-
1
-
-
0032549811
-
A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis
-
Puigserver P., et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 1998, 92:829-839.
-
(1998)
Cell
, vol.92
, pp. 829-839
-
-
Puigserver, P.1
-
2
-
-
0037127204
-
Peroxisome proliferator-activated receptor gamma coactivator 1β (PGC-1β), a novel PGC-1-related transcription coactivator associated with host cell factor
-
Lin J., et al. Peroxisome proliferator-activated receptor gamma coactivator 1β (PGC-1β), a novel PGC-1-related transcription coactivator associated with host cell factor. J. Biol. Chem. 2002, 277:1645-1648.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 1645-1648
-
-
Lin, J.1
-
3
-
-
0035016566
-
Pgc-1-related coactivator, a novel, serum-inducible coactivator of nuclear respiratory factor 1-dependent transcription in mammalian cells
-
Andersson U., Scarpulla R.C. Pgc-1-related coactivator, a novel, serum-inducible coactivator of nuclear respiratory factor 1-dependent transcription in mammalian cells. Mol. Cell. Biol. 2001, 21:3738-3749.
-
(2001)
Mol. Cell. Biol.
, vol.21
, pp. 3738-3749
-
-
Andersson, U.1
Scarpulla, R.C.2
-
4
-
-
50449102941
-
2-adrenergic receptor activation and exercise
-
2-adrenergic receptor activation and exercise. Endocrinology 2008, 149:4527-4533.
-
(2008)
Endocrinology
, vol.149
, pp. 4527-4533
-
-
Miura, S.1
-
5
-
-
75849155745
-
The transcriptional coactivator PGC-1α mediates exercise-induced angiogenesis in skeletal muscle
-
Chinsomboon J., et al. The transcriptional coactivator PGC-1α mediates exercise-induced angiogenesis in skeletal muscle. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:21401-21406.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 21401-21406
-
-
Chinsomboon, J.1
-
6
-
-
70450252013
-
Alternative mRNA splicing produces a novel biologically active short isoform of PGC-1α
-
Zhang Y., et al. Alternative mRNA splicing produces a novel biologically active short isoform of PGC-1α. J. Biol. Chem. 2009, 284:32813-32826.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 32813-32826
-
-
Zhang, Y.1
-
7
-
-
84870921992
-
A PGC-1α isoform induced by resistance training regulates skeletal muscle hypertrophy
-
Ruas J.L., et al. A PGC-1α isoform induced by resistance training regulates skeletal muscle hypertrophy. Cell 2012, 151:1319-1331.
-
(2012)
Cell
, vol.151
, pp. 1319-1331
-
-
Ruas, J.L.1
-
8
-
-
0037102256
-
Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres
-
Lin J., et al. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 2002, 418:797-801.
-
(2002)
Nature
, vol.418
, pp. 797-801
-
-
Lin, J.1
-
9
-
-
0035855858
-
Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1
-
Yoon J.C., et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 2001, 413:131-138.
-
(2001)
Nature
, vol.413
, pp. 131-138
-
-
Yoon, J.C.1
-
10
-
-
5344252327
-
Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1α null mice
-
Lin J., et al. Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1α null mice. Cell 2004, 119:121-135.
-
(2004)
Cell
, vol.119
, pp. 121-135
-
-
Lin, J.1
-
11
-
-
0033803048
-
Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis
-
Lehman J.J., et al. Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J. Clin. Invest. 2000, 106:847-856.
-
(2000)
J. Clin. Invest.
, vol.106
, pp. 847-856
-
-
Lehman, J.J.1
-
12
-
-
33750825245
-
PGC-1α protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription
-
Sandri M., et al. PGC-1α protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:16260-16265.
-
(2006)
Proc. Natl. Acad. Sci. U.S.A.
, vol.103
, pp. 16260-16265
-
-
Sandri, M.1
-
13
-
-
73949099327
-
Increased muscle PGC-1α expression protects from sarcopenia and metabolic disease during aging
-
Wenz T., et al. Increased muscle PGC-1α expression protects from sarcopenia and metabolic disease during aging. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:20405-20410.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 20405-20410
-
-
Wenz, T.1
-
14
-
-
77953495952
-
Peroxisome proliferator-activated receptor gamma coactivator 1α or 1β overexpression inhibits muscle protein degradation, induction of ubiquitin ligases, and disuse atrophy
-
Brault J.J., et al. Peroxisome proliferator-activated receptor gamma coactivator 1α or 1β overexpression inhibits muscle protein degradation, induction of ubiquitin ligases, and disuse atrophy. J. Biol. Chem. 2010, 285:19460-19471.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 19460-19471
-
-
Brault, J.J.1
-
15
-
-
84895512020
-
Regulatory circuitry of TWEAK-Fn14 system and PGC-1α in skeletal muscle atrophy program
-
Hindi S.M., et al. Regulatory circuitry of TWEAK-Fn14 system and PGC-1α in skeletal muscle atrophy program. FASEB J. 2014, 28:1398-1411.
-
(2014)
FASEB J.
