메뉴 건너뛰기




Volumn 144, Issue 3, 2009, Pages 190-203

Reverse engineering and verification of gene networks: Principles, assumptions, and limitations of present methods and future perspectives

Author keywords

Gene network; Optimal experimental design; Pair wise functional association linkage; Reverse engineering; Systems biology; Time series expression dynamics

Indexed keywords

EXPERIMENTAL DATA; EXPERIMENTAL VERIFICATION; EXPRESSION DATA; FUTURE PERSPECTIVES; GENE NETWORK; GENE NETWORKS; GENE REGULATION NETWORK; GENE TRANSCRIPTS; NETWORK STRUCTURES; OPTIMAL EXPERIMENTAL DESIGN; OPTIMAL EXPERIMENTAL DESIGNS; PAIR WISE FUNCTIONAL ASSOCIATION LINKAGE; SAMPLING SCHEDULE; SYSTEMS BIOLOGY;

EID: 70449529712     PISSN: 01681656     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jbiotec.2009.07.013     Document Type: Article
Times cited : (62)

References (138)
  • 1
    • 0032616683 scopus 로고    scopus 로고
    • Identification of genetic networks from a small number of gene expression patterns under the Boolean network model
    • Akutsu T., Miyano S., and Kuhara S. Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. Pac. Symp. Biocomput. (1999) 17-28
    • (1999) Pac. Symp. Biocomput. , pp. 17-28
    • Akutsu, T.1    Miyano, S.2    Kuhara, S.3
  • 2
    • 34249079154 scopus 로고    scopus 로고
    • Network motifs: theory and experimental approaches
    • Alon U. Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8 (2007) 450-461
    • (2007) Nat. Rev. Genet. , vol.8 , pp. 450-461
    • Alon, U.1
  • 3
    • 0034730140 scopus 로고    scopus 로고
    • Singular value decomposition for genome-wide expression data processing and modelling
    • Alter O., Brown P.O., and Botstein D. Singular value decomposition for genome-wide expression data processing and modelling. Proc. Natl. Acad. Sci. U.S.A. 97 (2000) 10101-10106
    • (2000) Proc. Natl. Acad. Sci. U.S.A. , vol.97 , pp. 10101-10106
    • Alter, O.1    Brown, P.O.2    Botstein, D.3
  • 4
    • 41549159731 scopus 로고    scopus 로고
    • Evolutionary approaches for the reverse-engineering of gene regulatory networks: a study on a biologically realistic dataset
    • Auliac C., Frouin V., Gidrol X., and d'Alche-Buc F. Evolutionary approaches for the reverse-engineering of gene regulatory networks: a study on a biologically realistic dataset. BMC Bioinform. 9 (2008) 91
    • (2008) BMC Bioinform. , vol.9 , pp. 91
    • Auliac, C.1    Frouin, V.2    Gidrol, X.3    d'Alche-Buc, F.4
  • 5
    • 0023003380 scopus 로고
    • In vivo half-life of a protein is a function of its amino-terminal residue
    • Bachmair A., Finley D., and Varshavsky A. In vivo half-life of a protein is a function of its amino-terminal residue. Science 234 (1986) 179-186
    • (1986) Science , vol.234 , pp. 179-186
    • Bachmair, A.1    Finley, D.2    Varshavsky, A.3
  • 6
    • 33645307955 scopus 로고    scopus 로고
    • Inference of gene regulatory networks and compound mode of action from time course gene expression profiles
    • Bansal M., Gatta G.D., and di Bernardo D. Inference of gene regulatory networks and compound mode of action from time course gene expression profiles. Bioinformatics 22 (2006) 815-822
    • (2006) Bioinformatics , vol.22 , pp. 815-822
    • Bansal, M.1    Gatta, G.D.2    di Bernardo, D.3
  • 8
    • 0038483826 scopus 로고    scopus 로고
    • Emergence of scaling in random networks
    • Barabasi A.L., and Albert R. Emergence of scaling in random networks. Science 286 (1999) 509-512
    • (1999) Science , vol.286 , pp. 509-512
    • Barabasi, A.L.1    Albert, R.2
  • 10
    • 13744251104 scopus 로고    scopus 로고
    • Inferring combinatorial regulation of transcription in silico
    • Bluthgen N., Kielbasa S.M., and Herzel H. Inferring combinatorial regulation of transcription in silico. Nucleic Acids Res. 33 (2005) 272-279
    • (2005) Nucleic Acids Res. , vol.33 , pp. 272-279
    • Bluthgen, N.1    Kielbasa, S.M.2    Herzel, H.3
  • 11
    • 33747813561 scopus 로고    scopus 로고
    • The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo
    • Bonneau R., Reiss D.J., Shannon P., Facciotti M., Hood L., Baliga N.S., and Thorsson V. The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome Biol. 7 (2006) R36
    • (2006) Genome Biol. , vol.7
    • Bonneau, R.1    Reiss, D.J.2    Shannon, P.3    Facciotti, M.4    Hood, L.5    Baliga, N.S.6    Thorsson, V.7
  • 13
    • 12344288395 scopus 로고    scopus 로고
    • Effectiveness and limitation of two-dimensional gel electrophoresis in bacterial membrane protein proteomics and perspectives
    • Bunai K., and Yamane K. Effectiveness and limitation of two-dimensional gel electrophoresis in bacterial membrane protein proteomics and perspectives. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 815 (2005) 227-236
    • (2005) J. Chromatogr. B Anal. Technol. Biomed. Life Sci. , vol.815 , pp. 227-236
    • Bunai, K.1    Yamane, K.2
  • 14
    • 0033655775 scopus 로고    scopus 로고
    • Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements
    • Butte A.J., and Kohane I.S. Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. Pac. Symp. Biocomput. (2000) 418-429
    • (2000) Pac. Symp. Biocomput. , pp. 418-429
    • Butte, A.J.1    Kohane, I.S.2
  • 15
    • 0034710924 scopus 로고    scopus 로고
    • Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks
    • Butte A.J., Tamayo P., Slonim D., Golub T.R., and Kohane I.S. Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. Proc. Natl. Acad. Sci. U.S.A. 97 (2000) 12182-12186
    • (2000) Proc. Natl. Acad. Sci. U.S.A. , vol.97 , pp. 12182-12186
    • Butte, A.J.1    Tamayo, P.2    Slonim, D.3    Golub, T.R.4    Kohane, I.S.5
  • 17
    • 59649121280 scopus 로고    scopus 로고
    • Reverse engineering molecular regulatory networks from microarray data with qp-graphs
    • Castelo R., and Roverato A. Reverse engineering molecular regulatory networks from microarray data with qp-graphs. J. Comput. Biol. 16 (2009) 213-227
    • (2009) J. Comput. Biol. , vol.16 , pp. 213-227
    • Castelo, R.1    Roverato, A.2
  • 21
    • 0042128797 scopus 로고    scopus 로고
    • Incorporating biological knowledge into evaluation of causal regulatory hypotheses
    • Chrisman L., Langley P., Bay S., and Pohorille A. Incorporating biological knowledge into evaluation of causal regulatory hypotheses. Pac. Symp. Biocomput. (2003) 128-139
    • (2003) Pac. Symp. Biocomput. , pp. 128-139
    • Chrisman, L.1    Langley, P.2    Bay, S.3    Pohorille, A.4
  • 23
    • 36249003810 scopus 로고    scopus 로고
    • Benchmarking of dynamic Bayesian networks inferred from stochastic time-series data
    • David L.A., and Wiggins C.H. Benchmarking of dynamic Bayesian networks inferred from stochastic time-series data. Ann. N. Y. Acad. Sci. 1115 (2007) 90-101
    • (2007) Ann. N. Y. Acad. Sci. , vol.1115 , pp. 90-101
    • David, L.A.1    Wiggins, C.H.2
  • 24
    • 0036207347 scopus 로고    scopus 로고
    • Modeling and simulation of genetic regulatory systems: a literature review
    • de Jong H. Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol. 9 (2002) 67-103
    • (2002) J. Comput. Biol. , vol.9 , pp. 67-103
    • de Jong, H.1
  • 25
    • 12344321571 scopus 로고    scopus 로고
    • Discovery of meaningful associations in genomic data using partial correlation coefficients
    • de la Fuente A., Bing N., Hoeschele I., and Mendes P. Discovery of meaningful associations in genomic data using partial correlation coefficients. Bioinformatics 20 (2004) 3565-3574
    • (2004) Bioinformatics , vol.20 , pp. 3565-3574
    • de la Fuente, A.1    Bing, N.2    Hoeschele, I.3    Mendes, P.4
  • 27
    • 44849118743 scopus 로고    scopus 로고
    • Direct targets of the TRP63 transcription factor revealed by a combination of gene expression profiling and reverse engineering
    • Della Gatta G., Bansal M., Ambesi-Impiombato A., Antonini D., Missero C., and di Bernardo D. Direct targets of the TRP63 transcription factor revealed by a combination of gene expression profiling and reverse engineering. Genome Res. 18 (2008) 939-948
    • (2008) Genome Res. , vol.18 , pp. 939-948
    • Della Gatta, G.1    Bansal, M.2    Ambesi-Impiombato, A.3    Antonini, D.4    Missero, C.5    di Bernardo, D.6
  • 28
    • 22044438132 scopus 로고    scopus 로고
    • EXAMINE: a computational approach to reconstructing gene regulatory networks
    • Deng X., Geng H., and Ali H. EXAMINE: a computational approach to reconstructing gene regulatory networks. Biosystems 81 (2005) 125-136
    • (2005) Biosystems , vol.81 , pp. 125-136
    • Deng, X.1    Geng, H.2    Ali, H.3
  • 29
    • 0032612220 scopus 로고    scopus 로고
    • Linear modeling of mRNA expression levels during CNS development and injury
    • D'Haeseleer P., Wen X., Fuhrman S., and Somogyi R. Linear modeling of mRNA expression levels during CNS development and injury. Pac. Symp. Biocomput. (1999) 41-52
    • (1999) Pac. Symp. Biocomput. , pp. 41-52
    • D'Haeseleer, P.1    Wen, X.2    Fuhrman, S.3    Somogyi, R.4
  • 31
    • 34249932435 scopus 로고    scopus 로고
    • Probing transcription factor dynamics at the single-molecule level in a living cell
    • Elf J., Li G.W., and Xie X.S. Probing transcription factor dynamics at the single-molecule level in a living cell. Science 316 (2007) 1191-1194
    • (2007) Science , vol.316 , pp. 1191-1194
    • Elf, J.1    Li, G.W.2    Xie, X.S.3
  • 32
    • 33645294070 scopus 로고    scopus 로고
    • Oncomirs-microRNAs with a role in cancer
    • Esquela-Kerscher A., and Slack F.J. Oncomirs-microRNAs with a role in cancer. Nat. Rev. Cancer 6 (2006) 259-269
    • (2006) Nat. Rev. Cancer , vol.6 , pp. 259-269
    • Esquela-Kerscher, A.1    Slack, F.J.2
  • 35
    • 50949111867 scopus 로고    scopus 로고
    • Embedding mRNA stability in correlation analysis of time-series gene expression data
    • Farina L., De Santis A., Salvucci S., Morelli G., and Ruberti I. Embedding mRNA stability in correlation analysis of time-series gene expression data. PLoS Comput. Biol. 4 (2008) e1000141
    • (2008) PLoS Comput. Biol. , vol.4
    • Farina, L.1    De Santis, A.2    Salvucci, S.3    Morelli, G.4    Ruberti, I.5
  • 37
    • 0036100833 scopus 로고    scopus 로고
    • Analysis techniques for microarray time-series data
    • Filkov V., Skiena S., and Zhi J.Z. Analysis techniques for microarray time-series data. J. Comput. Biol. 9 (2002) 317-330
    • (2002) J. Comput. Biol. , vol.9 , pp. 317-330
    • Filkov, V.1    Skiena, S.2    Zhi, J.Z.3
  • 39
    • 0038048325 scopus 로고    scopus 로고
    • Inferring genetic networks and identifying compound mode of action via expression profiling
