메뉴 건너뛰기




Volumn 55, Issue 12, 2015, Pages 1758-1770

Enzyme Kinetics Modeling as a Tool to Optimize Food Industry: A Pragmatic Approach Based on Amylolytic Enzymes

Author keywords

amylases; empirical models; Michaelis Menten; Monte Carlo; Multienzyme kinetics; neural networks

Indexed keywords

AMYLASES; BYPRODUCTS; COMPLEX NETWORKS; ENZYME KINETICS; ENZYMES; KINETICS; MONTE CARLO METHODS; NEURAL NETWORKS; STOCHASTIC SYSTEMS;

EID: 84929773486     PISSN: 10408398     EISSN: 15497852     Source Type: Journal    
DOI: 10.1080/10408398.2012.725112     Document Type: Article
Times cited : (34)

References (109)
  • 2
    • 0017089959 scopus 로고
    • Subsite mapping of enzymes: Depolymerase computer modeling
    • J.D.Allen, and J.A.Thoma, (1976). Subsite mapping of enzymes: Depolymerase computer modeling. J. Biochem. 159:105–120.
    • (1976) J. Biochem. , vol.159 , pp. 105-120
    • Allen, J.D.1    Thoma, J.A.2
  • 3
    • 0036469175 scopus 로고    scopus 로고
    • Predictive non-linear modeling of complex data by artificial neural networks
    • J.S.Almeida, (2002). Predictive non-linear modeling of complex data by artificial neural networks. Curr. Opin. Biotech. 13:72–76.
    • (2002) Curr. Opin. Biotech , vol.13 , pp. 72-76
    • Almeida, J.S.1
  • 4
    • 77949570744 scopus 로고    scopus 로고
    • Reactor design for minimizing product inhibition enzymatic lignocellulose hydrolysis: I. Significance and mechanism of cellobiose and glucose inhibition on cellulotic enzymes
    • P.Andrić,, A.S.Meyer,, P.A.Jensen, and K.Dam-Johansen, (2010). Reactor design for minimizing product inhibition enzymatic lignocellulose hydrolysis: I. Significance and mechanism of cellobiose and glucose inhibition on cellulotic enzymes. Biotechnol. Adv. 28:308–324.
    • (2010) Biotechnol. Adv. , vol.28 , pp. 308-324
    • Andrić, P.1    Meyer, A.S.2    Jensen, P.A.3    Dam-Johansen, K.4
  • 5
    • 33745223864 scopus 로고    scopus 로고
    • A kinetic model to explain the maximum in α-amylase activity measurements in the presence of small carbohydrates
    • T.Baks,, A.E.M.Janssen, and R.M.Boom, (2006). A kinetic model to explain the maximum in α-amylase activity measurements in the presence of small carbohydrates. Biotechnol. Bioeng. 94:431–440.
    • (2006) Biotechnol. Bioeng. , vol.94 , pp. 431-440
    • Baks, T.1    Janssen, A.E.M.2    Boom, R.M.3
  • 8
    • 0021120106 scopus 로고
    • A kinetic model for the hydrolysis and synthesis of maltose, isomaltose and maltotriose by glucoamylase
    • V.Beschkov,, A.Marc, and J.M.Engasser, (1984). A kinetic model for the hydrolysis and synthesis of maltose, isomaltose and maltotriose by glucoamylase. Biotechnol. Bioeng. 26:22–26.
    • (1984) Biotechnol. Bioeng. , vol.26 , pp. 22-26
    • Beschkov, V.1    Marc, A.2    Engasser, J.M.3
  • 9
    • 46249107660 scopus 로고    scopus 로고
    • A stochastic model for predicting dextrose equivalent and saccharide composition during hydrolysis of starch by α-amylase
    • T.Besselink,, T.Baks,, A.E.M.Janssen, and R.M.Boom, (2008). A stochastic model for predicting dextrose equivalent and saccharide composition during hydrolysis of starch by α-amylase. Biotechnol. Bioeng. 100:684–697.
    • (2008) Biotechnol. Bioeng. , vol.100 , pp. 684-697
    • Besselink, T.1    Baks, T.2    Janssen, A.E.M.3    Boom, R.M.4
  • 10
    • 0037230981 scopus 로고    scopus 로고
    • An original kinetic model for the enzymatic hydrolysis of starch during mashing
    • C.Brandam,, X.M.Meyer,, J.Proth,, P.Strehaiano, and H.Pingaud, (2003). An original kinetic model for the enzymatic hydrolysis of starch during mashing. Biochem. Eng. J. 13:43–52.
    • (2003) Biochem. Eng. J. , vol.13 , pp. 43-52
    • Brandam, C.1    Meyer, X.M.2    Proth, J.3    Strehaiano, P.4    Pingaud, H.5