, vol.28
, pp. 1398-1411
-
-
Hindi, S.M.1
-
16
-
-
84927698330
-
The role of alterations in mitochondrial dynamics and PGC-1α over-expression in fast muscle atrophy following hindlimb unloading
-
Cannavino J., et al. The role of alterations in mitochondrial dynamics and PGC-1α over-expression in fast muscle atrophy following hindlimb unloading. J. Physiol. 2015, 593:1981-1995.
-
(2015)
J. Physiol.
, vol.593
, pp. 1981-1995
-
-
Cannavino, J.1
-
17
-
-
84871274897
-
Aging affects the transcriptional regulation of human skeletal muscle disuse atrophy
-
Suetta C., et al. Aging affects the transcriptional regulation of human skeletal muscle disuse atrophy. PLoS ONE 2012, 7:e51238.
-
(2012)
PLoS ONE
, vol.7
, pp. e51238
-
-
Suetta, C.1
-
18
-
-
84913553857
-
Short-term muscle disuse atrophy is not associated with increased intramuscular lipid deposition or a decline in the maximal activity of key mitochondrial enzymes in young and older males
-
Wall B.T., et al. Short-term muscle disuse atrophy is not associated with increased intramuscular lipid deposition or a decline in the maximal activity of key mitochondrial enzymes in young and older males. Exp. Gerontol. 2015, 61:76-83.
-
(2015)
Exp. Gerontol.
, vol.61
, pp. 76-83
-
-
Wall, B.T.1
-
19
-
-
84892570159
-
Loss of Pgc-1α expression in aging mouse muscle potentiates glucose intolerance and systemic inflammation
-
Sczelecki S., et al. Loss of Pgc-1α expression in aging mouse muscle potentiates glucose intolerance and systemic inflammation. Am. J. Physiol. Endocrinol. Metab. 2014, 306:E157-E167.
-
(2014)
Am. J. Physiol. Endocrinol. Metab.
, vol.306
, pp. E157-E167
-
-
Sczelecki, S.1
-
20
-
-
77956271188
-
Aberrant mitochondrial homeostasis in the skeletal muscle of sedentary older adults
-
Safdar A., et al. Aberrant mitochondrial homeostasis in the skeletal muscle of sedentary older adults. PLoS ONE 2010, 5:e10778.
-
(2010)
PLoS ONE
, vol.5
, pp. e10778
-
-
Safdar, A.1
-
21
-
-
34249775509
-
TNF-related weak inducer of apoptosis (TWEAK) is a potent skeletal muscle-wasting cytokine
-
Dogra C., et al. TNF-related weak inducer of apoptosis (TWEAK) is a potent skeletal muscle-wasting cytokine. FASEB J. 2007, 21:1857-1869.
-
(2007)
FASEB J.
, vol.21
, pp. 1857-1869
-
-
Dogra, C.1
-
22
-
-
35648937073
-
Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1α muscle-specific knock-out animals
-
Handschin C., et al. Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1α muscle-specific knock-out animals. J. Biol. Chem. 2007, 282:30014-30021.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 30014-30021
-
-
Handschin, C.1
-
23
-
-
77957562997
-
Sepsis and glucocorticoids downregulate the expression of the nuclear cofactor PGC-1β in skeletal muscle
-
Menconi M.J., et al. Sepsis and glucocorticoids downregulate the expression of the nuclear cofactor PGC-1β in skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 2010, 299:E533-E543.
-
(2010)
Am. J. Physiol. Endocrinol. Metab.
, vol.299
, pp. E533-E543
-
-
Menconi, M.J.1
-
24
-
-
80053622263
-
The PGC-1α-related coactivator promotes mitochondrial and myogenic adaptations in C2C12 myotubes
-
Philp A., et al. The PGC-1α-related coactivator promotes mitochondrial and myogenic adaptations in C2C12 myotubes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011, 301:R864-R872.
-
(2011)
Am. J. Physiol. Regul. Integr. Comp. Physiol.
, vol.301
, pp. R864-R872
-
-
Philp, A.1
-
25
-
-
84884171625
-
Time course analysis reveals gene-specific transcript and protein kinetics of adaptation to short-term aerobic exercise training in human skeletal muscle
-
Egan B., et al. Time course analysis reveals gene-specific transcript and protein kinetics of adaptation to short-term aerobic exercise training in human skeletal muscle. PLoS ONE 2013, 8:e74098.
-
(2013)
PLoS ONE
, vol.8
, pp. e74098
-
-
Egan, B.1
-
26
-
-
79953696779
-
Mitochondrial adaptations in skeletal muscle to hindlimb unloading
-
Wagatsuma A., et al. Mitochondrial adaptations in skeletal muscle to hindlimb unloading. Mol. Cell. Biochem. 2011, 350:1-11.
-
(2011)
Mol. Cell. Biochem.
, vol.350
, pp. 1-11
-
-
Wagatsuma, A.1
-
27
-
-
83455223600
-
Remodeling of calcium handling in skeletal muscle through PGC-1α: impact on force, fatigability, and fiber type
-
Summermatter S., et al. Remodeling of calcium handling in skeletal muscle through PGC-1α: impact on force, fatigability, and fiber type. Am. J. Physiol. Cell Physiol. 2012, 302:C88-C99.
-
(2012)
Am. J. Physiol. Cell Physiol.
