105
    • Gardner, T.S.1    Di Bernardo, D.2    Lorenz, D.3    Collins, J.J.4
  • 23
    • 0037687416 scopus 로고    scopus 로고
    • Reverse engineering gene networks: Integrating genetic perturbations with dynamical modeling
    • PMID: 12730377
    • Tegner J, Yeung MKS, Hasty J, Collins JJ. Reverse engineering gene networks: Integrating genetic perturbations with dynamical modeling. Proc Natl Acad Sci. 2003; 100(10):5944-9. PMID: 12730377
    • (2003) Proc Natl Acad Sci , vol.100 , Issue.10 , pp. 5944-5949
    • Tegner, J.1    Yeung, M.K.S.2    Hasty, J.3    Collins, J.J.4
  • 24
    • 33645307955 scopus 로고    scopus 로고
    • Inference of gene regulatory networks and compound mode of action from time course gene expression profiles
    • PMID: 16418235
    • Bansal M, Gatta GD, di Bernardo D. Inference of gene regulatory networks and compound mode of action from time course gene expression profiles. Bioinformatics. 2006; 22(7):815-22. PMID: 16418235
    • (2006) Bioinformatics , vol.22 , Issue.7 , pp. 815-822
    • Bansal, M.1    Gatta, G.D.2    Di Bernardo, D.3
  • 25
    • 33747813561 scopus 로고    scopus 로고
    • The Inferelator: An algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo
    • PMID: 16686963
    • Bonneau R, Reiss D, Shannon P, Facciotti M, Hood L, Baliga N, et al. The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome Biology. 2006; 7(5):R36. PMID: 16686963
    • (2006) Genome Biology , vol.7 , Issue.5 , pp. R36
    • Bonneau, R.1    Reiss, D.2    Shannon, P.3    Facciotti, M.4    Hood, L.5    Baliga, N.6
  • 26
    • 77749264188 scopus 로고    scopus 로고
    • Improved Reconstruction of In Silico Gene Regulatory Networks by Integrating Knockout and Perturbation Data
    • PMID: 20126643
    • Yip KY, Alexander RP, Yan K- K, Gerstein M. Improved Reconstruction of In Silico Gene Regulatory Networks by Integrating Knockout and Perturbation Data. PLoS ONE. 2010; 5(1):e8121. doi: 10.1371/journal.pone.0008121 PMID: 20126643
    • (2010) PLoS ONE , vol.5 , Issue.1 , pp. e8121
    • Yip, K.Y.1    Alexander, R.P.2    Yan, K.-K.3    Gerstein, M.4
  • 27
    • 84879050935 scopus 로고    scopus 로고
    • Incorporating time-delays in S-System model for reverse engineering genetic networks
    • Chowdhury A, Chetty M, Vinh N. Incorporating time-delays in S-System model for reverse engineering genetic networks. BMC Bioinformatics. 2013; 14(1):196.
    • (2013) BMC Bioinformatics , vol.14 , Issue.1 , pp. 196
    • Chowdhury, A.1    Chetty, M.2    Vinh, N.3
  • 28
    • 84899636056 scopus 로고    scopus 로고
    • Network Reconstruction Using Nonparametric Additive ODE Models
    • PMID: 24732037
    • Henderson J, Michailidis G. Network Reconstruction Using Nonparametric Additive ODE Models. PLoS ONE. 2014; 9(4):e94003. doi: 10.1371/journal.pone.0094003 PMID: 24732037
    • (2014) PLoS ONE , vol.9 , Issue.4 , pp. e94003
    • Henderson, J.1    Michailidis, G.2
  • 29
    • 33644649220 scopus 로고    scopus 로고
    • Discovery of time-delayed gene regulatory networks based on temporal gene expression profiling
    • PMID: 16420705
    • Li X, Rao S, Jiang W, Li C, Xiao Y, Guo Z, et al. Discovery of time-delayed gene regulatory networks based on temporal gene expression profiling. BMC Bioinformatics. 2006; 7:26. PMID: 16420705
    • (2006) BMC Bioinformatics , vol.7 , pp. 26
    • Li, X.1    Rao, S.2    Jiang, W.3    Li, C.4    Xiao, Y.5    Guo, Z.6
  • 30
    • 66349115724 scopus 로고    scopus 로고
    • Grouped graphical Granger modeling for gene expression regulatory networks discovery
    • Lozano AC, Abe N, Liu Y, Rosset S. Grouped graphical Granger modeling for gene expression regulatory networks discovery. Bioinformatics. 2009; 25(12):110-8.
