메뉴 건너뛰기




Volumn 48, Issue 1, 2014, Pages 55-65

A review on the computational approaches for gene regulatory network construction

Author keywords

Bayesian network; Boolean network; Computational approaches; Dynamic Bayesian network; Gene expression data; Gene regulatory network; Neural network; Ordinary differential equation; Probabilistic Boolean network

Indexed keywords

COMPUTATIONAL METHODS; GENE EXPRESSION; NEURAL NETWORKS; ORDINARY DIFFERENTIAL EQUATIONS;

EID: 84896370627     PISSN: 00104825     EISSN: 18790534     Source Type: Journal    
DOI: 10.1016/j.compbiomed.2014.02.011     Document Type: Review
Times cited : (199)

References (71)
  • 1
    • 0032413101 scopus 로고    scopus 로고
    • Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotranposons
    • SanMiguel P., Bennetzen J.L. Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotranposons. Ann. Botary 1998, 82:37-44.
    • (1998) Ann. Botary , vol.82 , pp. 37-44
    • SanMiguel, P.1    Bennetzen, J.L.2
  • 2
    • 72749127435 scopus 로고
    • The origin and behavior of mutable loci in maize
    • McClintock B. The origin and behavior of mutable loci in maize. Proc. Natl. Acad. Sci. USA 1950, 36:344-355.
    • (1950) Proc. Natl. Acad. Sci. USA , vol.36 , pp. 344-355
    • McClintock, B.1
  • 3
    • 0037440734 scopus 로고    scopus 로고
    • Evolution of transcription factors and the gene regulatory network in Escherichia coli
    • Babu M.M., Teichmann S.A. Evolution of transcription factors and the gene regulatory network in Escherichia coli. Nucleic Acids Res. 2003, 31:1234-1244.
    • (2003) Nucleic Acids Res. , vol.31 , pp. 1234-1244
    • Babu, M.M.1    Teichmann, S.A.2
  • 5
    • 77951259297 scopus 로고    scopus 로고
    • Challenges for modeling global gene regulatory networks during development: insights from Drosophila
    • Wilczynski B., Furlong E.E.M. Challenges for modeling global gene regulatory networks during development: insights from Drosophila. Dev. Biol. 2009, 340(2):161-169.
    • (2009) Dev. Biol. , vol.340 , Issue.2 , pp. 161-169
    • Wilczynski, B.1    Furlong, E.E.M.2
  • 6
    • 79955855311 scopus 로고    scopus 로고
    • Existence criteria of periodic oscillations in cyclic gene regulatory networks
    • Hori Y., Kim T.Y., Hara S. Existence criteria of periodic oscillations in cyclic gene regulatory networks. Automatica 2011, 47(6):1203-1209.
    • (2011) Automatica , vol.47 , Issue.6 , pp. 1203-1209
    • Hori, Y.1    Kim, T.Y.2    Hara, S.3
  • 7
    • 79952996247 scopus 로고    scopus 로고
    • Combination of neuro fuzzy network models with biological knowledge for reconstructing gene regulatory networks
    • Liu G., Liu L., Liu C., Zheng M., Su L., Zhou C. Combination of neuro fuzzy network models with biological knowledge for reconstructing gene regulatory networks. J. Bionic Eng. 2011, 8:98-106.
    • (2011) J. Bionic Eng. , vol.8 , pp. 98-106
    • Liu, G.1    Liu, L.2    Liu, C.3    Zheng, M.4    Su, L.5    Zhou, C.6
  • 8
    • 38049064018 scopus 로고    scopus 로고
    • Inferring gene regulatory networks from expression data
    • Kaderali L., Radde N. Inferring gene regulatory networks from expression data. Stud. Comput. Intell. 2008, 94:33-74.