, vol.302
, pp. C88-C99
-
-
Summermatter, S.1
-
28
-
-
84914701249
-
G protein-coupled receptor 56 regulates mechanical overload-induced muscle hypertrophy
-
White J.P., et al. G protein-coupled receptor 56 regulates mechanical overload-induced muscle hypertrophy. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:15756-15761.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 15756-15761
-
-
White, J.P.1
-
29
-
-
84890281516
-
The transcriptional coactivator PGC-1α is dispensable for chronic overload-induced skeletal muscle hypertrophy and metabolic remodeling
-
Perez-Schindler J., et al. The transcriptional coactivator PGC-1α is dispensable for chronic overload-induced skeletal muscle hypertrophy and metabolic remodeling. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:20314-20319.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 20314-20319
-
-
Perez-Schindler, J.1
-
30
-
-
37749027195
-
A functional insulin-like growth factor receptor is not necessary for load-induced skeletal muscle hypertrophy
-
Spangenburg E.E., et al. A functional insulin-like growth factor receptor is not necessary for load-induced skeletal muscle hypertrophy. J. Physiol. 2008, 586:283-291.
-
(2008)
J. Physiol.
, vol.586
, pp. 283-291
-
-
Spangenburg, E.E.1
-
31
-
-
39749140405
-
HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1 alpha
-
Arany Z., et al. HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1 alpha. Nature 2008, 451:1008-1012.
-
(2008)
Nature
, vol.451
, pp. 1008-1012
-
-
Arany, Z.1
-
32
-
-
79959621983
-
PGC-1β regulates angiogenesis in skeletal muscle
-
Rowe G.C., et al. PGC-1β regulates angiogenesis in skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 2011, 301:E155-E163.
-
(2011)
Am. J. Physiol. Endocrinol. Metab.
, vol.301
, pp. E155-E163
-
-
Rowe, G.C.1
-
33
-
-
85027923529
-
PGC-1α induces SPP1 to activate macrophages and orchestrate functional angiogenesis in skeletal muscle
-
Rowe G.C., et al. PGC-1α induces SPP1 to activate macrophages and orchestrate functional angiogenesis in skeletal muscle. Circ. Res. 2014, 115:504-517.
-
(2014)
Circ. Res.
, vol.115
, pp. 504-517
-
-
Rowe, G.C.1
-
34
-
-
0037453099
-
The VIVA trial: Vascular endothelial growth factor in Ischemia for Vascular Angiogenesis
-
Henry T.D., et al. The VIVA trial: Vascular endothelial growth factor in Ischemia for Vascular Angiogenesis. Circulation 2003, 107:1359-1365.
-
(2003)
Circulation
, vol.107
, pp. 1359-1365
-
-
Henry, T.D.1
-
35
-
-
67650046150
-
PGC-1α mediates exercise-induced skeletal muscle VEGF expression in mice
-
Leick L., et al. PGC-1α mediates exercise-induced skeletal muscle VEGF expression in mice. Am. J. Physiol. Endocrinol. Metab. 2009, 297:E92-E103.
-
(2009)
Am. J. Physiol. Endocrinol. Metab.
, vol.297
, pp. E92-E103
-
-
Leick, L.1
-
36
-
-
84897377504
-
Hypoxic induction of vascular endothelial growth factor (VEGF) and angiogenesis in muscle by truncated peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α
-
Thom R., et al. Hypoxic induction of vascular endothelial growth factor (VEGF) and angiogenesis in muscle by truncated peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α. J. Biol. Chem. 2014, 289:8810-8817.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 8810-8817
-
-
Thom, R.1
-
37
-
-
82955187865
-
Skeletal muscle-specific expression of PGC-1α-b, an exercise-responsive isoform, increases exercise capacity and peak oxygen uptake
-
Tadaishi M., et al. Skeletal muscle-specific expression of PGC-1α-b, an exercise-responsive isoform, increases exercise capacity and peak oxygen uptake. PLoS ONE 2011, 6:e28290.
-
(2011)
PLoS ONE
, vol.6
, pp. e28290
-
-
Tadaishi, M.1
-
38
-
-
34147109662
-
PGC-1α regulates the neuromuscular junction program and ameliorates Duchenne muscular dystrophy
-
Handschin C., et al. PGC-1α regulates the neuromuscular junction program and ameliorates Duchenne muscular dystrophy. Genes Dev. 2007, 21:770-783.
-
(2007)
Genes Dev.
, vol.21
, pp. 770-783
-
-
Handschin, C.1
-
39
-
-
84897385100
-
Morphological and functional remodelling of the neuromuscular junction by skeletal muscle PGC-1α
-
Arnold A.S., et al. Morphological and functional remodelling of the neuromuscular junction by skeletal muscle PGC-1α. Nat. Commun. 2014, 5:3569.
-
(2014)
Nat. Commun.
, vol.5
, pp. 3569
-
-
Arnold, A.S.1
-
40
-
-
84892634114
-
Post-natal induction of PGC-1α protects against severe muscle dystrophy independently of utrophin
-
Chan M.C., et al. Post-natal induction of PGC-1α protects against severe muscle dystrophy independently of utrophin. Skelet. Muscle 2014, 4:2.