  • 11
    • 4644368380 scopus 로고    scopus 로고
    • Modelling of glucoamylase thermal inactivation in the presence of starch by artificial neural network
    • J.Bryjak,, K.Ciesielski, and I.Zbiciński, (2004). Modelling of glucoamylase thermal inactivation in the presence of starch by artificial neural network. J. Biotechnol. 114:177–185.
    • (2004) J. Biotechnol. , vol.114 , pp. 177-185
    • Bryjak, J.1    Ciesielski, K.2    Zbiciński, I.3
  • 12
    • 0034429643 scopus 로고    scopus 로고
    • Application of artificial neural networks to modeling of starch hydrolysis by glucoamylase
    • J.Bryjak,, K.Murlikiewicz,, I.Zbicinski, and J.Stawczyk, (2000). Application of artificial neural networks to modeling of starch hydrolysis by glucoamylase. Bioproc. Biosyst. Eng. 23:351–357.
    • (2000) Bioproc. Biosyst. Eng. , vol.23 , pp. 351-357
    • Bryjak, J.1    Murlikiewicz, K.2    Zbicinski, I.3    Stawczyk, J.4
  • 13
    • 34247508024 scopus 로고    scopus 로고
    • Stability and catalytic activity of α-amylase from barley malt at different pressure-temperature conditions
    • R.Buckow,, U.Weiss,, V.Heinz, and D.Knorr (2006). Stability and catalytic activity of α-amylase from barley malt at different pressure-temperature conditions. Biotechnol. Bioeng. 97:1–11.
    • (2006) Biotechnol. Bioeng. , vol.97 , pp. 1-11
    • Buckow, R.1    Weiss, U.2    Heinz, V.3    Knorr, D.4
  • 15
    • 0022732557 scopus 로고
    • Design of immobilized glucoamylase reactors using a simple kinetic model for the hydrolysis of starch
    • J.M.S.Cabral,, J.M.Novais,, J.P.Cardoso, and J.F.Kennedy, (1986). Design of immobilized glucoamylase reactors using a simple kinetic model for the hydrolysis of starch. J. Chem. Technol. Biot. 36:247–254.
    • (1986) J. Chem. Technol. Biot. , vol.36 , pp. 247-254
    • Cabral, J.M.S.1    Novais, J.M.2    Cardoso, J.P.3    Kennedy, J.F.4
  • 16
    • 57949112098 scopus 로고    scopus 로고
    • Optimization of membrane bioreactor performances during enzymatic oxidation of waste bio-phenols
    • V.Calabrò,, S.Curcio,, M.G.De Paola, and G.Iorio, (2009). Optimization of membrane bioreactor performances during enzymatic oxidation of waste bio-phenols. Desalination 236:30–38.
    • (2009) Desalination , vol.236 , pp. 30-38
    • Calabrò, V.1    Curcio, S.2    De Paola, M.G.3    Iorio, G.4
  • 17
    • 0032487352 scopus 로고    scopus 로고
    • A Monte Carlo simulation of the depolymerization of linear homopolymers by endo-enzymes exhibiting random-attack probability and single-attack mechanism: Application to the (1 → 3),(→ 4)-β-D-glucan/endo-(1 → 3),(1→ 4)-β-D-glucanase system
    • J.V.Carbonel,, L.Izquierdo,, J.M.Sendra, and P.Manzanares, (1998). A Monte Carlo simulation of the depolymerization of linear homopolymers by endo-enzymes exhibiting random-attack probability and single-attack mechanism: Application to the (1 → 3),(→ 4)-β-D-glucan/endo-(1 → 3),(1→ 4)-β-D-glucanase system. Biotechnol. Bioeng. 60:105–113.
    • (1998) Biotechnol. Bioeng. , vol.60 , pp. 105-113
    • Carbonel, J.V.1    Izquierdo, L.2    Sendra, J.M.3    Manzanares, P.4
  • 18
    • 65649102679 scopus 로고    scopus 로고
    • Recent developments in parameter estimation and structure identification of biochemical and genomic systems
    • I.C.Chow, and E.O.Voit, (2009). Recent developments in parameter estimation and structure identification of biochemical and genomic systems. Mathem. Biosci. 219:57–83.
    • (2009) Mathem. Biosci. , vol.219 , pp. 57-83
    • Chow, I.C.1    Voit, E.O.2
  • 19
    • 0035947514 scopus 로고    scopus 로고
    • Optimization of maltodextrin hydrolysis by glucoamylase in a batch reactor
    • E.Cepeda,, M.Hermosa, and A.Ballesteros, (2001). Optimization of maltodextrin hydrolysis by glucoamylase in a batch reactor. Biotechnol. Bioeng. 76:70–76.