    • (2008) Stud. Comput. Intell. , vol.94 , pp. 33-74
    • Kaderali, L.1    Radde, N.2
  • 13
    • 67449095889 scopus 로고    scopus 로고
    • Computational methods for discovering gene networks from expression data
    • Lee W.P., Tzou W.S. Computational methods for discovering gene networks from expression data. Brie. Bioinf. 2009, 10(4):408-423.
    • (2009) Brie. Bioinf. , vol.10 , Issue.4 , pp. 408-423
    • Lee, W.P.1    Tzou, W.S.2
  • 14
    • 84860280305 scopus 로고    scopus 로고
    • Gene regulatory network inference: evaluation and application to ovarian cancer allows the prioritization of drug targets
    • Madhamshettiwar P.B., Maetschke S.R., Davis M.J., Reverter A., Ragan M.A. Gene regulatory network inference: evaluation and application to ovarian cancer allows the prioritization of drug targets. Genome Med. 2012, 4:41.
    • (2012) Genome Med. , vol.4 , pp. 41
    • Madhamshettiwar, P.B.1    Maetschke, S.R.2    Davis, M.J.3    Reverter, A.4    Ragan, M.A.5
  • 16
    • 0141993704 scopus 로고    scopus 로고
    • A gene-coexpression network for global discovery of conserved genetic modules
    • Stuart J.M., Segal E., Koller D., Kim S.K. A gene-coexpression network for global discovery of conserved genetic modules. Science 2003, 302(5643):249-255.
    • (2003) Science , vol.302 , Issue.5643 , pp. 249-255
    • Stuart, J.M.1    Segal, E.2    Koller, D.3    Kim, S.K.4
  • 18
    • 0032441150 scopus 로고    scopus 로고
    • Cluster analysis and display of genome-wide expression patterns
    • Eisen M., Spellman P., Brown P., Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 1998, 95(25):14863-14868.
    • (1998) Proc. Natl. Acad. Sci. USA , vol.95 , Issue.25 , pp. 14863-14868
    • Eisen, M.1    Spellman, P.2    Brown, P.3    Botstein, D.4
  • 20
    • 34249853738 scopus 로고    scopus 로고
    • Computational and experimental approaches for modeling gene regulatory networks
    • Goutsias J., Lee N.H. Computational and experimental approaches for modeling gene regulatory networks. Curr. Pharm. Des. 2007, 13:1415-1436.
    • (2007) Curr. Pharm. Des. , vol.13 , pp. 1415-1436
    • Goutsias, J.1    Lee, N.H.2
  • 22
    • 85145635829 scopus 로고    scopus 로고
    • Identifying gene regulatory networks from gene expression data
    • 27.1-27.29, Chapman and Hall, Boca Raton, FL, (Chapter 27)
    • Filkov V. Identifying gene regulatory networks from gene expression data. Handbook of Computational Molecular Biology 2005, 27-1-27-29. Chapman and Hall, Boca Raton, FL, (Chapter 27).
    • (2005) Handbook of Computational Molecular Biology
    • Filkov, V.1
  • 24
    • 18144442687 scopus 로고    scopus 로고
    • Inferring subnetworks from perturbed expression profiles
    • Pe'er D., Regev A., Elidan G., Friedman N. Inferring subnetworks from perturbed expression profiles. Bioinformatics 2001, 17(Suppl. 1):S215-S224.
    • (2001) Bioinformatics , vol.17 , Issue.SUPPL. 1
    • Pe'er, D.1    Regev, A.2    Elidan, G.3    Friedman, N.4
  • 25
    • 34249774309 scopus 로고    scopus 로고
    • Reconstructing gene regulatory networks with bayesian networks by combining expression data with multiple sources of prior knowledge
    • Werhli A.V., Husmeier D. Reconstructing gene regulatory networks with bayesian networks by combining expression data with multiple sources of prior knowledge. Stat. Appl. Genet. Mol. Biol. 2007, 6:15.