-
(2014)
Skelet. Muscle
, vol.4
, pp. 2
-
-
Chan, M.C.1
-
41
-
-
84855685417
-
Rescue of dystrophic skeletal muscle by PGC-1α involves a fast to slow fiber type shift in the mdx mouse
-
Selsby J.T., et al. Rescue of dystrophic skeletal muscle by PGC-1α involves a fast to slow fiber type shift in the mdx mouse. PLoS ONE 2012, 7:e30063.
-
(2012)
PLoS ONE
, vol.7
, pp. e30063
-
-
Selsby, J.T.1
-
42
-
-
84879418084
-
Rescue of dystrophic skeletal muscle by PGC-1α involves restored expression of dystrophin-associated protein complex components and satellite cell signaling
-
Hollinger K., et al. Rescue of dystrophic skeletal muscle by PGC-1α involves restored expression of dystrophin-associated protein complex components and satellite cell signaling. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013, 305:R13-R23.
-
(2013)
Am. J. Physiol. Regul. Integr. Comp. Physiol.
, vol.305
, pp. R13-R23
-
-
Hollinger, K.1
-
43
-
-
77957671873
-
Retrograde influence of muscle fibers on their innervation revealed by a novel marker for slow motoneurons
-
Chakkalakal J.V., et al. Retrograde influence of muscle fibers on their innervation revealed by a novel marker for slow motoneurons. Development 2010, 137:3489-3499.
-
(2010)
Development
, vol.137
, pp. 3489-3499
-
-
Chakkalakal, J.V.1
-
44
-
-
84860458565
-
Elevated PGC-1α activity sustains mitochondrial biogenesis and muscle function without extending survival in a mouse model of inherited ALS
-
Da Cruz S., et al. Elevated PGC-1α activity sustains mitochondrial biogenesis and muscle function without extending survival in a mouse model of inherited ALS. Cell Metab. 2012, 15:778-786.
-
(2012)
Cell Metab.
, vol.15
, pp. 778-786
-
-
Da Cruz, S.1
-
45
-
-
84860726725
-
Total daily physical activity and the risk of AD and cognitive decline in older adults
-
Buchman A.S., et al. Total daily physical activity and the risk of AD and cognitive decline in older adults. Neurology 2012, 78:1323-1329.
-
(2012)
Neurology
, vol.78
, pp. 1323-1329
-
-
Buchman, A.S.1
-
46
-
-
84937515420
-
Effect of exercise on depressive symptoms in adults with neurological disorders: a systematic review and meta-analysis
-
Published online January 13, 2015
-
Adamson B.C., et al. Effect of exercise on depressive symptoms in adults with neurological disorders: a systematic review and meta-analysis. Arch. Phys. Med. Rehabil. 2015, Published online January 13, 2015. 10.1016/j.apmr.2015.01.005.
-
(2015)
Arch. Phys. Med. Rehabil.
-
-
Adamson, B.C.1
-
47
-
-
84907486069
-
Skeletal muscle PGC-1α1 modulates kynurenine metabolism and mediates resilience to stress-induced depression
-
Agudelo L.Z., et al. Skeletal muscle PGC-1α1 modulates kynurenine metabolism and mediates resilience to stress-induced depression. Cell 2014, 159:33-45.
-
(2014)
Cell
, vol.159
, pp. 33-45
-
-
Agudelo, L.Z.1
-
48
-
-
37249094173
-
From inflammation to sickness and depression: when the immune system subjugates the brain
-
Dantzer R., et al. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat. Rev. Neurosci. 2008, 9:46-56.
-
(2008)
Nat. Rev. Neurosci.
, vol.9
, pp. 46-56
-
-
Dantzer, R.1
-
49
-
-
34547794475
-
The immune-mediated alteration of serotonin and glutamate: towards an integrated view of depression
-
Muller N., Schwarz M.J. The immune-mediated alteration of serotonin and glutamate: towards an integrated view of depression. Mol. Psychiatry 2007, 12:988-1000.
-
(2007)
Mol. Psychiatry
, vol.12
, pp. 988-1000
-
-
Muller, N.1
Schwarz, M.J.2
-
50
-
-
33748632656
-
Brain-derived neurotrophic factor mechanisms and function in adult synaptic plasticity: new insights and implications for therapy
-
Kuipers S.D., Bramham C.R. Brain-derived neurotrophic factor mechanisms and function in adult synaptic plasticity: new insights and implications for therapy. Curr. Opin. Drug Discov. Dev. 2006, 9:580-586.
-
(2006)
Curr. Opin. Drug Discov. Dev.
, vol.9
, pp. 580-586
-
-
Kuipers, S.D.1
Bramham, C.R.2
-
51
-
-
84887468128
-
Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway
-
Wrann C.D., et al. Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metab. 2013, 18:649-659.
-
(2013)
Cell Metab.
, vol.18
, pp. 649-659
-
-
Wrann, C.D.1
-
52
-
-
84862776702
-
A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis
-
Bostrom P., et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 2012, 481:463-468.
-
(2012)
Nature
, vol.481
, pp. 463-468
-
-
Bostrom, P.1
-
53
-
-
47949104798
-
The role of exercise and PGC1α in inflammation and chronic disease
-
Handschin C., Spiegelman B.M. The role of exercise and PGC1α in inflammation and chronic disease. Nature 2008, 454:463-469.
