-
1
-
-
84873378527
-
Exercise metabolism and the molecular regulation of skeletal muscle adaptation
-
Egan B, Zierath JR (2013) Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab 17(2):162-184.
-
(2013)
Cell Metab
, vol.17
, Issue.2
, pp. 162-184
-
-
Egan, B.1
Zierath, J.R.2
-
2
-
-
78349301557
-
Recent advances in the biology and therapy of muscle wasting
-
Glass D, Roubenoff R (2010) Recent advances in the biology and therapy of muscle wasting. Ann N Y Acad Sci 1211:25-36.
-
(2010)
Ann N Y Acad Sci
, vol.1211
, pp. 25-36
-
-
Glass, D.1
Roubenoff, R.2
-
4
-
-
79851497642
-
Signals mediating skeletal muscle remodeling by resistance exercise: PI3-kinase independent activation of mTORC1
-
Philp A, Hamilton DL, Baar K (2011) Signals mediating skeletal muscle remodeling by resistance exercise: PI3-kinase independent activation of mTORC1. J Appl Physiol (1985) 110(2):561-568.
-
(2011)
J Appl Physiol (1985)
, vol.110
, Issue.2
, pp. 561-568
-
-
Philp, A.1
Hamilton, D.L.2
Baar, K.3
-
5
-
-
81255169943
-
The role of skeletal muscle mTOR in the regulation of mechanical load-induced growth
-
Goodman CA, et al. (2011) The role of skeletal muscle mTOR in the regulation of mechanical load-induced growth. J Physiol 589(Pt 22):5485-5501.
-
(2011)
J Physiol
, vol.589
, Issue.PART 22
, pp. 5485-5501
-
-
Goodman, C.A.1
-
6
-
-
84876184914
-
Differential response of skeletal muscles to mTORC1 signaling during atrophy and hypertrophy
-
Bentzinger CF, et al. (2013) Differential response of skeletal muscles to mTORC1 signaling during atrophy and hypertrophy. Skelet Muscle 3(1):6.
-
(2013)
Skelet Muscle
, vol.3
, Issue.1
, pp. 6
-
-
Bentzinger, C.F.1
-
7
-
-
33748752151
-
The mammalian target of rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity
-
Schieke SM, et al. (2006) The mammalian target of rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity. J Biol Chem 281(37):27643-27652.
-
(2006)
J Biol Chem
, vol.281
, Issue.37
, pp. 27643-27652
-
-
Schieke, S.M.1
-
8
-
-
76049099052
-
Direct control of mitochondrial function by mTOR
-
Ramanathan A, Schreiber SL (2009) Direct control of mitochondrial function by mTOR. Proc Natl Acad Sci USA 106(52):22229-22232.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, Issue.52
, pp. 22229-22232
-
-
Ramanathan, A.1
Schreiber, S.L.2
-
9
-
-
77955483125
-
Activation of a metabolic gene regulatory network downstream of mTOR complex 1
-
Düvel K, et al. (2010) Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell 39(2):171-183.
-
(2010)
Mol Cell
, vol.39
, Issue.2
, pp. 171-183
-
-
Düvel, K.1
-
10
-
-
36749081539
-
mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex
-
Cunningham JT, et al. (2007) mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature 450(7170):736-740.
-
(2007)
Nature
, vol.450
, Issue.7170
, pp. 736-740
-
-
Cunningham, J.T.1
-
11
-
-
84875909085
-
Molecular and genetic crosstalks between mTOR and ERRα are key determinants of rapamycin-induced nonalcoholic fatty liver
-
Chaveroux C, et al. (2013) Molecular and genetic crosstalks between mTOR and ERRα are key determinants of rapamycin-induced nonalcoholic fatty liver. Cell Metab 17(4):586-598.
-
(2013)
Cell Metab
, vol.17
, Issue.4
, pp. 586-598
-
-
Chaveroux, C.1
-
12
-
-
84865117354
-
Defective mitochondrial morphology and bioenergetic function in mice lacking the transcription factor Yin Yang 1 in skeletal muscle
-
Blättler SM, et al. (2012) Defective mitochondrial morphology and bioenergetic function in mice lacking the transcription factor Yin Yang 1 in skeletal muscle. Mol Cell Biol 32(16):3333-3346.
-
(2012)
Mol Cell Biol
, vol.32
, Issue.16
, pp. 3333-3346
-
-
Blättler, S.M.1
-
13
-
-
84882733761
-
Mechanisms regulating skeletal muscle growth and atrophy
-
Schiaffino S, Dyar KA, Ciciliot S, Blaauw B, Sandri M (2013) Mechanisms regulating skeletal muscle growth and atrophy. FEBS J 280(17):4294-4314.