    • (2007) Stat. Appl. Genet. Mol. Biol. , vol.6 , pp. 15
    • Werhli, A.V.1    Husmeier, D.2
  • 26
    • 63649099828 scopus 로고    scopus 로고
    • Gene regulatory network modeling using bayesian networks and cross correlation
    • Yavari F., Towhidkhah F., Gharibzadeh S. Gene regulatory network modeling using bayesian networks and cross correlation. Biomed. Eng. Conf. 2008, 1-4. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4786041.
    • (2008) Biomed. Eng. Conf. , pp. 1-4
    • Yavari, F.1    Towhidkhah, F.2    Gharibzadeh, S.3
  • 27
    • 84896350147 scopus 로고    scopus 로고
    • Network based algorithm for gene regulatory network reconstruction, signal processing
    • Yang B., Zhang J., Li A., Bayesian A. Network based algorithm for gene regulatory network reconstruction, signal processing. Commun. Comput. IEEE Int. Conf. 2011, 1-4. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6061811.
    • (2011) Commun. Comput. IEEE Int. Conf. , pp. 1-4
    • Yang, B.1    Zhang, J.2    Li, A.3    Bayesian, A.4
  • 28
    • 84891895429 scopus 로고    scopus 로고
    • Using Bayesian networks to construct gene regulatory networks from microarray data
    • Tan A.K., Mohamad M.S. Using Bayesian networks to construct gene regulatory networks from microarray data. J. Teknol. 2012, 58:1-6.
    • (2012) J. Teknol. , vol.58 , pp. 1-6
    • Tan, A.K.1    Mohamad, M.S.2
  • 29
    • 69849083395 scopus 로고    scopus 로고
    • Modeling and inference with relational dynamic bayesian networkss
    • Manfredotti C.E. Modeling and inference with relational dynamic bayesian networkss. Lect. Notes Comput. Sci. 2009, 5549:287-290.
    • (2009) Lect. Notes Comput. Sci. , vol.5549 , pp. 287-290
    • Manfredotti, C.E.1
  • 31
    • 33746353952 scopus 로고    scopus 로고
    • Applying dynamic Bayesian networks to perturbed gene expression data
    • Dojer N., Gambin A., Mizera A., Wilczyński B., Tiuryn J. Applying dynamic Bayesian networks to perturbed gene expression data. BMC Bioinf. 2006, 7:249-259.
    • (2006) BMC Bioinf. , vol.7 , pp. 249-259
    • Dojer, N.1    Gambin, A.2    Mizera, A.3    Wilczyński, B.4    Tiuryn, J.5
  • 32
    • 77956846279 scopus 로고    scopus 로고
    • Dynamic Bayesian networks modeling for inferring genetic regulatory networks by search strategy: comparison between greedy hill climbing and MCMC methods
    • Wu H., Liu X. Dynamic Bayesian networks modeling for inferring genetic regulatory networks by search strategy: comparison between greedy hill climbing and MCMC methods. Int. J. Inf. Math. Sci. 2009, 5:189-199.
    • (2009) Int. J. Inf. Math. Sci. , vol.5 , pp. 189-199
    • Wu, H.1    Liu, X.2
  • 33
    • 79951965650 scopus 로고    scopus 로고
    • Improvements in the reconstruction of time varying gene regulatory networks: dynamic programming and regularization by information sharing among genes
    • Grzegorczyk M., Husmeier D. Improvements in the reconstruction of time varying gene regulatory networks: dynamic programming and regularization by information sharing among genes. Bioinformatics 2011, 27:693-699.
    • (2011) Bioinformatics , vol.27 , pp. 693-699
    • Grzegorczyk, M.1    Husmeier, D.2
  • 35
    • 84896337966 scopus 로고    scopus 로고
    • Gene regulatory network modeling via global optimization of high order Dynamic Bayesian Networks
    • Vinh N.X., Chetty M., Coppel R., Wangikar P.P. Gene regulatory network modeling via global optimization of high order Dynamic Bayesian Networks. BMC Bioinf. 2012, 27:2765-2766.