    • Gardner T.S., di Bernardo D., Lorenz D., and Collins J.J. Inferring genetic networks and identifying compound mode of action via expression profiling. Science 301 (2003) 102-105
    • (2003) Science , vol.301 , pp. 102-105
    • Gardner, T.S.1    di Bernardo, D.2    Lorenz, D.3    Collins, J.J.4
  • 41
    • 0036653675 scopus 로고    scopus 로고
    • Concomitant determination of absolute values of cellular protein amounts, synthesis rates, and turnover rates by quantitative proteome profiling
    • Gerner C., Vejda S., Gelbmann D., Bayer E., Gotzmann J., Schulte-Hermann R., and Mikulits W. Concomitant determination of absolute values of cellular protein amounts, synthesis rates, and turnover rates by quantitative proteome profiling. Mol. Cell Proteomics 1 (2002) 528-537
    • (2002) Mol. Cell Proteomics , vol.1 , pp. 528-537
    • Gerner, C.1    Vejda, S.2    Gelbmann, D.3    Bayer, E.4    Gotzmann, J.5    Schulte-Hermann, R.6    Mikulits, W.7
  • 42
    • 58149354385 scopus 로고    scopus 로고
    • Analysis of combinatorial cis-regulation in synthetic and genomic promoters
    • Gertz J., Siggia E.D., and Cohen B.A. Analysis of combinatorial cis-regulation in synthetic and genomic promoters. Nature 457 (2009) 215-218
    • (2009) Nature , vol.457 , pp. 215-218
    • Gertz, J.1    Siggia, E.D.2    Cohen, B.A.3
  • 43
    • 36248991815 scopus 로고    scopus 로고
    • A framework for elucidating regulatory networks based on prior information and expression data
    • Gevaert O., Van Vooren S., and De Moor B. A framework for elucidating regulatory networks based on prior information and expression data. Ann. N. Y. Acad. Sci. 1115 (2007) 240-248
    • (2007) Ann. N. Y. Acad. Sci. , vol.1115 , pp. 240-248
    • Gevaert, O.1    Van Vooren, S.2    De Moor, B.3
  • 45
    • 34249853738 scopus 로고    scopus 로고
    • Computational and experimental approaches for modeling gene regulatory networks
    • Goutsias J., and Lee N.H. Computational and experimental approaches for modeling gene regulatory networks. Curr. Pharm. Des. 13 (2007) 1415-1436
    • (2007) Curr. Pharm. Des. , vol.13 , pp. 1415-1436
    • Goutsias, J.1    Lee, N.H.2
  • 46
    • 0141920354 scopus 로고    scopus 로고
    • Comparing protein abundance and mRNA expression levels on a genomic scale
    • Greenbaum D., Colangelo C., Williams K., and Gerstein M. Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol. 4 (2003) 117
    • (2003) Genome Biol. , vol.4 , pp. 117
    • Greenbaum, D.1    Colangelo, C.2    Williams, K.3    Gerstein, M.4
  • 47
    • 0036545614 scopus 로고    scopus 로고
    • Complementary profiling of gene expression at the transcriptome and proteome levels in Saccharomyces cerevisiae
    • Griffin T.J., Gygi S.P., Ideker T., Rist B., Eng J., Hood L., and Aebersold R. Complementary profiling of gene expression at the transcriptome and proteome levels in Saccharomyces cerevisiae. Mol. Cell Proteomics 1 (2002) 323-333
    • (2002) Mol. Cell Proteomics , vol.1 , pp. 323-333
    • Griffin, T.J.1    Gygi, S.P.2    Ideker, T.3    Rist, B.4    Eng, J.5    Hood, L.6    Aebersold, R.7
  • 48
    • 22244454113 scopus 로고    scopus 로고
    • Synchronous neural activity in scale-free network models versus random network models
    • Grinstein G., and Linsker R. Synchronous neural activity in scale-free network models versus random network models. Proc. Natl. Acad. Sci. U.S.A. 102 (2005) 9948-9953
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 9948-9953
    • Grinstein, G.1    Linsker, R.2
  • 49
    • 17444430052 scopus 로고    scopus 로고
    • Dynamic network reconstruction from gene expression data applied to immune response during bacterial infection
    • Guthke R., Moller U., Hoffmann M., Thies F., and Topfer S. Dynamic network reconstruction from gene expression data applied to immune response during bacterial infection. Bioinformatics 21 (2005) 1626-1634
    • (2005) Bioinformatics , vol.21 , pp. 1626-1634
    • Guthke, R.1    Moller, U.2    Hoffmann, M.3    Thies, F.4    Topfer, S.5
  • 50
    • 0036366689 scopus 로고    scopus 로고
    • Combining location and expression data for principled discovery of genetic regulatory network models
    • Hartemink A.J., Gifford D.K., Jaakkola T.S., and Young R.A. Combining location and expression data for principled discovery of genetic regulatory network models. Pac. Symp. Biocomput. (2002) 437-449
    • (2002) Pac. Symp. Biocomput. , pp. 437-449
    • Hartemink, A.J.1    Gifford, D.K.2    Jaakkola, T.S.3    Young, R.A.4
  • 51
    • 62549091023 scopus 로고    scopus 로고
    • Benchmarking regulatory network reconstruction with GRENDEL
    • Haynes B.C., and Brent M.R. Benchmarking regulatory network reconstruction with GRENDEL. Bioinformatics 25 (2009) 801-807
    • (2009) Bioinformatics , vol.25 , pp. 801-807
    • Haynes, B.C.1    Brent, M.R.2
  • 52
    • 33645784574 scopus 로고    scopus 로고
    • In search of functional association from time-series microarray data based on the change trend and level of gene expression
    • He F., and Zeng A.P. In search of functional association from time-series microarray data based on the change trend and level of gene expression. BMC Bioinform. 7 (2006) 69
    • (2006) BMC Bioinform. , vol.7 , pp. 69
    • He, F.1    Zeng, A.P.2
  • 53
    • 38349026526 scopus 로고    scopus 로고
    • Dynamic cumulative activity of transcription factors as a mechanism of quantitative gene regulation