-
(2013)
FEBS J
, vol.280
, Issue.17
, pp. 4294-4314
-
-
Schiaffino, S.1
Dyar, K.A.2
Ciciliot, S.3
Blaauw, B.4
Sandri, M.5
-
14
-
-
77953495952
-
Peroxisome proliferator-activated receptor gamma coactivator 1alpha or 1beta overexpression inhibits muscle protein degradation, induction of ubiquitin ligases, and disuse atrophy
-
Brault JJ, Jespersen JG, Goldberg AL (2010) Peroxisome proliferator-activated receptor gamma coactivator 1alpha or 1beta overexpression inhibits muscle protein degradation, induction of ubiquitin ligases, and disuse atrophy. J Biol Chem 285(25):19460-19471.
-
(2010)
J Biol Chem
, vol.285
, Issue.25
, pp. 19460-19471
-
-
Brault, J.J.1
Jespersen, J.G.2
Goldberg, A.L.3
-
15
-
-
73949099327
-
Increased muscle PGC-1alpha expression protects from sarcopenia and metabolic disease during aging
-
Wenz T, Rossi SG, Rotundo RL, Spiegelman BM, Moraes CT (2009) Increased muscle PGC-1alpha expression protects from sarcopenia and metabolic disease during aging. Proc Natl Acad Sci USA 106(48):20405-20410.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, Issue.48
, pp. 20405-20410
-
-
Wenz, T.1
Rossi, S.G.2
Rotundo, R.L.3
Spiegelman, B.M.4
Moraes, C.T.5
-
16
-
-
33750825245
-
PGC-1alpha protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription
-
Sandri M, et al. (2006) PGC-1alpha protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription. Proc Natl Acad Sci USA 103(44):16260-16265.
-
(2006)
Proc Natl Acad Sci USA
, vol.103
, Issue.44
, pp. 16260-16265
-
-
Sandri, M.1
-
17
-
-
84870921992
-
A PGC-1α isoform induced by resistance training regulates skeletal muscle hypertrophy
-
Ruas JL, et al. (2012) A PGC-1α isoform induced by resistance training regulates skeletal muscle hypertrophy. Cell 151(6):1319-1331.
-
(2012)
Cell
, vol.151
, Issue.6
, pp. 1319-1331
-
-
Ruas, J.L.1
-
18
-
-
84555188361
-
Analysis of skeletal muscle hypertrophy in models of increased loading
-
Bodine SC, Baar K (2012) Analysis of skeletal muscle hypertrophy in models of increased loading. Methods Mol Biol 798:213-229.
-
(2012)
Methods Mol Biol
, vol.798
, pp. 213-229
-
-
Bodine, S.C.1
Baar, K.2
-
19
-
-
0036152424
-
Animal models for inducing muscle hypertrophy: Are they relevant for clinical applications in humans?
-
Lowe DA, Alway SE (2002) Animal models for inducing muscle hypertrophy: Are they relevant for clinical applications in humans? J Orthop Sports Phys Ther 32(2):36-43.
-
(2002)
J Orthop Sports Phys Ther
, vol.32
, Issue.2
, pp. 36-43
-
-
Lowe, D.A.1
Alway, S.E.2
-
20
-
-
79953734462
-
PGC-1 coactivators and the regulation of skeletal muscle fiber-type determination
-
author reply 352
-
Handschin C, Spiegelman BM (2011) PGC-1 coactivators and the regulation of skeletal muscle fiber-type determination. Cell Metab 13(4):351, author reply 352.
-
(2011)
Cell Metab
, vol.13
, Issue.4
, pp. 351
-
-
Handschin, C.1
Spiegelman, B.M.2
-
21
-
-
36048931015
-
Abnormal glucose homeostasis in skeletal muscle-specific PGC-1alpha knockout mice reveals skeletal muscle-pancreatic beta cell crosstalk
-
Handschin C, et al. (2007) Abnormal glucose homeostasis in skeletal muscle-specific PGC-1alpha knockout mice reveals skeletal muscle-pancreatic beta cell crosstalk. J Clin Invest 117(11):3463- 3474.
-
(2007)
J Clin Invest
, vol.117
, Issue.11
, pp. 3463-3474
-
-
Handschin, C.1
-
22
-
-
5344252327
-
Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice
-
Lin J, et al. (2004) Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell 119(1):121-135.
-
(2004)
Cell
, vol.119
, Issue.1
, pp. 121-135
-
-
Lin, J.1
-
23
-
-
84858782079
-
AMPK: A nutrient and energy sensor that maintains energy homeostasis
-
Hardie DG, Ross FA, Hawley SA (2012) AMPK: A nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13(4):251-262.