    • (2012) BMC Bioinf. , vol.27 , pp. 2765-2766
    • Vinh, N.X.1    Chetty, M.2    Coppel, R.3    Wangikar, P.P.4
  • 36
    • 0038047901 scopus 로고    scopus 로고
    • On learning gene regulatory networks under the Boolean network
    • Lahdesmaki H., Shmulevich I., Yli-Harja O. On learning gene regulatory networks under the Boolean network. Model Mach. Learning 2003, 52:147-167.
    • (2003) Model Mach. Learning , vol.52 , pp. 147-167
    • Lahdesmaki, H.1    Shmulevich, I.2    Yli-Harja, O.3
  • 37
    • 52249115857 scopus 로고    scopus 로고
    • Inferring gene regulatory networks by thermodynamic modelling
    • Chen C.C., Zhong S. Inferring gene regulatory networks by thermodynamic modelling. BMC Genomics 2008, 9(Suppl. 2):S19.
    • (2008) BMC Genomics , vol.9 , Issue.SUPPL. 2
    • Chen, C.C.1    Zhong, S.2
  • 38
    • 45849093636 scopus 로고    scopus 로고
    • Boolean network model predicts cell cyclesequence of fission yeast
    • Davidich M.I., Bornholdt S. Boolean network model predicts cell cyclesequence of fission yeast. PLoS One 2008, 3(2):e1672.
    • (2008) PLoS One , vol.3 , Issue.2
    • Davidich, M.I.1    Bornholdt, S.2
  • 39
    • 0032616683 scopus 로고    scopus 로고
    • Identification of genetic networks from a small number of gene expression pattern under the Boolean model
    • Akutsu T., Miyano S., Kuhara S. Identification of genetic networks from a small number of gene expression pattern under the Boolean model. Pacific Symp. Biocomput. 1999, 4:17-28.
    • (1999) Pacific Symp. Biocomput. , vol.4 , pp. 17-28
    • Akutsu, T.1    Miyano, S.2    Kuhara, S.3
  • 40
    • 3142691038 scopus 로고    scopus 로고
    • Temporal Boolean network models of genetic networks and their inference from gene expression time series
    • Silvescu A., Honavar V. Temporal Boolean network models of genetic networks and their inference from gene expression time series. Compl. Syst. 2001, 13:61-78.
    • (2001) Compl. Syst. , vol.13 , pp. 61-78
    • Silvescu, A.1    Honavar, V.2
  • 41
    • 0037418747 scopus 로고    scopus 로고
    • Identification of genetic networks by strategic gene disruptions and gene overexpressions under a Boolean model
    • Akutsu T., Kuharab S., Maruyama O., Miyano S. Identification of genetic networks by strategic gene disruptions and gene overexpressions under a Boolean model. Science 2003, 298:235-251.
    • (2003) Science , vol.298 , pp. 235-251
    • Akutsu, T.1    Kuharab, S.2    Maruyama, O.3    Miyano, S.4
  • 42
    • 84881556356 scopus 로고    scopus 로고
    • Boolean modeling of genetic regulatory networks: a methodology tutorial
    • Saadatpour A., Albert R. Boolean modeling of genetic regulatory networks: a methodology tutorial. Methods 2013, 62(1):3-12.
    • (2013) Methods , vol.62 , Issue.1 , pp. 3-12
    • Saadatpour, A.1    Albert, R.2
  • 43
    • 33744466566 scopus 로고    scopus 로고
    • Optimal infinite-horizon control for probabilistic Boolean networks, signal processing
    • Pal R., Datta A., Dougherty E.R. Optimal infinite-horizon control for probabilistic Boolean networks, signal processing. IEEE Trans. 2006, 54:2375-2387.