    • He F., Buer J., Zeng A.P., and Balling R. Dynamic cumulative activity of transcription factors as a mechanism of quantitative gene regulation. Genome Biol. 8 (2007) R181
    • (2007) Genome Biol. , vol.8
    • He, F.1    Buer, J.2    Zeng, A.P.3    Balling, R.4
  • 54
    • 61349180117 scopus 로고    scopus 로고
    • Gene regulatory network inference: data integration in dynamic models-a review
    • Hecker M., Lambeck S., Toepfer S., van Someren E., and Guthke R. Gene regulatory network inference: data integration in dynamic models-a review. Biosystems 96 (2009) 86-103
    • (2009) Biosystems , vol.96 , pp. 86-103
    • Hecker, M.1    Lambeck, S.2    Toepfer, S.3    van Someren, E.4    Guthke, R.5
  • 56
    • 1642363230 scopus 로고    scopus 로고
    • Loss of translational control in yeast compromised for the major mRNA decay pathway
    • Holmes L.E., Campbell S.G., De Long S.K., Sachs A.B., and Ashe M.P. Loss of translational control in yeast compromised for the major mRNA decay pathway. Mol. Cell Biol. 24 (2004) 2998-3010
    • (2004) Mol. Cell Biol. , vol.24 , pp. 2998-3010
    • Holmes, L.E.1    Campbell, S.G.2    De Long, S.K.3    Sachs, A.B.4    Ashe, M.P.5
  • 58
    • 0344464762 scopus 로고    scopus 로고
    • Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks
    • Husmeier D. Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 19 (2003) 2271-2282
    • (2003) Bioinformatics , vol.19 , pp. 2271-2282
    • Husmeier, D.1
  • 62
    • 33845476668 scopus 로고    scopus 로고
    • Reconstructing repressor protein levels from expression of gene targets in Escherichia coli
    • Khanin R., Vinciotti V., and Wit E. Reconstructing repressor protein levels from expression of gene targets in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 103 (2006) 18592-18596
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 18592-18596
    • Khanin, R.1    Vinciotti, V.2    Wit, E.3
  • 63
    • 34548299801 scopus 로고    scopus 로고
    • Bayesian Orthogonal Least Squares (BOLS) algorithm for reverse engineering of gene regulatory networks
    • Kim C.S. Bayesian Orthogonal Least Squares (BOLS) algorithm for reverse engineering of gene regulatory networks. BMC Bioinform. 8 (2007) 251
    • (2007) BMC Bioinform. , vol.8 , pp. 251
    • Kim, C.S.1
  • 64
    • 38349055557 scopus 로고    scopus 로고
    • Indeterminacy of reverse engineering of Gene Regulatory Networks: the curse of gene elasticity
    • Krishnan A., Giuliani A., and Tomita M. Indeterminacy of reverse engineering of Gene Regulatory Networks: the curse of gene elasticity. PLoS ONE 2 (2007) e562
    • (2007) PLoS ONE , vol.2
    • Krishnan, A.1    Giuliani, A.2    Tomita, M.3
  • 66
    • 0038281506 scopus 로고    scopus 로고
    • Inference of transcriptional regulation relationships from gene expression data
    • Kwon A.T., Hoos H.H., and Ng R. Inference of transcriptional regulation relationships from gene expression data. Bioinformatics 19 (2003) 905-912
    • (2003) Bioinformatics , vol.19 , pp. 905-912
    • Kwon, A.T.1    Hoos, H.H.2    Ng, R.3
  • 67
    • 10044240790 scopus 로고    scopus 로고
    • Using prior knowledge to improve genetic network reconstruction from microarray data
    • Le Phillip P., Bahl A., and Ungar L.H. Using prior knowledge to improve genetic network reconstruction from microarray data. In Silico Biol. 4 (2004) 335-353
    • (2004) In Silico Biol. , vol.4 , pp. 335-353
    • Le Phillip, P.1    Bahl, A.2    Ungar, L.H.3
  • 69
    • 9444239213 scopus 로고    scopus 로고
    • A probabilistic functional network of yeast genes
    • Lee I., Date S.V., Adai A.T., and Marcotte E.M. A probabilistic functional network of yeast genes. Science 306 (2004) 1555-1558
    • (2004) Science , vol.306 , pp. 1555-1558
    • Lee, I.1    Date, S.V.2    Adai, A.T.3    Marcotte, E.M.4
  • 70
    • 41549138299 scopus 로고    scopus 로고
    • An improved, bias-reduced probabilistic functional gene network of baker's yeast, Saccharomyces cerevisiae
    • Lee I., Li Z., and Marcotte E.M. An improved, bias-reduced probabilistic functional gene network of baker's yeast, Saccharomyces cerevisiae. PLoS ONE 2 (2007) e988
    • (2007) PLoS ONE , vol.2
    • Lee, I.1    Li, Z.2    Marcotte, E.M.3
  • 72
    • 58149349958 scopus 로고    scopus 로고
    • Learning transcriptional regulatory networks from high throughput gene expression data using continuous three-way mutual information
    • Luo W., Hankenson K.D., and Woolf P.J. Learning transcriptional regulatory networks from high throughput gene expression data using continuous three-way mutual information. BMC Bioinform. 9 (2008) 467
    • (2008) BMC Bioinform. , vol.9 , pp. 467
    • Luo, W.1    Hankenson, K.D.2    Woolf, P.J.3
  • 73
    • 27844482652 scopus 로고    scopus 로고
    • Estimating genomic coexpression networks using first-order conditional independence
    • Magwene P.M., and Kim J. Estimating genomic coexpression networks using first-order conditional independence. Genome Biol. 5 (2004) R100
    • (2004) Genome Biol. , vol.5
    • Magwene, P.M.1    Kim, J.2
  • 74
    • 0142027814 scopus 로고    scopus 로고
    • Structure and function of the feed-forward loop network motif
    • Mangan S., and Alon U. Structure and function of the feed-forward loop network motif. Proc. Natl. Acad. Sci. U.S.A. 100 (2003) 11980-11985