    • (2009) Bioinformatics , vol.25 , Issue.12 , pp. 110-118
    • Lozano, A.C.1    Abe, N.2    Liu, Y.3    Rosset, S.4
  • 31
    • 84887956845 scopus 로고    scopus 로고
    • Inference of Gene Regulatory Networks with Variable Time Delay from Time-Series Microarray Data
    • PMID: 24091400
    • ElBakry O, Ahmad MO, Swamy MNS. Inference of Gene Regulatory Networks with Variable Time Delay from Time-Series Microarray Data. IEEE/ACM Trans Comp Biol Bioinform 2013; 10(3):671-87. doi: 10.1109/TCBB.2013.73 PMID: 24091400
    • (2013) IEEE/ACM Trans Comp Biol Bioinform , vol.10 , Issue.3 , pp. 671-687
    • ElBakry, O.1    Ahmad, M.O.2    Swamy, M.N.S.3
  • 32
    • 78149421254 scopus 로고    scopus 로고
    • DREAM4: Combining Genetic and Dynamic Information to Identify Biological Networks and Dynamical Models
    • PMID: 21049040
    • Greenfield A, Madar A, Ostrer H, Bonneau R. DREAM4: Combining Genetic and Dynamic Information to Identify Biological Networks and Dynamical Models. PLoS ONE. 2010; 5(10):e13397. doi: 10.1371/journal.pone.0013397 PMID: 21049040
    • (2010) PLoS ONE , vol.5 , Issue.10 , pp. e13397
    • Greenfield, A.1    Madar, A.2    Ostrer, H.3    Bonneau, R.4
  • 33
    • 84876207916 scopus 로고    scopus 로고
    • Robust data-driven incorporation of prior knowledge into the inference of dynamic regulatory networks
    • PubMed PMID: PMC3624811 PMID: 23525069
    • Greenfield A, Hafemeister C, Bonneau R. Robust data-driven incorporation of prior knowledge into the inference of dynamic regulatory networks. Bioinformatics. 2013; 29(8):1060-7. PubMed PMID: PMC3624811. doi: 10.1093/bioinformatics/btt099 PMID: 23525069
    • (2013) Bioinformatics , vol.29 , Issue.8 , pp. 1060-1067
    • Greenfield, A.1    Hafemeister, C.2    Bonneau, R.3
  • 34
    • 80053436505 scopus 로고    scopus 로고
    • Large-scale dynamic gene regulatory network inference combining differential equation models with local dynamic Bayesian network analysis
    • PMID: 21816876
    • Li Z, Li P, Krishnan A, Liu J. Large-scale dynamic gene regulatory network inference combining differential equation models with local dynamic Bayesian network analysis. Bioinformatics. 2011; 27(19):2686-91. doi: 10.1093/bioinformatics/btr454 PMID: 21816876
    • (2011) Bioinformatics , vol.27 , Issue.19 , pp. 2686-2691
    • Li, Z.1    Li, P.2    Krishnan, A.3    Liu, J.4
  • 35
    • 84929612020 scopus 로고    scopus 로고
    • Combining tree-based and dynamical systems for the inference of gene regulatory networks
    • Huynh-Thu VA, Sanguinetti G. Combining tree-based and dynamical systems for the inference of gene regulatory networks. Bioinformatics. 2015.