-
(2012)
Nat Rev Mol Cell Biol
, vol.13
, Issue.4
, pp. 251-262
-
-
Hardie, D.G.1
Ross, F.A.2
Hawley, S.A.3
-
24
-
-
80054760368
-
Fiber types in mammalian skeletal muscles
-
Schiaffino S, Reggiani C (2011) Fiber types in mammalian skeletal muscles. Physiol Rev 91(4):1447-1531.
-
(2011)
Physiol Rev
, vol.91
, Issue.4
, pp. 1447-1531
-
-
Schiaffino, S.1
Reggiani, C.2
-
25
-
-
84862321368
-
On marathons and Sprints: An integrated quantitative proteomics and transcriptomics analysis of differences between slow and fast muscle fibers
-
Drexler HC, et al. (2012) On marathons and Sprints: an integrated quantitative proteomics and transcriptomics analysis of differences between slow and fast muscle fibers. Mol Cell Proteomics 11(6):M111.010801.
-
(2012)
Mol Cell Proteomics
, vol.11
, Issue.6
-
-
Drexler, H.C.1
-
26
-
-
79953183003
-
Signaling to myosin regulatory light chain in sarcomeres
-
Kamm KE, Stull JT (2011) Signaling to myosin regulatory light chain in sarcomeres. J Biol Chem 286(12):9941-9947.
-
(2011)
J Biol Chem
, vol.286
, Issue.12
, pp. 9941-9947
-
-
Kamm, K.E.1
Stull, J.T.2
-
27
-
-
84859778293
-
mTOR signaling in growth control and disease
-
Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149(2):274-293.
-
(2012)
Cell
, vol.149
, Issue.2
, pp. 274-293
-
-
Laplante, M.1
Sabatini, D.M.2
-
28
-
-
84862965401
-
Myopathy caused by mammalian target of rapamycin complex 1 (mTORC1) inactivation is not reversed by restoring mitochondrial function
-
Romanino K, et al. (2011) Myopathy caused by mammalian target of rapamycin complex 1 (mTORC1) inactivation is not reversed by restoring mitochondrial function. Proc Natl Acad Sci USA 108(51):20808-20813.
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, Issue.51
, pp. 20808-20813
-
-
Romanino, K.1
-
29
-
-
83455223600
-
Remodeling of calcium handling in skeletal muscle through PGC-1α: Impact on force, fatigability, and fiber type
-
Summermatter S, et al. (2012) Remodeling of calcium handling in skeletal muscle through PGC-1α: Impact on force, fatigability, and fiber type. Am J Physiol Cell Physiol 302(1):C88-C99.
-
(2012)
Am J Physiol Cell Physiol
, vol.302
, Issue.1
-
-
Summermatter, S.1
-
30
-
-
58149401189
-
Paradoxical effects of increased expression of PGC-1alpha on muscle mitochondrial function and insulin-stimulated muscle glucose metabolism
-
Choi CS, et al. (2008) Paradoxical effects of increased expression of PGC-1alpha on muscle mitochondrial function and insulin-stimulated muscle glucose metabolism. Proc Natl Acad Sci USA 105(50):19926-19931.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, Issue.50
, pp. 19926-19931
-
-
Choi, C.S.1
-
31
-
-
35648937073
-
Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1alpha muscle-specific knock-out animals
-
Handschin C, et al. (2007) Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1alpha muscle-specific knock-out animals. J Biol Chem 282(41):30014-30021.
-
(2007)
J Biol Chem
, vol.282
, Issue.41
, pp. 30014-30021
-
-
Handschin, C.1
-
32
-
-
84871902783
-
The corepressor NCoR1 antagonizes PGC-1α and estrogen-related receptor α in the regulation of skeletal muscle function and oxidative metabolism
-
Pérez-Schindler J, et al. (2012) The corepressor NCoR1 antagonizes PGC-1α and estrogen-related receptor α in the regulation of skeletal muscle function and oxidative metabolism. Mol Cell Biol 32(24):4913-4924.
-
(2012)
Mol Cell Biol
, vol.32
, Issue.24
, pp. 4913-4924
-
-
Pérez-Schindler, J.1
-
33
-
-
30744439347
-
Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans
-
Coffey VG, et al. (2006) Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans. FASEB J 20(1):190-192.
-
(2006)
FASEB J
, vol.20
, Issue.1
, pp. 190-192
-
-
Coffey, V.G.1
-
34
-
-
84876289917
-
Combined whole-body vibration, resistance exercise, and sustained vascular occlusion increases PGC-1α and VEGF mRNA abundances
-
Item F, et al. (2013) Combined whole-body vibration, resistance exercise, and sustained vascular occlusion increases PGC-1α and VEGF mRNA abundances. Eur J Appl Physiol 113(4):1081-1090.