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 11980-11985
    • Mangan, S.1    Alon, U.2
  • 75
    • 36248989626 scopus 로고    scopus 로고
    • Theory and limitations of genetic network inference from microarray data
    • Margolin A.A., and Califano A. Theory and limitations of genetic network inference from microarray data. Ann. N. Y. Acad. Sci. 1115 (2007) 51-72
    • (2007) Ann. N. Y. Acad. Sci. , vol.1115 , pp. 51-72
    • Margolin, A.A.1    Califano, A.2
  • 77
    • 38449088751 scopus 로고    scopus 로고
    • Inferring cellular networks-a review
    • Markowetz F., and Spang R. Inferring cellular networks-a review. BMC Bioinform. 8 Suppl. 6 (2007) S5
    • (2007) BMC Bioinform. , vol.8 , Issue.SUPPL. 6
    • Markowetz, F.1    Spang, R.2
  • 78
    • 27644446030 scopus 로고    scopus 로고
    • Molecular biology. P-bodies mark the spot for controlling protein production
    • Marx J. Molecular biology. P-bodies mark the spot for controlling protein production. Science 310 (2005) 764-765
    • (2005) Science , vol.310 , pp. 764-765
    • Marx, J.1
  • 80
    • 2442718023 scopus 로고    scopus 로고
    • Using protein-protein interactions for refining gene networks estimated from microarray data by Bayesian networks
    • Nariai N., Kim S., Imoto S., and Miyano S. Using protein-protein interactions for refining gene networks estimated from microarray data by Bayesian networks. Pac. Symp. Biocomput. (2004) 336-347
    • (2004) Pac. Symp. Biocomput. , pp. 336-347
    • Nariai, N.1    Kim, S.2    Imoto, S.3    Miyano, S.4
  • 83
    • 33645807381 scopus 로고    scopus 로고
    • Turnover in the Alps: an mRNA perspective. Workshops on mechanisms and regulation of mRNA turnover
    • Newbury S.F., Muhlemann O., and Stoecklin G. Turnover in the Alps: an mRNA perspective. Workshops on mechanisms and regulation of mRNA turnover. EMBO Rep. 7 (2006) 143-148
    • (2006) EMBO Rep. , vol.7 , pp. 143-148
    • Newbury, S.F.1    Muhlemann, O.2    Stoecklin, G.3
  • 84
    • 33748530630 scopus 로고    scopus 로고
    • Reverse engineering genetic networks using evolutionary computation
    • Noman N., and Iba H. Reverse engineering genetic networks using evolutionary computation. Genome Inform. 16 (2005) 205-214
    • (2005) Genome Inform. , vol.16 , pp. 205-214
    • Noman, N.1    Iba, H.2
  • 85
    • 4243144353 scopus 로고
    • Certain topics in telegraphic transmission theory
    • (Reprinted from Transactions of the AIEE, pp. 617-644, 1928)
    • Nyquist H. Certain topics in telegraphic transmission theory. Proceedings of the IEEE, vol. 86 (1928/2002) 280-305 (Reprinted from Transactions of the AIEE, pp. 617-644, 1928)
    • (1928) Proceedings of the IEEE, vol. 86 , pp. 280-305
    • Nyquist, H.1
  • 86
    • 0344844807 scopus 로고    scopus 로고
    • Modelling regulatory pathways in E. coli from time series expression profiles
    • Ong I., Glasner J., and Page D. Modelling regulatory pathways in E. coli from time series expression profiles. Bioinformatics 18 (2002) S241-248
    • (2002) Bioinformatics , vol.18
    • Ong, I.1    Glasner, J.2    Page, D.3
  • 89
    • 0035861975 scopus 로고    scopus 로고
    • Beyond synexpression relationships: local clustering of time-shifted and inverted gene expression profiles identifies new, biologically relevant interactions
    • Qian J., Dolled-Filhart M., Lin J., Yu H., and Gerstein M. Beyond synexpression relationships: local clustering of time-shifted and inverted gene expression profiles identifies new, biologically relevant interactions. J. Mol. Biol. 314 (2001) 1053-1066
    • (2001) J. Mol. Biol. , vol.314 , pp. 1053-1066
    • Qian, J.1    Dolled-Filhart, M.2    Lin, J.3    Yu, H.4    Gerstein, M.5
  • 90
    • 0036627676 scopus 로고    scopus 로고
    • Reverse engineering of regulatory networks: simulation studies on a genetic algorithm approach for ranking hypotheses
    • Repsilber D., Liljenstrom H., and Andersson S.G. Reverse engineering of regulatory networks: simulation studies on a genetic algorithm approach for ranking hypotheses. Biosystems 66 (2002) 31-41
    • (2002) Biosystems , vol.66 , pp. 31-41
    • Repsilber, D.1    Liljenstrom, H.2    Andersson, S.G.3
  • 91
    • 25144501141 scopus 로고    scopus 로고
    • A Bayesian regression approach to the inference of regulatory networks from gene expression data
    • Rogers S., and Girolami M. A Bayesian regression approach to the inference of regulatory networks from gene expression data. Bioinformatics 21 (2005) 3131-3137
    • (2005) Bioinformatics , vol.21 , pp. 3131-3137
    • Rogers, S.1    Girolami, M.2
  • 92
    • 31044433976 scopus 로고    scopus 로고
    • Transcriptional response of steady-state yeast cultures to transient perturbations in carbon source
    • Ronen M., and Botstein D. Transcriptional response of steady-state yeast cultures to transient perturbations in carbon source. Proc. Natl. Acad. Sci. U.S.A. 103 (2006) 389-394
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 389-394
    • Ronen, M.1    Botstein, D.2
  • 93
    • 70449530302 scopus 로고    scopus 로고
    • Metabolomics for functional genomics, systems biology, and biotechnology
    • Saito K., and Matsuda F. Metabolomics for functional genomics, systems biology, and biotechnology. Annu. Rev. Plant Biol. (2008)
    • (2008) Annu. Rev. Plant Biol.