    • (2015) Bioinformatics
    • Huynh-Thu, V.A.1    Sanguinetti, G.2
  • 36
    • 70449529712 scopus 로고    scopus 로고
    • Reverse engineering and verification of gene networks: Principles, assumptions, and limitations of present methods and future perspectives
    • PMID: 19631244
    • He F, Balling R, Zeng A- P. Reverse engineering and verification of gene networks: Principles, assumptions, and limitations of present methods and future perspectives. J Biotech. 2009; 144(3):190-203. doi: 10.1016/j.jbiotec.2009.07.013 PMID: 19631244
    • (2009) J Biotech , vol.144 , Issue.3 , pp. 190-203
    • He, F.1    Balling, R.2    Zeng, A.-P.3
  • 37
    • 52649087274 scopus 로고    scopus 로고
    • Modelling and analysis of gene regulatory networks
    • PMID: 18797474
    • Karlebach G, Shamir R. Modelling and analysis of gene regulatory networks. Nat Rev Mol Cell Biol. 2008; 9(10):770-80. doi: 10.1038/nrm2503 PMID: 18797474
    • (2008) Nat Rev Mol Cell Biol , vol.9 , Issue.10 , pp. 770-780
    • Karlebach, G.1    Shamir, R.2
  • 39
    • 38449088751 scopus 로고    scopus 로고
    • Inferring cellular networks-a review
    • Markowetz F, Spang R. Inferring cellular networks-a review. BMC Bioinform. 2007; 8(Suppl 6):S5.
    • (2007) BMC Bioinform , vol.8 , pp. S5
    • Markowetz, F.1    Spang, R.2
  • 40
    • 0036207347 scopus 로고    scopus 로고
    • Modeling and simulation of genetic regulatory systems: A literature review
    • Hd Jong. Modeling and simulation of genetic regulatory systems: A literature review. J Comp Biol. 2002; 9(1):67-103.
    • (2002) J Comp Biol , vol.9 , Issue.1 , pp. 67-103
    • Jong, H.1
  • 41
    • 14844286390 scopus 로고    scopus 로고
    • Reverse-engineering transcription control networks
    • PMID: 20416858
    • Gardner TS, Faith JJ. Reverse-engineering transcription control networks. Phys Life Rev. 2005; 2:65-88. doi: 10.1016/j.plrev.2005.01.001 PMID: 20416858
    • (2005) Phys Life Rev , vol.2 , pp. 65-88
    • Gardner, T.S.1    Faith, J.J.2
  • 42
    • 61349180117 scopus 로고    scopus 로고
    • Gene regulatory network inference: Data integration in dynamic models, A review
    • PMID: 19150482
    • Hecker M, Lambeck S, Toepfer S, van Someren E, Guthke R. Gene regulatory network inference: Data integration in dynamic models, A review. Biosystems. 2009; 96(1):86-103. doi: 10.1016/j.biosystems.2008.12.004 PMID: 19150482
    • (2009) Biosystems , vol.96 , Issue.1 , pp. 86-103
    • Hecker, M.1    Lambeck, S.2    Toepfer, S.3    Van Someren, E.4    Guthke, R.5
  • 43
    • 84896370627 scopus 로고    scopus 로고
    • A review on the computational approaches for gene regulatory network construction
    • PMID: 24637147
    • Chai LE, Loh SK, Low ST, Mohamad MS, Deris S, Zakaria Z. A review on the computational approaches for gene regulatory network construction. Comput Biol Med. 2014; 48:55-65. doi: 10.1016/j.compbiomed.2014.02.011 PMID: 24637147
    • (2014) Comput Biol Med , vol.48 , pp. 55-65
    • Chai, L.E.1    Loh, S.K.2    Low, S.T.3    Mohamad, M.S.4    Deris, S.5    Zakaria, Z.6
  • 44
    • 84891892050 scopus 로고    scopus 로고
    • Reverse engineering and identification in systems biology: Strategies, perspectives and challenges
    • Villaverde AF, Banga JR. Reverse engineering and identification in systems biology: strategies, perspectives and challenges. J R Soc Interface. 2013; 11(91).