    • (2006) IEEE Trans. , vol.54 , pp. 2375-2387
    • Pal, R.1    Datta, A.2    Dougherty, E.R.3
  • 44
    • 0036184629 scopus 로고    scopus 로고
    • Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks
    • Shmulevich I., Dougherty E.R., Kim S., Zhang W. Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 2002, 18:261-274.
    • (2002) Bioinformatics , vol.18 , pp. 261-274
    • Shmulevich, I.1    Dougherty, E.R.2    Kim, S.3    Zhang, W.4
  • 45
    • 38549107133 scopus 로고    scopus 로고
    • Comparison of probabilistic Boolean network and Dynamic Bayesian Networks approaches for inferring gene regulatory networks
    • Li P., Zhang C.Y., Perkins E.J., Gong P., Deng Y.P. Comparison of probabilistic Boolean network and Dynamic Bayesian Networks approaches for inferring gene regulatory networks. BMC Bioinf. 2007, 8:1-8.
    • (2007) BMC Bioinf. , vol.8 , pp. 1-8
    • Li, P.1    Zhang, C.Y.2    Perkins, E.J.3    Gong, P.4    Deng, Y.P.5
  • 46
    • 16344368806 scopus 로고    scopus 로고
    • Intervention in context-sensitive probabilistic Boolean networks
    • Pal R., Datta A., Bittner M.L., Dougherty E.R. Intervention in context-sensitive probabilistic Boolean networks. Bioinformatics 2005, 21:1211-1218.
    • (2005) Bioinformatics , vol.21 , pp. 1211-1218
    • Pal, R.1    Datta, A.2    Bittner, M.L.3    Dougherty, E.R.4
  • 47
    • 33748654580 scopus 로고    scopus 로고
    • Inferring gene regulatory networks from time series data using the minimum description length principle
    • Zhao W., Serpedin E., Dougherty E.R. Inferring gene regulatory networks from time series data using the minimum description length principle. Bioinformatics 2006, 22:2129-2135.
    • (2006) Bioinformatics , vol.22 , pp. 2129-2135
    • Zhao, W.1    Serpedin, E.2    Dougherty, E.R.3
  • 48
    • 34547840185 scopus 로고    scopus 로고
    • An approximation method for solving the steady-state probability distribution of probabilistic Boolean networks
    • Ching W.K., Zhang S., Ng M.K., Akutsu T. An approximation method for solving the steady-state probability distribution of probabilistic Boolean networks. Bioinformatics 2007, 23:1511-1518.
    • (2007) Bioinformatics , vol.23 , pp. 1511-1518
    • Ching, W.K.1    Zhang, S.2    Ng, M.K.3    Akutsu, T.4
  • 49
    • 84555190018 scopus 로고    scopus 로고
    • Modeling gene regulation networks using ordinary differential equations
    • Cao J., Qi X., Zhao H. Modeling gene regulation networks using ordinary differential equations. Methods Mol. Biol. 2012, 802:185-197.
    • (2012) Methods Mol. Biol. , vol.802 , pp. 185-197
    • Cao, J.1    Qi, X.2    Zhao, H.3
  • 50
    • 0001789769 scopus 로고    scopus 로고
    • Modeling gene expression with differential equations
    • Chen T., He L.H., Church M.G. Modeling gene expression with differential equations. Pac. Symp. Biocomput. 1999, 4:1-12.
    • (1999) Pac. Symp. Biocomput. , vol.4 , pp. 1-12
    • Chen, T.1    He, L.H.2    Church, M.G.3
  • 51
    • 0036749170 scopus 로고    scopus 로고
    • Evolutionary modeling and inference of gene network
    • Ando S., Sakamoto E., Iba H. Evolutionary modeling and inference of gene network. Inf. Sci. 2002, 145:237-259.
    • (2002) Inf. Sci. , vol.145 , pp. 237-259
    • Ando, S.1    Sakamoto, E.2    Iba, H.3
  • 52
    • 20844452570 scopus 로고    scopus 로고
    • A stochastic differential equation model for quantifying transcriptional regulatory network in Saccharomyces cerevisiae
    • Chen K.C., Wang T.Y., Tseng H.H., Huang C.Y., Kao C.Y. A stochastic differential equation model for quantifying transcriptional regulatory network in Saccharomyces cerevisiae. Bioinformatics 2005, 21:2883-2890.