    • Saito, K.1    Matsuda, F.2
  • 94
    • 0014733809 scopus 로고
    • Biochemical systems analysis. 3. Dynamic solutions using a power-law approximation
    • Savageau M.A. Biochemical systems analysis. 3. Dynamic solutions using a power-law approximation. J. Theor. Biol. 26 (1970) 215-226
    • (1970) J. Theor. Biol. , vol.26 , pp. 215-226
    • Savageau, M.A.1
  • 95
    • 15944364151 scopus 로고    scopus 로고
    • An empirical Bayes approach to inferring large-scale gene association networks
    • Schafer J., and Strimmer K. An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics 21 (2005) 754-764
    • (2005) Bioinformatics , vol.21 , pp. 754-764
    • Schafer, J.1    Strimmer, K.2
  • 96
    • 0028806048 scopus 로고
    • Quantitative monitoring of gene expression patterns with a complementary DNA microarray
    • Schena M., Shalon D., Davis R.W., and Brown P.O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270 (1995) 467-470
    • (1995) Science , vol.270 , pp. 467-470
    • Schena, M.1    Shalon, D.2    Davis, R.W.3    Brown, P.O.4
  • 97
    • 1642528831 scopus 로고    scopus 로고
    • Post-translational modifications and their biological functions: proteomic analysis and systematic approaches
    • Seo J., and Lee K.J. Post-translational modifications and their biological functions: proteomic analysis and systematic approaches. J. Biochem. Mol. Biol. 37 (2004) 35-44
    • (2004) J. Biochem. Mol. Biol. , vol.37 , pp. 35-44
    • Seo, J.1    Lee, K.J.2
  • 98
    • 0031996528 scopus 로고
    • Communication in the presence of noise
    • (Reprinted from Proceedings of the IRE, 37, pp. 10-21, 1949)
    • Shannon C.E. Communication in the presence of noise. Proceedings of the IEEE, vol. 86 (1949/1998) 447-457 (Reprinted from Proceedings of the IRE, 37, pp. 10-21, 1949)
    • (1949) Proceedings of the IEEE, vol. 86 , pp. 447-457
    • Shannon, C.E.1
  • 99
    • 34547126444 scopus 로고    scopus 로고
    • Regulation of transcript elongation through cooperative and ordered recruitment of cofactors
    • Sharma M., George A.A., Singh B.N., Sahoo N.C., and Rao K.V. Regulation of transcript elongation through cooperative and ordered recruitment of cofactors. J. Biol. Chem. 282 (2007) 20887-20896
    • (2007) J. Biol. Chem. , vol.282 , pp. 20887-20896
    • Sharma, M.1    George, A.A.2    Singh, B.N.3    Sahoo, N.C.4    Rao, K.V.5
  • 100
    • 0036578795 scopus 로고    scopus 로고
    • Network motifs in the transcriptional regulation network of Escherichia coli
    • Shen-Orr S.S., Milo R., Mangan S., and Alon U. Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet. 31 (2002) 64-68
    • (2002) Nat. Genet. , vol.31 , pp. 64-68
    • Shen-Orr, S.S.1    Milo, R.2    Mangan, S.3    Alon, U.4
  • 102
    • 34547844096 scopus 로고    scopus 로고
    • Comparing association network algorithms for reverse engineering of large-scale gene regulatory networks: synthetic versus real data
    • Soranzo N., Bianconi G., and Altafini C. Comparing association network algorithms for reverse engineering of large-scale gene regulatory networks: synthetic versus real data. Bioinformatics 23 (2007) 1640-1647
    • (2007) Bioinformatics , vol.23 , pp. 1640-1647
    • Soranzo, N.1    Bianconi, G.2    Altafini, C.3
  • 105
    • 0141993704 scopus 로고    scopus 로고
    • A gene-coexpression network for global discovery of conserved genetic modules
    • Stuart J.M., Segal E., Koller D., and Kim S.K. A gene-coexpression network for global discovery of conserved genetic modules. Science 302 (2003) 249-255
    • (2003) Science , vol.302 , pp. 249-255
    • Stuart, J.M.1    Segal, E.2    Koller, D.3    Kim, S.K.4
  • 106
    • 3242891560 scopus 로고    scopus 로고
    • Estimating gene networks from gene expression data by combining Bayesian network model with promoter element detection
    • Tamada Y., Kim S., Bannai H., Imoto S., Tashiro K., Kuhara S., and Miyano S. Estimating gene networks from gene expression data by combining Bayesian network model with promoter element detection. Bioinformatics 19 Suppl. 2 (2003) ii227-236
    • (2003) Bioinformatics , vol.19 , Issue.SUPPL. 2
    • Tamada, Y.1    Kim, S.2    Bannai, H.3    Imoto, S.4    Tashiro, K.5    Kuhara, S.6    Miyano, S.7
  • 107
    • 31044450846 scopus 로고    scopus 로고
    • Utilizing evolutionary information and gene expression data for estimating gene networks with bayesian network models
    • Tamada Y., Bannai H., Imoto S., Katayama T., Kanehisa M., and Miyano S. Utilizing evolutionary information and gene expression data for estimating gene networks with bayesian network models. J. Bioinform. Comput. Biol. 3 (2005) 1295-1313
    • (2005) J. Bioinform. Comput. Biol. , vol.3 , pp. 1295-1313
    • Tamada, Y.1    Bannai, H.2    Imoto, S.3    Katayama, T.4    Kanehisa, M.5    Miyano, S.6
  • 108
    • 0037687416 scopus 로고    scopus 로고
    • Reverse engineering gene networks: integrating genetic perturbations with dynamical modelling
    • Tegner J., Yeung M.K., Hasty J., and Collins J.J. Reverse engineering gene networks: integrating genetic perturbations with dynamical modelling. Proc. Natl. Acad. Sci. U.S.A. 100 (2003) 5944-5949