    • (2013) J R Soc Interface , vol.11 , Issue.91
    • Villaverde, A.F.1    Banga, J.R.2
  • 45
  • 46
    • 36249019789 scopus 로고    scopus 로고
    • Dialogue on Reverse-Engineering Assessment and Methods
    • PMID: 17925349
    • Stolovitzky G, Monroe DON, Califano A. Dialogue on Reverse-Engineering Assessment and Methods. Ann N Y Acad Sci. 2007; 1115(1):1-22. PMID: 17925349
    • (2007) Ann N Y Acad Sci , vol.1115 , Issue.1 , pp. 1-22
    • Stolovitzky, G.1    Monroe, D.O.N.2    Califano, A.3
  • 47
    • 63849210631 scopus 로고    scopus 로고
    • Lessons from the DREAM2 Challenges
    • PMID: 19348627
    • Stolovitzky G, Prill RJ, Califano A. Lessons from the DREAM2 Challenges. Ann N Y Acad Sci. 2009; 1158(1):159-95. doi: 10.1111/j.1749-6632.2008.03747.x PMID: 19348627
    • (2009) Ann N Y Acad Sci , vol.1158 , Issue.1 , pp. 159-195
    • Stolovitzky, G.1    Prill, R.J.2    Califano, A.3
  • 48
    • 77949644952 scopus 로고    scopus 로고
    • Towards a Rigorous Assessment of Systems Biology Models: The DREAM3 Challenges
    • PMID: 20186320
    • Prill RJ, Marbach D, Saez-Rodriguez J, Sorger PK, Alexopoulos LG, Xue X, et al. Towards a Rigorous Assessment of Systems Biology Models: The DREAM3 Challenges. PLoS ONE. 2010; 5(2):e9202. doi: 10.1371/journal.pone.0009202 PMID: 20186320
    • (2010) PLoS ONE , vol.5 , Issue.2 , pp. e9202
    • Prill, R.J.1    Marbach, D.2    Saez-Rodriguez, J.3    Sorger, P.K.4    Alexopoulos, L.G.5    Xue, X.6
  • 52
    • 36248953897 scopus 로고    scopus 로고
    • Comparison of Reverse-Engineering Methods Using an in Silico Network
    • PMID: 17925349
    • Camacho D, Vera Licona P, Mendes P, Laubenbacher R. Comparison of Reverse-Engineering Methods Using an in Silico Network. Ann N Y Acad Sci. 2007; 1115(1):73-89. PMID: 17925349
    • (2007) Ann N Y Acad Sci , vol.1115 , Issue.1 , pp. 73-89
    • Camacho, D.1    Vera Licona, P.2    Mendes, P.3    Laubenbacher, R.4
  • 53
    • 84859149116 scopus 로고    scopus 로고
    • How to infer gene networks from expression profiles, revisited
    • Penfold CA, Wild DL. How to infer gene networks from expression profiles, revisited. Interface Focus. 2011.
    • (2011) Interface Focus
    • Penfold, C.A.1    Wild, D.L.2
  • 55
    • 77649206639 scopus 로고    scopus 로고
    • Characterizing Dynamic Changes in the Human Blood Transcriptional Network
    • PMID: 20168994
    • Zhu J CY, Leonardson AS, Wang K, Lamb JR, Emilsson V, Schadt EE. Characterizing Dynamic Changes in the Human Blood Transcriptional Network. PLoS Comput Biol. 2010; 6(2):e1000671. doi: 10.1371/journal.pcbi.1000671 PMID: 20168994
    • (2010) PLoS Comput Biol , vol.6 , Issue.2 , pp. e1000671
    • Zhu, J.C.Y.1    Leonardson, A.S.2    Wang, K.3    Lamb, J.R.4    Emilsson, V.5    Schadt, E.E.6
  • 56
    • 76349097583 scopus 로고    scopus 로고
    • Inference of gene regulatory networks using boolean-network inference methods
    • Hickman GJ, Hodgman TC. INFERENCE OF GENE REGULATORY NETWORKS USING BOOLEAN-NETWORK INFERENCE METHODS. J Bioinform Comput Biol. 2009; 07(06):1013-29.