    • (2005) Bioinformatics , vol.21 , pp. 2883-2890
    • Chen, K.C.1    Wang, T.Y.2    Tseng, H.H.3    Huang, C.Y.4    Kao, C.Y.5
  • 53
    • 70350569876 scopus 로고    scopus 로고
    • Comparing different ODE Modelling approaches for gene regulatory networks
    • Polynikins A., Hogan S.J., Bernardo M. Comparing different ODE Modelling approaches for gene regulatory networks. J. Theor. Biol. 2009, 261:511-530.
    • (2009) J. Theor. Biol. , vol.261 , pp. 511-530
    • Polynikins, A.1    Hogan, S.J.2    Bernardo, M.3
  • 54
    • 0035965273 scopus 로고    scopus 로고
    • Neural model of the genetic network
    • Vohradsky J. Neural model of the genetic network. J. Biol. Chem. 2001, 276:36168-36173.
    • (2001) J. Biol. Chem. , vol.276 , pp. 36168-36173
    • Vohradsky, J.1
  • 56
    • 11444269718 scopus 로고    scopus 로고
    • A recursive network approach can identify constitutive regulatory circuits in gene expression data
    • Blasi M.F., Casorelli I., Colosimo A., Blasi F.S., Bignami M., Giuliani A. A recursive network approach can identify constitutive regulatory circuits in gene expression data. Physica A 2005, 348:349-370.
    • (2005) Physica A , vol.348 , pp. 349-370
    • Blasi, M.F.1    Casorelli, I.2    Colosimo, A.3    Blasi, F.S.4    Bignami, M.5    Giuliani, A.6
  • 57
    • 38649104174 scopus 로고    scopus 로고
    • A clustering-based approach for inferring recurrent neural network as gene regulatory networks
    • Lee W.P., Yang K.C. A clustering-based approach for inferring recurrent neural network as gene regulatory networks. Neurocomputing 2008, 71:600-610.
    • (2008) Neurocomputing , vol.71 , pp. 600-610
    • Lee, W.P.1    Yang, K.C.2
  • 58
    • 34848893948 scopus 로고    scopus 로고
    • Modeling of gene regulatory networks with hybrid differential evolution and particle swarm optimization
    • Xu R., Venayagamoorthy G.K., Wunsch D.C. Modeling of gene regulatory networks with hybrid differential evolution and particle swarm optimization. Neural Netw. 2007, 20:917-927.
    • (2007) Neural Netw. , vol.20 , pp. 917-927
    • Xu, R.1    Venayagamoorthy, G.K.2    Wunsch, D.C.3
  • 59
    • 76749150056 scopus 로고    scopus 로고
    • Neural networks for modeling gene-gene interactions in association studies
    • Gunther F., Wawro N., Bammann K. Neural networks for modeling gene-gene interactions in association studies. BMC Genet. 2007, 10:87.
    • (2007) BMC Genet. , vol.10 , pp. 87
    • Gunther, F.1    Wawro, N.2    Bammann, K.3
  • 60
    • 84883053586 scopus 로고    scopus 로고
    • Reconstruction of gene regulatory networks from gene expression data using decoupled recurrent neural network model, natural computing and beyond
    • Noman N., Palafox L., Iba H. Reconstruction of gene regulatory networks from gene expression data using decoupled recurrent neural network model, natural computing and beyond. Proc. Inf. Commun. Technol. 2013, 6:93-103.
    • (2013) Proc. Inf. Commun. Technol. , vol.6 , pp. 93-103
    • Noman, N.1    Palafox, L.2    Iba, H.3
  • 61
    • 0036500834 scopus 로고    scopus 로고
    • Reverse engineering of biological complexity
    • Csete M.E., Doyle J.C. Reverse engineering of biological complexity. Science 2002, 295:1664-1669.