    • (2001) Biotechnol. Bioeng. , vol.76 , pp. 70-76
    • Cepeda, E.1    Hermosa, M.2    Ballesteros, A.3
  • 20
    • 5444240869 scopus 로고    scopus 로고
    • Modeling of starch saccharification by a two-enzyme system using an artificial neural network
    • K.Ciesielski,, J.Bryjak, and I.Zbicinski, (2004). Modeling of starch saccharification by a two-enzyme system using an artificial neural network. Inzynieria Chemiczna I Procesowa 25:801–806.
    • (2004) Inzynieria Chemiczna I Procesowa , vol.25 , pp. 801-806
    • Ciesielski, K.1    Bryjak, J.2    Zbicinski, I.3
  • 21
  • 22
    • 0031239027 scopus 로고    scopus 로고
    • Molecular weight distribution of hydrolysis products during biodegradation of model macromolecules in suspended and biofilm cultures I. Bovine serum albumin
    • D.R.Confer, and B.E.Logan, (1997). Molecular weight distribution of hydrolysis products during biodegradation of model macromolecules in suspended and biofilm cultures I. Bovine serum albumin. Water Res. 31:2127–2136.
    • (1997) Water Res. , vol.31 , pp. 2127-2136
    • Confer, D.R.1    Logan, B.E.2
  • 23
    • 10044271142 scopus 로고    scopus 로고
    • Determination of inhibition in the enzymatic hydrolysis of cellobiose using hybrid neural modeling
    • F.C.Corazza,, L.P.V.Calsavara,, F.F.Moraes,, G.M.Zanin, and I.Neitzel, (2005). Determination of inhibition in the enzymatic hydrolysis of cellobiose using hybrid neural modeling. Braz. J. Chem. Eng. 22:19–29.
    • (2005) Braz. J. Chem. Eng. , vol.22 , pp. 19-29
    • Corazza, F.C.1    Calsavara, L.P.V.2    Moraes, F.F.3    Zanin, G.M.4    Neitzel, I.5
  • 24
    • 0042766429 scopus 로고    scopus 로고
    • Integrated approach in the biotreatment of starch wastes by Rhizopus oligosporus: Kinetic analysis
    • G.Del Re,, G.Di Giacomo,, L.Spera, and F.Vegliò, (2003). Integrated approach in the biotreatment of starch wastes by Rhizopus oligosporus: Kinetic analysis. Desalination 156:389–396.
    • (2003) Desalination , vol.156 , pp. 389-396
    • Del Re, G.1    Di Giacomo, G.2    Spera, L.3    Vegliò, F.4
  • 25
    • 70449375187 scopus 로고    scopus 로고
    • A modeling study on hydrolysis of lactose recovered from whey and β-galactosidase stability under sonic treatment
    • E.Demirhan, and B.Özbek, (2009). A modeling study on hydrolysis of lactose recovered from whey and β-galactosidase stability under sonic treatment. Chem. Eng. Commun. 196:767–787.
    • (2009) Chem. Eng. Commun. , vol.196 , pp. 767-787
    • Demirhan, E.1    Özbek, B.2
  • 26
    • 84860483231 scopus 로고    scopus 로고
    • Effect of pressure and temperature on alcoholic fermentation by Saccharomyces cerevisiae immobilized on γ-alumina pellets
    • C.M.Galanakis,, C.Kordulis,, M.Kanellaki,, A.A.Koutinas,, A.Bekatorou, and A.Lycourgiotis, (2012). Effect of pressure and temperature on alcoholic fermentation by Saccharomyces cerevisiae immobilized on γ-alumina pellets. Bioresource Technol. 114:492–498.
    • (2012) Bioresource Technol. , vol.114 , pp. 492-498
    • Galanakis, C.M.1    Kordulis, C.2    Kanellaki, M.3    Koutinas, A.A.4    Bekatorou, A.5    Lycourgiotis, A.6
  • 27
    • 0038019825 scopus 로고    scopus 로고
    • Kinetic dynamics in heterogeneous enzymatic hydrolysis of cellulose: An overview, an experimental study and mathematical modeling
    • Q.Gan,, S.J.Allen, and G.Taylor, (2003). Kinetic dynamics in heterogeneous enzymatic hydrolysis of cellulose: An overview, an experimental study and mathematical modeling. Process Biochem. 38:1003--1018.
    • (2003) Process Biochem. , vol.38 , pp. 1003-1018
    • Gan, Q.1    Allen, S.J.2    Taylor, G.3
  • 28
    • 0011386342 scopus 로고    scopus 로고