-
(2008)
Nature
, vol.454
, pp. 463-469
-
-
Handschin, C.1
Spiegelman, B.M.2
-
54
-
-
78649743322
-
TNF-α impairs regulation of muscle oxidative phenotype: implications for cachexia?
-
Remels A.H., et al. TNF-α impairs regulation of muscle oxidative phenotype: implications for cachexia?. FASEB J. 2010, 24:5052-5062.
-
(2010)
FASEB J.
, vol.24
, pp. 5052-5062
-
-
Remels, A.H.1
-
55
-
-
0037477855
-
Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1
-
Patti M.E., et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:8466-8471.
-
(2003)
Proc. Natl. Acad. Sci. U.S.A.
, vol.100
, pp. 8466-8471
-
-
Patti, M.E.1
-
56
-
-
84877351666
-
Regulation of skeletal muscle oxidative phenotype by classical NF-(B signalling
-
Remels A.H., et al. Regulation of skeletal muscle oxidative phenotype by classical NF-(B signalling. Biochim. Biophys. Acta 2013, 1832:1313-1325.
-
(2013)
Biochim. Biophys. Acta
, vol.1832
, pp. 1313-1325
-
-
Remels, A.H.1
-
57
-
-
70350370459
-
Infection decreases fatty acid oxidation and nuclear hormone receptors in the diaphragm
-
Feingold K.R., et al. Infection decreases fatty acid oxidation and nuclear hormone receptors in the diaphragm. J. Lipid Res. 2009, 50:2055-2063.
-
(2009)
J. Lipid Res.
, vol.50
, pp. 2055-2063
-
-
Feingold, K.R.1
-
58
-
-
18244399631
-
Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARγ coactivator-1
-
Puigserver P., et al. Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARγ coactivator-1. Mol. Cell 2001, 8:971-982.
-
(2001)
Mol. Cell
, vol.8
, pp. 971-982
-
-
Puigserver, P.1
-
59
-
-
0033862763
-
Impact of endotoxin on UCP homolog mRNA abundance, thermoregulation, and mitochondrial proton leak kinetics
-
Yu X.X., et al. Impact of endotoxin on UCP homolog mRNA abundance, thermoregulation, and mitochondrial proton leak kinetics. Am. J. Physiol. Endocrinol. Metab. 2000, 279:E433-E446.
-
(2000)
Am. J. Physiol. Endocrinol. Metab.
, vol.279
, pp. E433-E446
-
-
Yu, X.X.1
-
60
-
-
84857574974
-
Skeletal muscle PGC-1α is required for maintaining an acute LPS-induced TNFα response
-
Olesen J., et al. Skeletal muscle PGC-1α is required for maintaining an acute LPS-induced TNFα response. PLoS ONE 2012, 7:e32222.
-
(2012)
PLoS ONE
, vol.7
, pp. e32222
-
-
Olesen, J.1
-
61
-
-
81155123695
-
PGC-1-related coactivator (PRC), a sensor of metabolic stress, orchestrates a redox-sensitive program of inflammatory gene expression
-
Gleyzer N., Scarpulla R.C. PGC-1-related coactivator (PRC), a sensor of metabolic stress, orchestrates a redox-sensitive program of inflammatory gene expression. J. Biol. Chem. 2011, 286:39715-39725.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 39715-39725
-
-
Gleyzer, N.1
Scarpulla, R.C.2
-
62
-
-
84875442213
-
Activation of a PGC-1-related coactivator (PRC)-dependent inflammatory stress program linked to apoptosis and premature senescence
-
Gleyzer N., Scarpulla R.C. Activation of a PGC-1-related coactivator (PRC)-dependent inflammatory stress program linked to apoptosis and premature senescence. J. Biol. Chem. 2013, 288:8004-8015.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 8004-8015
-
-
Gleyzer, N.1
Scarpulla, R.C.2
-
63
-
-
36048931015
-
Abnormal glucose homeostasis in skeletal muscle-specific PGC-1α knockout mice reveals skeletal muscle-pancreatic beta cell crosstalk
-
Handschin C., et al. Abnormal glucose homeostasis in skeletal muscle-specific PGC-1α knockout mice reveals skeletal muscle-pancreatic beta cell crosstalk. J. Clin. Invest. 2007, 117:3463-3474.
-
(2007)
J. Clin. Invest.
, vol.117
, pp. 3463-3474
-
-
Handschin, C.1
-
64
-
-
84873880480
-
The peroxisome proliferator-activated receptor gamma coactivator 1α/β (PGC-1) coactivators repress the transcriptional activity of NF-κB in skeletal muscle cells
-
Eisele P.S., et al. The peroxisome proliferator-activated receptor gamma coactivator 1α/β (PGC-1) coactivators repress the transcriptional activity of NF-κB in skeletal muscle cells. J. Biol. Chem. 2013, 288:2246-2260.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 2246-2260
-
-
Eisele, P.S.1
-
65
-
-
40849083857
-
IKK/NF-κB regulates skeletal myogenesis via a signaling switch to inhibit differentiation and promote mitochondrial biogenesis
-
Bakkar N., et al. IKK/NF-κB regulates skeletal myogenesis via a signaling switch to inhibit differentiation and promote mitochondrial biogenesis. J. Cell Biol. 2008, 180:787-802.