    • (2009) J Bioinform Comput Biol , vol.7 , Issue.6 , pp. 1013-1029
    • Hickman, G.J.1    Hodgman, T.C.2
  • 57
    • 38549107133 scopus 로고    scopus 로고
    • Comparison of probabilistic Boolean network and dynamic Bayesian network approaches for inferring gene regulatory networks
    • PMID: 18047712
    • Li P, Zhang C, Perkins E, Gong P, Deng Y. Comparison of probabilistic Boolean network and dynamic Bayesian network approaches for inferring gene regulatory networks. BMC Bioinformatics. 2007; 8(Suppl 7):S13. PMID: 18047712
    • (2007) BMC Bioinformatics , vol.8 , pp. S13
    • Li, P.1    Zhang, C.2    Perkins, E.3    Gong, P.4    Deng, Y.5
  • 58
    • 0042526388 scopus 로고    scopus 로고
    • The mutual information: Detecting and evaluating dependencies between variables
    • PMID: 12386007
    • Steuer R, Kurths J, Daub CO, Weise J, Selbig J. The mutual information: Detecting and evaluating dependencies between variables. Bioinformatics. 2002; 18(suppl 2):S231-S40. PMID: 12386007
    • (2002) Bioinformatics , vol.18 , pp. S231-S240
    • Steuer, R.1    Kurths, J.2    Daub, C.O.3    Weise, J.4    Selbig, J.5
  • 59
    • 73149088616 scopus 로고    scopus 로고
    • Granger causality vs. dynamic Bayesian network inference: A comparative study
    • Zou C, Feng J. Granger causality vs. dynamic Bayesian network inference: a comparative study. BMC Bioinformatics. 2009; 10(1):122.
    • (2009) BMC Bioinformatics , vol.10 , Issue.1 , pp. 122
    • Zou, C.1    Feng, J.2
  • 60
    • 77956514067 scopus 로고    scopus 로고
    • Discovering graphical Granger causality using the truncating lasso penalty
    • PMID: 20823316
    • Shojaie A, Michailidis G. Discovering graphical Granger causality using the truncating lasso penalty. Bioinformatics. 2010; 26(18):i517-i23. doi: 10.1093/bioinformatics/btq377 PMID: 20823316
    • (2010) Bioinformatics , vol.26 , Issue.18 , pp. i517-i523
    • Shojaie, A.1    Michailidis, G.2
  • 61
    • 63849112875 scopus 로고    scopus 로고
    • A Gene Network Simulator to Assess Reverse Engineering Algorithms
    • Di Camillo B, Toffolo G, Cobelli C. A Gene Network Simulator to Assess Reverse Engineering Algorithms. Annals New York Acad Sci. 2009; 1158(1):125-42.
    • (2009) Annals New York Acad Sci , vol.1158 , Issue.1 , pp. 125-142
    • Di Camillo, B.1    Toffolo, G.2    Cobelli, C.3
  • 62
    • 63049128934 scopus 로고    scopus 로고
    • A Yeast Synthetic Network for In Vivo Assessment of Reverse-Engineering and Modeling Approaches
    • PMID: 19327819
    • Cantone I, Marucci L, Iorio F, Ricci MA, Belcastro V, Bansal M, et al. A Yeast Synthetic Network for In Vivo Assessment of Reverse-Engineering and Modeling Approaches. Cell. 2009; 137(1):172-81. doi: 10.1016/j.cell.2009.01.055 PMID: 19327819
    • (2009) Cell , vol.137 , Issue.1 , pp. 172-181
    • Cantone, I.1    Marucci, L.2    Iorio, F.3    Ricci, M.A.4    Belcastro, V.5    Bansal, M.6
  • 65
    • 84867840201 scopus 로고
    • Collinearity Diagnostics
    • Barndorff-Nielsen O, Bickel PJ, Cleveland WS., Dudley RM., editor Pacific Grove: Wadsworth and Brooks
    • Rawlings JO. Collinearity Diagnostics. In: Barndorff-Nielsen O, Bickel PJ, Cleveland WS., Dudley RM., editor. Applied Regression Analysis: Pacific Grove: Wadsworth and Brooks; 1988. p. 273-81.
    • (1988) Applied Regression Analysis , pp. 273-281
    • Rawlings, J.O.1
  • 67
    • 84930641911 scopus 로고
    • Singular Value Decomposition: Multidimensional Scaling I
    • John Wiley & Sons, Inc.
    • Jackson JE. Singular Value Decomposition: Multidimensional Scaling I. A User's Guide to Principal Components: John Wiley & Sons, Inc.; 1991. p. 189-232.