    • (2002) Science , vol.295 , pp. 1664-1669
    • Csete, M.E.1    Doyle, J.C.2
  • 62
    • 84882796052 scopus 로고    scopus 로고
    • A pattern-oriented specification of gene network inference processes
    • Trepode N.W., de Farias C.R.G., Barrera J. A pattern-oriented specification of gene network inference processes. Comput. Biol. Med. 2013, 43:1415-1427.
    • (2013) Comput. Biol. Med. , vol.43 , pp. 1415-1427
    • Trepode, N.W.1    de Farias, C.R.G.2    Barrera, J.3
  • 63
    • 84893226649 scopus 로고    scopus 로고
    • Genes related to differentiation are correlated with the gene regulatory network structure
    • Bodaker M., Meshorer E., Mitrani E., Louzoun Y. Genes related to differentiation are correlated with the gene regulatory network structure. Bioinformatics 2013, 30:406-413.
    • (2013) Bioinformatics , vol.30 , pp. 406-413
    • Bodaker, M.1    Meshorer, E.2    Mitrani, E.3    Louzoun, Y.4
  • 64
    • 84876588507 scopus 로고    scopus 로고
    • Gene regulation, modulation, and their applications in gene expression data analysis
    • Flores M., Hsiao T.H., Chiu Y.C., Chuang E.Y., Huang Y.F., Chen Y.D. Gene regulation, modulation, and their applications in gene expression data analysis. Adv. Bioinf. 2013, 360678.
    • (2013) Adv. Bioinf. , pp. 360678
    • Flores, M.1    Hsiao, T.H.2    Chiu, Y.C.3    Chuang, E.Y.4    Huang, Y.F.5    Chen, Y.D.6
  • 65
    • 33847304166 scopus 로고    scopus 로고
    • Qualitatively modelling and analysing genetic regulatory networks: a Petri net approach
    • Steggles L.J., Banks R., Shaw O., Wipat A. Qualitatively modelling and analysing genetic regulatory networks: a Petri net approach. Bioinformatics 2007, 23:336-343.
    • (2007) Bioinformatics , vol.23 , pp. 336-343
    • Steggles, L.J.1    Banks, R.2    Shaw, O.3    Wipat, A.4
  • 66
    • 33847260655 scopus 로고    scopus 로고
    • Boolean networks using the chi-square test for inferring large-scale gene regulatory networks
    • Kim H., Lee J.K., Park T. Boolean networks using the chi-square test for inferring large-scale gene regulatory networks. BMC Bioinf. 2007, 8:1-15.
    • (2007) BMC Bioinf. , vol.8 , pp. 1-15
    • Kim, H.1    Lee, J.K.2    Park, T.3
  • 68
    • 32644431906 scopus 로고    scopus 로고
    • Relationships between probabilistic Boolean networks and Dynamic Bayesian Networks as models of gene regulatory networks
    • Lahdesmaki H., Hautaniemia S., Shmulevichc I., Yli-Harjaa O. Relationships between probabilistic Boolean networks and Dynamic Bayesian Networks as models of gene regulatory networks. Signal Process. 2006, 86:814-834.
    • (2006) Signal Process. , vol.86 , pp. 814-834
    • Lahdesmaki, H.1    Hautaniemia, S.2    Shmulevichc, I.3    Yli-Harjaa, O.4
  • 71
    • 0344844807 scopus 로고    scopus 로고
    • Modelling regulatory pathways in E. coli from time series expression profiles
    • Ong I.M., Glasner J.D., Page D. Modelling regulatory pathways in E. coli from time series expression profiles. Bioinformatics 2002, 18:S241-S248.
    • (2002) Bioinformatics , vol.18
    • Ong, I.M.1    Glasner, J.D.2    Page, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.