-
(2008)
J. Cell Biol.
, vol.180
, pp. 787-802
-
-
Bakkar, N.1
-
66
-
-
84858793204
-
IKKα and alternative NF-κB regulate PGC-1β to promote oxidative muscle metabolism
-
Bakkar N., et al. IKKα and alternative NF-κB regulate PGC-1β to promote oxidative muscle metabolism. J. Cell Biol. 2012, 196:497-511.
-
(2012)
J. Cell Biol.
, vol.196
, pp. 497-511
-
-
Bakkar, N.1
-
67
-
-
84893933424
-
Irisin as a muscle-derived hormone stimulating thermogenesis - a critical update
-
Hofmann T., et al. Irisin as a muscle-derived hormone stimulating thermogenesis - a critical update. Peptides 2014, 54:89-100.
-
(2014)
Peptides
, vol.54
, pp. 89-100
-
-
Hofmann, T.1
-
68
-
-
84924390413
-
Irisin - a myth rather than an exercise-inducible myokine
-
Albrecht E., et al. Irisin - a myth rather than an exercise-inducible myokine. Sci. Rep. 2015, 5:8889.
-
(2015)
Sci. Rep.
, vol.5
, pp. 8889
-
-
Albrecht, E.1
-
69
-
-
84893452569
-
Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans
-
Lee P., et al. Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metab. 2014, 19:302-309.
-
(2014)
Cell Metab.
, vol.19
, pp. 302-309
-
-
Lee, P.1
-
70
-
-
84891840977
-
β-Aminoisobutyric acid induces browning of white fat and hepatic beta-oxidation and is inversely correlated with cardiometabolic risk factors
-
Roberts L.D., et al. β-Aminoisobutyric acid induces browning of white fat and hepatic beta-oxidation and is inversely correlated with cardiometabolic risk factors. Cell Metab. 2014, 19:96-108.
-
(2014)
Cell Metab.
, vol.19
, pp. 96-108
-
-
Roberts, L.D.1
-
71
-
-
84902097377
-
Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis
-
Rao R.R., et al. Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis. Cell 2014, 157:1279-1291.
-
(2014)
Cell
, vol.157
, pp. 1279-1291
-
-
Rao, R.R.1
-
72
-
-
84856725443
-
Inhibition of myostatin protects against diet-induced obesity by enhancing fatty acid oxidation and promoting a brown adipose phenotype in mice
-
Zhang C., et al. Inhibition of myostatin protects against diet-induced obesity by enhancing fatty acid oxidation and promoting a brown adipose phenotype in mice. Diabetologia 2012, 55:183-193.
-
(2012)
Diabetologia
, vol.55
, pp. 183-193
-
-
Zhang, C.1
-
73
-
-
84877147751
-
Myostatin knockout drives browning of white adipose tissue through activating the AMPK-PGC1α-Fndc5 pathway in muscle
-
Shan T., et al. Myostatin knockout drives browning of white adipose tissue through activating the AMPK-PGC1α-Fndc5 pathway in muscle. FASEB J. 2013, 27:1981-1989.
-
(2013)
FASEB J.
, vol.27
, pp. 1981-1989
-
-
Shan, T.1
-
74
-
-
42449092519
-
Gene expression-based screening identifies microtubule inhibitors as inducers of PGC-1α and oxidative phosphorylation
-
Arany Z., et al. Gene expression-based screening identifies microtubule inhibitors as inducers of PGC-1α and oxidative phosphorylation. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:4721-4726.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 4721-4726
-
-
Arany, Z.1
-
75
-
-
84863361364
-
3-adrenergic receptor activation to transcriptional and physiological components of adaptive thermogenesis
-
3-adrenergic receptor activation to transcriptional and physiological components of adaptive thermogenesis. J. Biol. Chem. 2012, 287:9100-9111.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 9100-9111
-
-
Chang, J.S.1
-
76
-
-
84904790357
-
Effect of exercise intensity on isoform-specific expressions of NT-PGC-1 alpha mRNA in mouse skeletal muscle
-
Wen X., et al. Effect of exercise intensity on isoform-specific expressions of NT-PGC-1 alpha mRNA in mouse skeletal muscle. Biomed Res. Int. 2014, 2014:402175.
-
(2014)
Biomed Res. Int.
, vol.2014
, pp. 402175
-
-
Wen, X.1
-
77
-
-
0033538473
-
Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1
-
Wu Z., et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 1999, 98:115-124.
-
(1999)
Cell
, vol.98
, pp. 115-124
-
-
Wu, Z.1
-
78
-
-
0038036024
-
Bioenergetic analysis of peroxisome proliferator-activated receptor gamma coactivators 1α and 1β (PGC-1α and PGC-1β) in muscle cells
-
St-Pierre J., et al. Bioenergetic analysis of peroxisome proliferator-activated receptor gamma coactivators 1α and 1β (PGC-1α and PGC-1β) in muscle cells. J. Biol. Chem. 2003, 278:26597-26603.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 26597-26603
-
-
St-Pierre, J.1
-
79
-
-
84878565172
-
Disconnecting mitochondrial content from respiratory chain capacity in PGC-1-deficient skeletal muscle
-
Rowe G.C., et al. Disconnecting mitochondrial content from respiratory chain capacity in PGC-1-deficient skeletal muscle. Cell Rep. 2013, 3:1449-1456.