-
(2013)
Eur J Appl Physiol
, vol.113
, Issue.4
, pp. 1081-1090
-
-
Item, F.1
-
35
-
-
84862580398
-
Concurrent resistance and aerobic exercise stimulates both myofibrillar and mitochondrial protein synthesis in sedentary middle-aged men
-
Donges CE, et al. (2012) Concurrent resistance and aerobic exercise stimulates both myofibrillar and mitochondrial protein synthesis in sedentary middle-aged men. J Appl Physiol (1985) 112(12):1992-2001.
-
(2012)
J Appl Physiol (1985)
, vol.112
, Issue.12
, pp. 1992-2001
-
-
Donges, C.E.1
-
36
-
-
84879574211
-
Resistance exercise induced mTORC1 signaling is not impaired by subsequent endurance exercise in human skeletal muscle
-
Apró W, Wang L, Pontén M, Blomstrand E, Sahlin K (2013) Resistance exercise induced mTORC1 signaling is not impaired by subsequent endurance exercise in human skeletal muscle. Am J Physiol Endocrinol Metab 305(1):E22-E32.
-
(2013)
Am J Physiol Endocrinol Metab
, vol.305
, Issue.1
-
-
Apró, W.1
Wang, L.2
Pontén, M.3
Blomstrand, E.4
Sahlin, K.5
-
37
-
-
84883786947
-
New insights in the regulation of skeletal muscle PGC-1α by exercise and metabolic diseases
-
Pérez-Schindler J, Handschin C (2013) New insights in the regulation of skeletal muscle PGC-1α by exercise and metabolic diseases. Drug Discov Today Dis Models 10(2):e79-e85.
-
(2013)
Drug Discov Today Dis Models
, vol.10
, Issue.2
-
-
Pérez-Schindler, J.1
Handschin, C.2
-
38
-
-
66149125319
-
Global gene expression in skeletal muscle from well-trained strength and endurance athletes
-
Stepto NK, et al. (2009) Global gene expression in skeletal muscle from well-trained strength and endurance athletes. Med Sci Sports Exerc 41(3):546-565.
-
(2009)
Med Sci Sports Exerc
, vol.41
, Issue.3
, pp. 546-565
-
-
Stepto, N.K.1
-
39
-
-
78549235463
-
Skeletal muscle gene expression in response to resistance exercise: Sex specific regulation
-
Liu D, et al. (2010) Skeletal muscle gene expression in response to resistance exercise: sex specific regulation. BMC Genomics 11:659.
-
(2010)
BMC Genomics
, vol.11
, pp. 659
-
-
Liu, D.1
-
40
-
-
84878603243
-
Skeletal muscle oxidative function in vivo and ex vivo in athletes with marked hypertrophy from resistance training
-
Salvadego D, et al. (2013) Skeletal muscle oxidative function in vivo and ex vivo in athletes with marked hypertrophy from resistance training. J Appl Physiol (1985) 114(11):1527-1535.
-
(2013)
J Appl Physiol (1985)
, vol.114
, Issue.11
, pp. 1527-1535
-
-
Salvadego, D.1
-
41
-
-
0024805286
-
Force deficit during the onset of muscle hypertrophy
-
Kandarian SC, White TP (1989) Force deficit during the onset of muscle hypertrophy. J Appl Physiol (1985) 67(6):2600-2607.
-
(1989)
J Appl Physiol (1985)
, vol.67
, Issue.6
, pp. 2600-2607
-
-
Kandarian, S.C.1
White, T.P.2
-
42
-
-
0025037479
-
Mechanical deficit persists during long-term muscle hypertrophy
-
Kandarian SC, White TP (1990) Mechanical deficit persists during long-term muscle hypertrophy. J Appl Physiol (1985) 69(3):861-867.
-
(1990)
J Appl Physiol (1985)
, vol.69
, Issue.3
, pp. 861-867
-
-
Kandarian, S.C.1
White, T.P.2
-
43
-
-
40949146900
-
Normal hypertrophy accompanied by phosphoryation and activation of AMP-activated protein kinase alpha1 following overload in LKB1 knockout mice
-
McGee SL, Mustard KJ, Hardie DG, Baar K (2008) Normal hypertrophy accompanied by phosphoryation and activation of AMP-activated protein kinase alpha1 following overload in LKB1 knockout mice. J Physiol 586(6):1731-1741.
-
(2008)
J Physiol
, vol.586
, Issue.6
, pp. 1731-1741
-
-
McGee, S.L.1
Mustard, K.J.2
Hardie, D.G.3
Baar, K.4
|