메뉴 건너뛰기




Volumn 27, Issue 19, 2011, Pages 2686-2691

Large-scale dynamic gene regulatory network inference combining differential equation models with local dynamic Bayesian network analysis

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; BAYES THEOREM; BIOLOGICAL MODEL; DNA MICROARRAY; GENE EXPRESSION PROFILING; GENE EXPRESSION REGULATION; GENE REGULATORY NETWORK; GENETICS; HELA CELL; HUMAN; SACCHAROMYCES CEREVISIAE; SENSITIVITY AND SPECIFICITY; TUMOR SUPPRESSOR GENE;

EID: 80053436505     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btr454     Document Type: Article
Times cited : (82)

References (26)
  • 1
    • 76749137632 scopus 로고    scopus 로고
    • Local causal and Markov blanket induction for causal discovery and feature selection for classification part I: algorithm and empirical evaluation
    • Alferis, C.F. et al. (2010) Local causal and Markov blanket induction for causal discovery and feature selection for classification part I: algorithm and empirical evaluation. J. Mach. Learn. Res., 11, 1712-234.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 1712-2234
    • Alferis, C.F.1
  • 2
    • 70449375094 scopus 로고    scopus 로고
    • Learning gene regulatory networks from gene expression measurements using non-parametric molecular kinetics
    • Aijo, T. and Lahdesmaki, H. (2010) Learning gene regulatory networks from gene expression measurements using non-parametric molecular kinetics. Bioinformatics, 25, 2937-2944.
    • (2010) Bioinformatics , vol.25 , pp. 2937-2944
    • Aijo, T.1    Lahdesmaki, H.2
  • 3
    • 27744489743 scopus 로고    scopus 로고
    • BRCA1 regulates gene expression for orderly mitotic progression
    • Bae, I. et al. (2005) BRCA1 regulates gene expression for orderly mitotic progression. Cell Cycle, 4, 1641-1666.
    • (2005) Cell Cycle , vol.4 , pp. 1641-1666
    • Bae, I.1
  • 4
    • 33645307955 scopus 로고    scopus 로고
    • Inference of gene regulatory networks and compound mode of action from time course gene expression profile
    • Bansal, M. et al. (2006) Inference of gene regulatory networks and compound mode of action from time course gene expression profile. Bioinformatics, 22, 815-822.
    • (2006) Bioinformatics , vol.22 , pp. 815-822
    • Bansal, M.1
  • 5
    • 33747813561 scopus 로고    scopus 로고
    • The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo
    • Bonneau, R. et al. (2006) The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome Biol., 7, R36.
    • (2006) Genome Biol , vol.7
    • Bonneau, R.1
  • 6
    • 63049128934 scopus 로고    scopus 로고
    • A yeast synthetic network for in vivo assessment of reverseengineering and modeling approaches
    • Cantone, I. et al. (2009) A yeast synthetic network for in vivo assessment of reverseengineering and modeling approaches. Cell, 137, 172-181.
    • (2009) Cell , vol.137 , pp. 172-181
    • Cantone, I.1
  • 7
    • 0038048325 scopus 로고    scopus 로고
    • Inferring genetic networks and identifying compound mode of action via expression profiling
    • Gardner, T.S. et al. (2003) Inferring genetic networks and identifying compound mode of action via expression profiling. Science, 301, 102-105.
    • (2003) Science , vol.301 , pp. 102-105
    • Gardner, T.S.1
  • 8
    • 33645003172 scopus 로고    scopus 로고
    • BRCA1: cell cycle checkpoint, genetic instability DNA damage response and cancer evolution
    • Deng, C.X. (2006) BRCA1: cell cycle checkpoint, genetic instability, DNA damage response and cancer evolution. Nucleic Acid Res., 34, 1416-1426.
    • (2006) Nucleic Acid Res. , vol.34 , pp. 1416-1426
    • Deng, C.X.1
  • 9
    • 21444452397 scopus 로고    scopus 로고
    • Chemogenomic profiling on a genome-wide scale using reverse-engineered gene networks
    • di Bernardo, D. et al. (2005) Chemogenomic profiling on a genome-wide scale using reverse-engineered gene networks. Nat. Biotechnol., 23, 377-383.
    • (2005) Nat. Biotechnol. , vol.23 , pp. 377-383
    • di Bernardo, D.1
  • 10
    • 33644649220 scopus 로고    scopus 로고
    • Discovery of time-delayed gene regulatory network based upon temporal gene expression profile
    • Li, X. et al. (2006a) Discovery of time-delayed gene regulatory network based upon temporal gene expression profile. BMC Bioinformatics, 7, 26.
    • (2006) BMC Bioinformatics , vol.7 , pp. 26
    • Li, X.1
  • 11
    • 33645108505 scopus 로고    scopus 로고
    • Using a state-space model with hidden variables to infer transcription factor activities
    • Li, Z. et al. (2006b) Using a state-space model with hidden variables to infer transcription factor activities. Bioinformatics, 22, 747-754.
    • (2006) Bioinformatics , vol.22 , pp. 747-754
    • Li, Z.1
  • 13
    • 33847348163 scopus 로고    scopus 로고