    • (1991) A User's Guide to Principal Components , pp. 189-232
    • Jackson, J.E.1
  • 70
    • 8644267207 scopus 로고
    • A rationale and test for the number of factors in factor analysis
    • PMID: 14306381
    • Horn JL. A rationale and test for the number of factors in factor analysis. Psychometrika. 1965; 30:179-85. PMID: 14306381
    • (1965) Psychometrika , vol.30 , pp. 179-185
    • Horn, J.L.1
  • 71
    • 0001783722 scopus 로고
    • Étude de la décroissance des valeurs propres dans une analyse en composantes principales: Comparaison avec le modèle de bâton brisé
    • Frontier S. Étude de la décroissance des valeurs propres dans une analyse en composantes principales: comparaison avec le modèle de bâton brisé. J Exp Marine Biol Ecol. 1976; 25:67-75.
    • (1976) J Exp Marine Biol Ecol , vol.25 , pp. 67-75
    • Frontier, S.1
  • 72
    • 84973076636 scopus 로고
    • Tests of significance in factor analysis
    • Bartlett MS. Tests of significance in factor analysis. Br J Psych Stat Sec. 1950; 3:77-85.
    • (1950) Br J Psych Stat Sec , vol.3 , pp. 77-85
    • Bartlett, M.S.1
  • 73
    • 0003658046 scopus 로고
    • PCA with more than Two Variables
    • Shewhart WA, Wilks, S. S., editor Hoboken, NJ: Wiley-Interscience
    • Jackson JE. PCA with more than Two Variables. In: Shewhart WA, Wilks, S. S., editor. A User's Guide to Principal Components. Hoboken, NJ: Wiley-Interscience; 1991. p. 26-62.
    • (1991) A User's Guide to Principal Components , pp. 26-62
    • Jackson, J.E.1
  • 74
    • 19044395321 scopus 로고    scopus 로고
    • How many principal components? Stopping rules for determining the number of non-trivial axes revisited
    • Peres-Neto PR, Jackson DA, Somers KM. How many principal components? Stopping rules for determining the number of non-trivial axes revisited. Comp Stat Data An. 2005; 49:974-97.
    • (2005) Comp Stat Data An , vol.49 , pp. 974-997
    • Peres-Neto, P.R.1    Jackson, D.A.2    Somers, K.M.3
  • 75
    • 33947305781 scopus 로고    scopus 로고
    • ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context
    • Margolin A, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Favera R, et al. ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context. BMC Bioinform. 2006; 7(Suppl 1):S7. doi: 10.1186/1471-2105-7-S1-S7
    • (2006) BMC Bioinform , vol.7 , pp. S7
    • Margolin, A.1    Nemenman, I.2    Basso, K.3    Wiggins, C.4    Stolovitzky, G.5    Favera, R.6
  • 77
    • 79959700035 scopus 로고    scopus 로고
    • A tutorial in connectome analysis: Topological and spatial features of brain networks
    • PMID: 21605688
    • Kaiser M. A tutorial in connectome analysis: Topological and spatial features of brain networks. NeuroImage. 2011; 57(3):892-907. doi: 10.1016/j.neuroimage.2011.05.025 PMID: 21605688
    • (2011) NeuroImage , vol.57 , Issue.3 , pp. 892-907
    • Kaiser, M.1
  • 78
    • 84867683434 scopus 로고    scopus 로고
    • Issues impacting genetic network reverse engineering algorithm validation using small networks
    • PMID: 22683439
    • Vinh NX, Chetty M, Coppel R, Wangikar PP. Issues impacting genetic network reverse engineering algorithm validation using small networks. Biochim Biophys Acta. 2012; 1824(12):1434-41. doi: 10.1016/j.bbapap.2012.05.017 PMID: 22683439
    • (2012) Biochim Biophys Acta , vol.1824 , Issue.12 , pp. 1434-1441
    • Vinh, N.X.1    Chetty, M.2    Coppel, R.3    Wangikar, P.P.4
  • 79
    • 79961200389 scopus 로고    scopus 로고
    • GeneNetWeaver: In silico benchmark generation and performance profiling of network inference methods
    • PMID: 21697125
    • Schaffter T, Marbach D, Floreano D. GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods. Bioinformatics. 2011; 27(16):2263-70. doi: 10.1093/bioinformatics/btr373 PMID: 21697125
    • (2011) Bioinformatics , vol.27 , Issue.16 , pp. 2263-2270
    • Schaffter, T.1    Marbach, D.2    Floreano, D.3
  • 80
    • 78651299341 scopus 로고    scopus 로고
    • RegulonDB version 7.0: Transcriptional regulation of Escherichia coli K-12 integrated within genetic sensory response units (Gensor Units)
    • Gama-Castro S, Salgado H, Peralta-Gil M, Santos-Zavaleta A, Muñiz-Rascado L, Solano-Lira H, et al. RegulonDB version 7.0: transcriptional regulation of Escherichia coli K-12 integrated within genetic sensory response units (Gensor Units). Nucleic Acids Research. 2011; 39(suppl 1):D98-D105.