-
(2013)
Cell Rep.
, vol.3
, pp. 1449-1456
-
-
Rowe, G.C.1
-
80
-
-
84859756230
-
Peri-implantation lethality in mice lacking the PGC-1-related coactivator protein
-
He X., et al. Peri-implantation lethality in mice lacking the PGC-1-related coactivator protein. Dev. Dyn. 2012, 241:975-983.
-
(2012)
Dev. Dyn.
, vol.241
, pp. 975-983
-
-
He, X.1
-
81
-
-
59049089797
-
Short hairpin RNA-mediated silencing of PRC (PGC-1-related coactivator) results in a severe respiratory chain deficiency associated with the proliferation of aberrant mitochondria
-
Vercauteren K., et al. Short hairpin RNA-mediated silencing of PRC (PGC-1-related coactivator) results in a severe respiratory chain deficiency associated with the proliferation of aberrant mitochondria. J. Biol. Chem. 2009, 284:2307-2319.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 2307-2319
-
-
Vercauteren, K.1
-
82
-
-
0038810035
-
An autoregulatory loop controls peroxisome proliferator-activated receptor γ coactivator 1α expression in muscle
-
Handschin C., et al. An autoregulatory loop controls peroxisome proliferator-activated receptor γ coactivator 1α expression in muscle. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:7111-7116.
-
(2003)
Proc. Natl. Acad. Sci. U.S.A.
, vol.100
, pp. 7111-7116
-
-
Handschin, C.1
-
83
-
-
0037066459
-
Regulation of mitochondrial biogenesis in skeletal muscle by CaMK
-
Wu H., et al. Regulation of mitochondrial biogenesis in skeletal muscle by CaMK. Science 2002, 296:349-352.
-
(2002)
Science
, vol.296
, pp. 349-352
-
-
Wu, H.1
-
84
-
-
21244477127
-
Exercise stimulates Pgc-1α transcription in skeletal muscle through activation of the p38 MAPK pathway
-
Akimoto T., et al. Exercise stimulates Pgc-1α transcription in skeletal muscle through activation of the p38 MAPK pathway. J. Biol. Chem. 2005, 280:19587-19593.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 19587-19593
-
-
Akimoto, T.1
-
85
-
-
34547545892
-
AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α
-
Jager S., et al. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:12017-12022.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 12017-12022
-
-
Jager, S.1
-
86
-
-
84858055958
-
Acute exercise remodels promoter methylation in human skeletal muscle
-
Barres R., et al. Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab. 2012, 15:405-411.
-
(2012)
Cell Metab.
, vol.15
, pp. 405-411
-
-
Barres, R.1
-
87
-
-
84876979205
-
Weight loss after gastric bypass surgery in human obesity remodels promoter methylation
-
Barres R., et al. Weight loss after gastric bypass surgery in human obesity remodels promoter methylation. Cell Rep. 2013, 3:1020-1027.
-
(2013)
Cell Rep.
, vol.3
, pp. 1020-1027
-
-
Barres, R.1
-
88
-
-
84900552709
-
Resistance exercise training modulates acute gene expression during human skeletal muscle hypertrophy
-
Nader G.A., et al. Resistance exercise training modulates acute gene expression during human skeletal muscle hypertrophy. J. Appl. Physiol. (1985) 2014, 116:693-702.
-
(2014)
J. Appl. Physiol. (1985)
, vol.116
, pp. 693-702
-
-
Nader, G.A.1
-
89
-
-
85008952973
-
The truncated splice variants, NT-PGC-1α and PGC-1α4, increase with both endurance and resistance exercise in human skeletal muscle
-
Ydfors M., et al. The truncated splice variants, NT-PGC-1α and PGC-1α4, increase with both endurance and resistance exercise in human skeletal muscle. Physiol. Rep. 2013, 1:e00140.
-
(2013)
Physiol. Rep.
, vol.1
, pp. e00140
-
-
Ydfors, M.1
-
90
-
-
84912530292
-
Truncated splice variant PGC-1α4 is not associated with exercise-induced human muscle hypertrophy
-
Lundberg T.R., et al. Truncated splice variant PGC-1α4 is not associated with exercise-induced human muscle hypertrophy. Acta Physiol. (Oxf.) 2014, 212:142-151.
-
(2014)
Acta Physiol. (Oxf.)
, vol.212
, pp. 142-151
-
-
Lundberg, T.R.1
-
91
-
-
25844432311
-
Peroxisome proliferator-activated receptor-γ co-activator 1α-mediated metabolic remodeling of skeletal myocytes mimics exercise training and reverses lipid-induced mitochondrial inefficiency
-
Koves T.R., et al. Peroxisome proliferator-activated receptor-γ co-activator 1α-mediated metabolic remodeling of skeletal myocytes mimics exercise training and reverses lipid-induced mitochondrial inefficiency. J. Biol. Chem. 2005, 280:33588-33598.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 33588-33598
-
-
Koves, T.R.1
-
92
-
-
35648935409
-
PGC-1β is downregulated by training in human skeletal muscle: no effect of training twice every second day vs. once daily on expression of the PGC-1 family
-
Mortensen O.H., et al. PGC-1β is downregulated by training in human skeletal muscle: no effect of training twice every second day vs. once daily on expression of the PGC-1 family. J. Appl. Physiol. (1985) 2007, 103:1536-1542.