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 5944-5949
    • Tegner, J.1    Yeung, M.K.2    Hasty, J.3    Collins, J.J.4
  • 109
    • 15944378903 scopus 로고    scopus 로고
    • Post-translational modifications influence transcription factor activity: a view from the ETS superfamily
    • Tootle T.L., and Rebay I. Post-translational modifications influence transcription factor activity: a view from the ETS superfamily. Bioessays 27 (2005) 285-298
    • (2005) Bioessays , vol.27 , pp. 285-298
    • Tootle, T.L.1    Rebay, I.2
  • 110
    • 0038492417 scopus 로고    scopus 로고
    • A Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae)
    • Troyanskaya O.G., Dolinski K., Owen A.B., Altman R.B., and Botstein D. A Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae). Proc. Natl. Acad. Sci. U.S.A. 100 (2003) 8348-8353
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 8348-8353
    • Troyanskaya, O.G.1    Dolinski, K.2    Owen, A.B.3    Altman, R.B.4    Botstein, D.5
  • 111
    • 1342286937 scopus 로고    scopus 로고
    • Studying the conditions for learning dynamic bayesian networks to discover genetic regulatory networks
    • van Berlo R.J.P., van Someren E.P., and Reinders M.J.T. Studying the conditions for learning dynamic bayesian networks to discover genetic regulatory networks. Simulation 79 (2003) 689-702
    • (2003) Simulation , vol.79 , pp. 689-702
    • van Berlo, R.J.P.1    van Someren, E.P.2    Reinders, M.J.T.3
  • 112
    • 4644292576 scopus 로고    scopus 로고
    • The yeast coexpression network has a small-world, scale-free architecture and can be explained by a simple model
    • van Noort V., Snel B., and Huynen M.A. The yeast coexpression network has a small-world, scale-free architecture and can be explained by a simple model. EMBO Rep. 5 (2004) 280-284
    • (2004) EMBO Rep. , vol.5 , pp. 280-284
    • van Noort, V.1    Snel, B.2    Huynen, M.A.3
  • 113
    • 33845410054 scopus 로고    scopus 로고
    • Dynamic modelling and analysis of biochemical networks: mechanism-based models and model-based experiments
    • van Riel N.A. Dynamic modelling and analysis of biochemical networks: mechanism-based models and model-based experiments. Brief Bioinform. 7 (2006) 364-374
    • (2006) Brief Bioinform. , vol.7 , pp. 364-374
    • van Riel, N.A.1
  • 117
    • 0034104824 scopus 로고    scopus 로고
    • Coarse-grained reverse engineering of genetic regulatory networks
    • Wahde M., and Hertz J. Coarse-grained reverse engineering of genetic regulatory networks. Biosystems 55 (2000) 129-136
    • (2000) Biosystems , vol.55 , pp. 129-136
    • Wahde, M.1    Hertz, J.2
  • 118
    • 33749860977 scopus 로고    scopus 로고
    • Post-translational modifications in the context of therapeutic proteins
    • Walsh G., and Jefferis R. Post-translational modifications in the context of therapeutic proteins. Nat. Biotechnol. 24 (2006) 1241-1252
    • (2006) Nat. Biotechnol. , vol.24 , pp. 1241-1252
    • Walsh, G.1    Jefferis, R.2
  • 119
    • 59949103192 scopus 로고    scopus 로고
    • High-resolution human core-promoter prediction with CoreBoost_HM
    • Wang X., Xuan Z., Zhao X., Li Y., and Zhang M.Q. High-resolution human core-promoter prediction with CoreBoost_HM. Genome Res. 19 (2009) 266-275
    • (2009) Genome Res. , vol.19 , pp. 266-275
    • Wang, X.1    Xuan, Z.2    Zhao, X.3    Li, Y.4    Zhang, M.Q.5
  • 120
    • 0035106351 scopus 로고    scopus 로고
    • Large-scale analysis of the yeast proteome by multidimensional protein identification technology
    • Washburn M.P., Wolters D., and Yates III J.R. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 19 (2001) 242-247
    • (2001) Nat. Biotechnol. , vol.19 , pp. 242-247
    • Washburn, M.P.1    Wolters, D.2    Yates III, J.R.3
  • 121
    • 0142040405 scopus 로고    scopus 로고
    • Metabolomics in systems biology
    • Weckwerth W. Metabolomics in systems biology. Annu. Rev. Plant Biol. 54 (2003) 669-689
    • (2003) Annu. Rev. Plant Biol. , vol.54 , pp. 669-689
    • Weckwerth, W.1
  • 122
    • 34249774309 scopus 로고    scopus 로고
    • Reconstructing gene regulatory networks with bayesian networks by combining expression data with multiple sources of prior knowledge
    • (Article 15)
    • Werhli A.V., and Husmeier D. Reconstructing gene regulatory networks with bayesian networks by combining expression data with multiple sources of prior knowledge. Stat. Appl. Genet. Mol. Biol. 6 (2007) (Article 15)
    • (2007) Stat. Appl. Genet. Mol. Biol. , vol.6
    • Werhli, A.V.1    Husmeier, D.2
  • 123
    • 33749825955 scopus 로고    scopus 로고
    • Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical gaussian models and bayesian networks
    • Werhli A.V., Grzegorczyk M., and Husmeier D. Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical gaussian models and bayesian networks. Bioinformatics 22 (2006) 2523-2531
    • (2006) Bioinformatics , vol.22 , pp. 2523-2531
    • Werhli, A.V.1    Grzegorczyk, M.2    Husmeier, D.3
  • 124
    • 63049087845 scopus 로고    scopus 로고
    • Strategy for surveying the proteome using affinity proteomics and mass spectrometry