    • (2011) Nucleic Acids Research , vol.39 , pp. D98-D105
    • Gama-Castro, S.1    Salgado, H.2    Peralta-Gil, M.3    Santos-Zavaleta, A.4    Muñiz-Rascado, L.5    Solano-Lira, H.6
  • 81
    • 0001422329 scopus 로고
    • Quantitative model for gene regulation by lambda phage repressor
    • PMID: 6461856
    • Ackers GK, Johnson AD, Shea MA. Quantitative model for gene regulation by lambda phage repressor. Proc Natl Acad Sci USA. 1982; 79(4):1129-33. PMID: 6461856
    • (1982) Proc Natl Acad Sci USA , vol.79 , Issue.4 , pp. 1129-1133
    • Ackers, G.K.1    Johnson, A.D.2    Shea, M.A.3
  • 82
    • 0035985177 scopus 로고    scopus 로고
    • Identification of Genes Periodically Expressed in the Human Cell Cycle and Their Expression in Tumors
    • PMID: 12058064
    • Whitfield ML, Sherlock G, Saldanha AJ, Murray JI, Ball CA, Alexander KE, et al. Identification of Genes Periodically Expressed in the Human Cell Cycle and Their Expression in Tumors. Mol Biol Cell. 2002; 13(6):1977-2000. PMID: 12058064
    • (2002) Mol Biol Cell , vol.13 , Issue.6 , pp. 1977-2000
    • Whitfield, M.L.1    Sherlock, G.2    Saldanha, A.J.3    Murray, J.I.4    Ball, C.A.5    Alexander, K.E.6
  • 83
    • 70249108504 scopus 로고    scopus 로고
    • Genome-wide identification of post-translational modulators of transcription factor activity in human B cells
    • PMID: 19741643
    • Wang K, Saito M, Bisikirska BC, Alvarez MJ, Lim WK, Rajbhandari P, et al. Genome-wide identification of post-translational modulators of transcription factor activity in human B cells. Nat Biotechnol. 2009; 27(9):829-39. doi: 10.1038/nbt.1563 PMID: 19741643
    • (2009) Nat Biotechnol , vol.27 , Issue.9 , pp. 829-839
    • Wang, K.1    Saito, M.2    Bisikirska, B.C.3    Alvarez, M.J.4    Lim, W.K.5    Rajbhandari, P.6
  • 84
    • 34248206078 scopus 로고    scopus 로고
    • The immune-body cytokine network defines a social architecture of cell interactions
    • Frankenstein Z, Alon U, Cohen I. The immune-body cytokine network defines a social architecture of cell interactions. Biol Dir. 2006; 1(1):32.