-
(2007)
J. Appl. Physiol. (1985)
, vol.103
, pp. 1536-1542
-
-
Mortensen, O.H.1
-
93
-
-
81355132716
-
Resistance exercise enhances the molecular signaling of mitochondrial biogenesis induced by endurance exercise in human skeletal muscle
-
Wang L., et al. Resistance exercise enhances the molecular signaling of mitochondrial biogenesis induced by endurance exercise in human skeletal muscle. J. Appl. Physiol. (1985) 2011, 111:1335-1344.
-
(2011)
J. Appl. Physiol. (1985)
, vol.111
, pp. 1335-1344
-
-
Wang, L.1
-
94
-
-
0035859836
-
Regulation of the transcriptional coactivator PGC-1 via MAPK-sensitive interaction with a repressor
-
Knutti D., et al. Regulation of the transcriptional coactivator PGC-1 via MAPK-sensitive interaction with a repressor. Proc. Natl. Acad. Sci. U.S.A. 2001, 98:9713-9718.
-
(2001)
Proc. Natl. Acad. Sci. U.S.A.
, vol.98
, pp. 9713-9718
-
-
Knutti, D.1
-
95
-
-
10744222588
-
Suppression of mitochondrial respiration through recruitment of p160 myb binding protein to PGC-1α: modulation by p38 MAPK
-
Fan M., et al. Suppression of mitochondrial respiration through recruitment of p160 myb binding protein to PGC-1α: modulation by p38 MAPK. Genes Dev. 2004, 18:278-289.
-
(2004)
Genes Dev.
, vol.18
, pp. 278-289
-
-
Fan, M.1
-
96
-
-
67349276169
-
+ metabolism and SIRT1 activity
-
+ metabolism and SIRT1 activity. Nature 2009, 458:1056-1060.
-
(2009)
Nature
, vol.458
, pp. 1056-1060
-
-
Canto, C.1
-
97
-
-
33744534726
-
GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1α
-
Lerin C., et al. GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1α. Cell Metab. 2006, 3:429-438.
-
(2006)
Cell Metab.
, vol.3
, pp. 429-438
-
-
Lerin, C.1
-
98
-
-
22344440666
-
Activation of nuclear receptor coactivator PGC-1α by arginine methylation
-
Teyssier C., et al. Activation of nuclear receptor coactivator PGC-1α by arginine methylation. Genes Dev. 2005, 19:1466-1473.
-
(2005)
Genes Dev.
, vol.19
, pp. 1466-1473
-
-
Teyssier, C.1
-
99
-
-
64149111641
-
A PGC-1α-O-GlcNAc transferase complex regulates FoxO transcription factor activity in response to glucose
-
Housley M.P., et al. A PGC-1α-O-GlcNAc transferase complex regulates FoxO transcription factor activity in response to glucose. J. Biol. Chem. 2009, 284:5148-5157.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 5148-5157
-
-
Housley, M.P.1
-
100
-
-
84919772749
-
Isoform-specific SCF(Fbw7) ubiquitination mediates differential regulation of PGC-1α
-
Trausch-Azar J.S., et al. Isoform-specific SCF(Fbw7) ubiquitination mediates differential regulation of PGC-1α. J. Cell. Physiol. 2015, 230:842-852.
-
(2015)
J. Cell. Physiol.
, vol.230
, pp. 842-852
-
-
Trausch-Azar, J.S.1
-
101
-
-
38349057556
-
SCFCdc4 acts antagonistically to the PGC-1α transcriptional coactivator by targeting it for ubiquitin-mediated proteolysis
-
Olson B.L., et al. SCFCdc4 acts antagonistically to the PGC-1α transcriptional coactivator by targeting it for ubiquitin-mediated proteolysis. Genes Dev. 2008, 22:252-264.
-
(2008)
Genes Dev.
, vol.22
, pp. 252-264
-
-
Olson, B.L.1
-
102
-
-
84864708480
-
O-GlcNAc transferase/host cell factor C1 complex regulates gluconeogenesis by modulating PGC-1α stability
-
Ruan H.B., et al. O-GlcNAc transferase/host cell factor C1 complex regulates gluconeogenesis by modulating PGC-1α stability. Cell Metab. 2012, 16:226-237.
-
(2012)
Cell Metab.
, vol.16
, pp. 226-237
-
-
Ruan, H.B.1
-
103
-
-
84863067775
-
RNF34 is a cold-regulated E3 ubiquitin ligase for PGC-1α and modulates brown fat cell metabolism
-
Wei P., et al. RNF34 is a cold-regulated E3 ubiquitin ligase for PGC-1α and modulates brown fat cell metabolism. Mol. Cell. Biol. 2012, 32:266-275.
-
(2012)
Mol. Cell. Biol.
, vol.32
, pp. 266-275
-
-
Wei, P.1
|