    • Wingren C., James P., and Borrebaeck C.A. Strategy for surveying the proteome using affinity proteomics and mass spectrometry. Proteomics 9 (2009) 1511-1517
    • (2009) Proteomics , vol.9 , pp. 1511-1517
    • Wingren, C.1    James, P.2    Borrebaeck, C.A.3
  • 125
    • 1642586299 scopus 로고    scopus 로고
    • Control of gene expression by a natural metabolite-responsive ribozyme
    • Winkler W.C., Nahvi A., Roth A., Collins J.A., and Breaker R.R. Control of gene expression by a natural metabolite-responsive ribozyme. Nature 428 (2004) 281-286
    • (2004) Nature , vol.428 , pp. 281-286
    • Winkler, W.C.1    Nahvi, A.2    Roth, A.3    Collins, J.A.4    Breaker, R.R.5
  • 126
    • 61849137222 scopus 로고    scopus 로고
    • Many roads to maturity: microRNA biogenesis pathways and their regulation
    • Winter J., Jung S., Keller S., Gregory R.I., and Diederichs S. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat. Cell Biol. 11 (2009) 228-234
    • (2009) Nat. Cell Biol. , vol.11 , pp. 228-234
    • Winter, J.1    Jung, S.2    Keller, S.3    Gregory, R.I.4    Diederichs, S.5
  • 127
  • 128
    • 12344257752 scopus 로고    scopus 로고
    • GeneNetwork: an interactive tool for reconstruction of genetic networks using microarray data
    • Wu C.C., Huang H.C., Juan H.F., and Chen S.T. GeneNetwork: an interactive tool for reconstruction of genetic networks using microarray data. Bioinformatics 20 (2004) 3691-3693
    • (2004) Bioinformatics , vol.20 , pp. 3691-3693
    • Wu, C.C.1    Huang, H.C.2    Juan, H.F.3    Chen, S.T.4
  • 129
    • 39149104076 scopus 로고    scopus 로고
    • Structural systems identification of genetic regulatory networks
    • Xiong H., and Choe Y. Structural systems identification of genetic regulatory networks. Bioinformatics 24 (2008) 553-560
    • (2008) Bioinformatics , vol.24 , pp. 553-560
    • Xiong, H.1    Choe, Y.2
  • 131
    • 0037197936 scopus 로고    scopus 로고
    • Reverse engineering gene networks using singular value decomposition and robust regression
    • Yeung M.K., Tegner J., and Collins J.J. Reverse engineering gene networks using singular value decomposition and robust regression. Proc. Natl. Acad. Sci. U.S.A. 99 (2002) 6163-6168
    • (2002) Proc. Natl. Acad. Sci. U.S.A. , vol.99 , pp. 6163-6168
    • Yeung, M.K.1    Tegner, J.2    Collins, J.J.3
  • 132
    • 0042706147 scopus 로고    scopus 로고
    • Genomic analysis of gene expression relationships in transcriptional regulatory networks
    • Yu H., Luscombe N.M., Qian J., and Gerstein M. Genomic analysis of gene expression relationships in transcriptional regulatory networks. Trends Genet. 19 (2003) 422-427
    • (2003) Trends Genet. , vol.19 , pp. 422-427
    • Yu, H.1    Luscombe, N.M.2    Qian, J.3    Gerstein, M.4
  • 133
    • 12344259602 scopus 로고    scopus 로고
    • Advances to Bayesian network inference for generating causal networks from observational biological data
    • Yu J., Smith V.A., Wang P.P., Hartemink A.J., and Jarvis E.D. Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics 20 (2004) 3594-3603
    • (2004) Bioinformatics , vol.20 , pp. 3594-3603
    • Yu, J.1    Smith, V.A.2    Wang, P.P.3    Hartemink, A.J.4    Jarvis, E.D.5
  • 134
    • 46249109755 scopus 로고    scopus 로고
    • Discerning static and causal interactions in genome-wide reverse engineering problems
    • Zampieri M., Soranzo N., and Altafini C. Discerning static and causal interactions in genome-wide reverse engineering problems. Bioinformatics 24 (2008) 1510-1515
    • (2008) Bioinformatics , vol.24 , pp. 1510-1515
    • Zampieri, M.1    Soranzo, N.2    Altafini, C.3
  • 135
    • 38449108806 scopus 로고    scopus 로고
    • Computational analyses of eukaryotic promoters
    • Zhang M.Q. Computational analyses of eukaryotic promoters. BMC Bioinform. 8 Suppl. 6 (2007) S3
    • (2007) BMC Bioinform. , vol.8 , Issue.SUPPL. 6
    • Zhang, M.Q.1
  • 136
    • 33748654580 scopus 로고    scopus 로고
    • Inferring gene regulatory networks from time series data using the minimum description length principle
    • Zhao W., Serpedin E., and Dougherty E.R. Inferring gene regulatory networks from time series data using the minimum description length principle. Bioinformatics 22 (2006) 2129-2135
    • (2006) Bioinformatics , vol.22 , pp. 2129-2135
    • Zhao, W.1    Serpedin, E.2    Dougherty, E.R.3
  • 137
    • 47649123776 scopus 로고    scopus 로고
    • Recovering genetic regulatory networks from chromatin immunoprecipitation and steady-state microarray data
    • Zhao W., Serpedin E., and Dougherty E.R. Recovering genetic regulatory networks from chromatin immunoprecipitation and steady-state microarray data. EURASIP J. Bioinform. Syst. Biol. (2008) 248747
    • (2008) EURASIP J. Bioinform. Syst. Biol. , pp. 248747
    • Zhao, W.1    Serpedin, E.2    Dougherty, E.R.3
  • 138
    • 12744261506 scopus 로고    scopus 로고
    • A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data
    • Zou M., and Conzen S.D. A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics 21 (2005) 71-79
    • (2005) Bioinformatics , vol.21 , pp. 71-79
    • Zou, M.1    Conzen, S.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.