    • (2006) Biol Dir , vol.1 , Issue.1 , pp. 32
    • Frankenstein, Z.1    Alon, U.2    Cohen, I.3
  • 85
    • 36248989626 scopus 로고    scopus 로고
    • Theory and Limitations of Genetic Network Inference from Microarray Data
    • PMID: 17925349
    • Margolin AA, Califano A. Theory and Limitations of Genetic Network Inference from Microarray Data. Ann N Y Acad Sci. 2007; 1115(1):51-72. PMID: 17925349
    • (2007) Ann N Y Acad Sci , vol.1115 , Issue.1 , pp. 51-72
    • Margolin, A.A.1    Califano, A.2
  • 86
    • 78149438375 scopus 로고    scopus 로고
    • Multivariate dependence and genetic networks inference
    • PMID: 21073241
    • Margolin AA, Wang K, Califano A, Nemenman I. Multivariate dependence and genetic networks inference. IET Syst Biol. 2010; 4(6):428-40. doi: 10.1049/iet-syb.2010.0009 PMID: 21073241
    • (2010) IET Syst Biol , vol.4 , Issue.6 , pp. 428-440
    • Margolin, A.A.1    Wang, K.2    Califano, A.3    Nemenman, I.4
  • 87
    • 77249138258 scopus 로고    scopus 로고
    • A review of current large-scale mouse knockout efforts
    • PMID: 20095055
    • Guan C, Ye C, Yang X, Gao J. A review of current large-scale mouse knockout efforts. genesis. 2010; 48(2):73-85. doi: 10.1002/dvg.20594 PMID: 20095055
    • (2010) Genesis , vol.48 , Issue.2 , pp. 73-85
    • Guan, C.1    Ye, C.2    Yang, X.3    Gao, J.4
  • 88
    • 84866565963 scopus 로고    scopus 로고
    • Frequency-domain identification of the human controller
    • Gollee H, Mamma A, Loram I, Gawthrop P. Frequency-domain identification of the human controller. Biol Cybern. 2012; 106(6-7):359-72.
    • (2012) Biol Cybern , vol.106 , Issue.6-7 , pp. 359-372
    • Gollee, H.1    Mamma, A.2    Loram, I.3    Gawthrop, P.4
  • 89
    • 0033778655 scopus 로고    scopus 로고
    • Closed-Loop Identification of Carotid Sinus Baroreflex Transfer Characteristics Using Electrical Stimulation
    • PMID: 11016987
    • Kawada T, Sato T, Inagaki M, Shishido T, Tatewaki T, Yanagiya Y, et al. Closed-Loop Identification of Carotid Sinus Baroreflex Transfer Characteristics Using Electrical Stimulation. Jpn J Physiol. 2000; 50(3):371-80. PMID: 11016987
    • (2000) Jpn J Physiol , vol.50 , Issue.3 , pp. 371-380
    • Kawada, T.1    Sato, T.2    Inagaki, M.3    Shishido, T.4    Tatewaki, T.5    Yanagiya, Y.6
  • 90
    • 80052672907 scopus 로고    scopus 로고
    • Automated refinement and inference of analytical models for metabolic networks
    • PMID: 21832805
    • Schmidt MD, Vallabhajosyula RR, Jenkins JW, Hood JE, Soni AS, Wikswo JP, et al. Automated refinement and inference of analytical models for metabolic networks. Phys Biol 2011; 8(5):055011. doi: 10.1088/1478-3975/8/5/055011 PMID: 21832805
    • (2011) Phys Biol , vol.8 , Issue.5 , pp. 055011
    • Schmidt, M.D.1    Vallabhajosyula, R.R.2    Jenkins, J.W.3    Hood, J.E.4    Soni, A.S.5    Wikswo, J.P.6
  • 91
    • 74049150229 scopus 로고    scopus 로고
    • Identification of feedback loops embedded in cellular circuits by investigating non-causal impulse response components
    • PMID: 19333603
    • Dong C-Y, Yoon T-W, Bates D, Cho K-H. Identification of feedback loops embedded in cellular circuits by investigating non-causal impulse response components. J Math Biol. 2010; 60(2):285-312. doi: 10.1007/s00285-009-0263-x PMID: 19333603
    • (2010) J Math Biol , vol.60 , Issue.2 , pp. 285-312
    • Dong, C.-Y.1    Yoon, T.-W.2    Bates, D.3    Cho, K.-H.4
  • 92
    • 84865081124 scopus 로고    scopus 로고
    • Identification of feedback loops in neural networks based on multi-step Granger causality
    • PMID: 22730429
    • Dong C-Y, Shin D, Joo S, Nam Y, Cho K-H. Identification of feedback loops in neural networks based on multi-step Granger causality. Bioinformatics. 2012; 28(16):2146-53. doi: 10.1093/bioinformatics/bts354 PMID: 22730429
    • (2012) Bioinformatics , vol.28 , Issue.16 , pp. 2146-2153
    • Dong, C.-Y.1    Shin, D.2    Joo, S.3    Nam, Y.4    Cho, K.-H.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.