    • Causality and pathway search in microarray time series experiment
    • Mukhopadhyay, N.D. and Chatterjee, S. (2007) Causality and pathway search in microarray time series experiment. Bioinformatics, 23, 442-449.
    • (2007) Bioinformatics , vol.23 , pp. 442-449
    • Mukhopadhyay, N.D.1    Chatterjee, S.2
  • 14
    • 0004158155 scopus 로고    scopus 로고
    • Modelling gene expression data using dynamic Bayesian networks
    • University of California, Berkeley
    • Murphy, K. and Mian, S. (1999) Modelling gene expression data using dynamic Bayesian networks. Technical Report. University of California, Berkeley.
    • (1999) Technical Report
    • Murphy, K.1    Mian, S.2
  • 15
    • 77956412225 scopus 로고    scopus 로고
    • Granger causality analysis of human cell-cycle gene expression profiles
    • Nagarajan, R. and Upreti, M. (2010) Granger causality analysis of human cell-cycle gene expression profiles. Stat. Appl. Genet. Mol. Biol., 9, 31.
    • (2010) Stat. Appl. Genet. Mol. Biol. , vol.9 , pp. 31
    • Nagarajan, R.1    Upreti, M.2
  • 16
    • 15944364151 scopus 로고    scopus 로고
    • An empirical Bayes approach to inferring large-scale gene association networks
    • Schafer, J. and Strimmer, K. (2005) An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics, 21, 754-764.
    • (2005) Bioinformatics , vol.21 , pp. 754-764
    • Schafer, J.1    Strimmer, K.2
  • 17
    • 77955124773 scopus 로고    scopus 로고
    • Learning Bayesian Networks with the bnlearn R Package
    • Scutari, M. (2010) Learning Bayesian Networks with the bnlearn R Package. J. Stat. Softwr, 35, 12.
    • (2010) J. Stat. Softwr , vol.35 , pp. 12
    • Scutari, M.1
  • 18
    • 0031742022 scopus 로고    scopus 로고
    • Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization
    • Spellman, P.T. et al. (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell, 9, 3273-3297.
    • (1998) Mol. Biol. Cell , vol.9 , pp. 3273-3297
    • Spellman, P.T.1
  • 19
    • 4544240599 scopus 로고    scopus 로고
    • BRCA1-dependent ubiquitination of r-tubulin regulates centrosome number
    • Starita, L.M. et al. (2004) BRCA1-dependent ubiquitination of r-tubulin regulates centrosome number. Mol. Cell. Biol., 24, 8457-8466.
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 8457-8466
    • Starita, L.M.1
  • 20
    • 0034635478 scopus 로고    scopus 로고
    • Regulation of BRCA1 expression by the Rb-E2F pathway
    • Wang, A. et al. (2000) Regulation of BRCA1 expression by the Rb-E2F pathway. J. Biol. Chem., 275, 4532-4536.
    • (2000) J. Biol. Chem. , vol.275 , pp. 4532-4536
    • Wang, A.1
  • 21
    • 58949097355 scopus 로고    scopus 로고
    • Role of Cks1 amplification and overexpression in breast cancer
    • Wang, C.H. et al. (2009) Role of Cks1 amplification and overexpression in breast cancer. Biochem. Biophys. Res. Commun., 379, 1107-1113.
    • (2009) Biochem. Biophys. Res. Commun. , vol.379 , pp. 1107-1113
    • Wang, C.H.1
  • 22
    • 0035985177 scopus 로고    scopus 로고
    • Identification of genes periodically expressed in the human cell cycle and their expression in tumors
    • Whitfield, M.L. et al. (2002) Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol. Biol. Cell., 13, 1977-2000.
    • (2002) Mol. Biol. Cell. , vol.13 , pp. 1977-2000
    • Whitfield, M.L.1
  • 23
    • 0037197936 scopus 로고    scopus 로고
    • Reverse engineering gene networks using singular value decomposition and robust regression
    • Yeung, M.K.S. et al. (2002) Reverse engineering gene networks using singular value decomposition and robust regression. Proc. Natl Acad. Sci. USA, 99, 6163-6168.
    • (2002) Proc. Natl Acad. Sci. USA , vol.99 , pp. 6163-6168
    • Yeung, M.K.S.1
  • 24
    • 12344259602 scopus 로고    scopus 로고
    • Advances to Bayesian network inference for generating causal networks from observational biological data
    • Yu, J. et al. (2004) Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics, 20, 3594-3603.
    • (2004) Bioinformatics , vol.20 , pp. 3594-3603
    • Yu, J.1
  • 25
    • 0038746602 scopus 로고    scopus 로고
    • Both DNA topoisomerase ii-binding protein 1 and BRCA1 regulate the G2-M cell cycle checkpoint1
    • Yumane, K. et al. (2003) Both DNA topoisomerase ii-binding protein 1 and BRCA1 regulate the G2-M cell cycle checkpoint1. Cancer Res., 63, 3049-3053.
    • (2003) Cancer Res. , vol.63 , pp. 3049-3053
    • Yumane, K.1
  • 26
    • 12744261506 scopus 로고    scopus 로고
    • A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data
    • Zou, M. and Conzen, S.D. (2005) A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics, 21, 71-79.
    • (2005) Bioinformatics , vol.21 , pp. 71-79
    • Zou, M.1    Conzen, S.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.