    • Kinetic studies on the hydrolysis of soluble and cassava starches by maltogenase
    • Q.Gaouar,, C.Aymard,, N.Zakhia, and G.M.Rios, (1997). Kinetic studies on the hydrolysis of soluble and cassava starches by maltogenase. Starch 49:231--237.
    • (1997) Starch , vol.49 , pp. 231-237
    • Gaouar, Q.1    Aymard, C.2    Zakhia, N.3    Rios, G.M.4
  • 29
    • 0002976888 scopus 로고
    • Hydrolysis of lactose—A literature review
    • V.Gekas, and M.Lopez-Leiva, (1985). Hydrolysis of lactose—A literature review. Process Biochem. 20:2--12.
    • (1985) Process Biochem. , vol.20 , pp. 2-12
    • Gekas, V.1    Lopez-Leiva, M.2
  • 30
    • 0030297745 scopus 로고    scopus 로고
    • A simple method for obtaining kinetic equations to describe the enzymatic hydrolysis of biopolymers
    • P.González-Tello,, F.Camacho,, E.Jurado, and E.M.Guadix, (1996). A simple method for obtaining kinetic equations to describe the enzymatic hydrolysis of biopolymers. J. Chem. Technol. Biot. 67:286–290.
    • (1996) J. Chem. Technol. Biot. , vol.67 , pp. 286-290
    • González-Tello, P.1    Camacho, F.2    Jurado, E.3    Guadix, E.M.4
  • 31
    • 0036428546 scopus 로고    scopus 로고
    • Subsite mapping of the binding region of α-amylases with a computer program
    • G.Gyémánt,, G.Hovánszki, and L.Kandra, (2002). Subsite mapping of the binding region of α-amylases with a computer program. Eur. J. Biochem. 269:5157–5162.
    • (2002) Eur. J. Biochem. , vol.269 , pp. 5157-5162
    • Gyémánt, G.1    Hovánszki, G.2    Kandra, L.3
  • 32
    • 44449105134 scopus 로고    scopus 로고
    • Medium factor optimization and fermentation kinetics for phenazine-1-carboxylic acid production by Pseudomonas sp. M18G
    • L.He,, Y.Q.Xu, and X.H.Zhang, (2008). Medium factor optimization and fermentation kinetics for phenazine-1-carboxylic acid production by Pseudomonas sp. M18G. Biotechnol. Bioeng. 100:250–259.
    • (2008) Biotechnol. Bioeng , vol.100 , pp. 250-259
    • He, L.1    Xu, Y.Q.2    Zhang, X.H.3
  • 33
    • 0014943898 scopus 로고
    • Interpretation of dependency of rate parameters on the degree of polymerization of substrate in enzyme-catalyzed reactions. Evaluation of subsite affinities of exo-enzyme
    • K.Hiromi, (1970). Interpretation of dependency of rate parameters on the degree of polymerization of substrate in enzyme-catalyzed reactions. Evaluation of subsite affinities of exo-enzyme. Biochem. Bioph. Res. Co. 40:1–6.
    • (1970) Biochem. Bioph. Res. Co. , vol.40 , pp. 1-6
    • Hiromi, K.1
  • 34
    • 0020687024 scopus 로고
    • Subsite structure and ligand binding mechanism of glucoamylase
    • K.Hiromi,, M.Ohnishi, and A.Tanaka (1983). Subsite structure and ligand binding mechanism of glucoamylase. Mol. Cell Biochem. 51:79–95.
    • (1983) Mol. Cell Biochem. , vol.51 , pp. 79-95
    • Hiromi, K.1    Ohnishi, M.2    Tanaka, A.3
  • 35
    • 0030057479 scopus 로고    scopus 로고
    • Process integration aspects for the production of fine chemicals illustrated with the biotransformation of γ-butyrobetaine into L-carnitine
    • F.W.J.M.M.Hoeks,, J.Mühle,, L.Böhlen, and I.Pšenička, (1996). Process integration aspects for the production of fine chemicals illustrated with the biotransformation of γ-butyrobetaine into L-carnitine. The Chem. Eng. J. Biochem. Eng. J. 61:53–61.
    • (1996) The Chem. Eng. J. Biochem. Eng. J. , vol.61 , pp. 53-61
    • Hoeks, F.W.J.M.M.1    Mühle, J.2    Böhlen, L.3    Pšenička, I.4
  • 36
    • 0036401887 scopus 로고    scopus 로고
    • Classification of fermentation performance by multivariate analysis based on mean hypothesis testing
    • J.Huang,, H.Nanami,, A.Kanda,, H.Shimizu, and S.Shioya, (2002). Classification of fermentation performance by multivariate analysis based on mean hypothesis testing. J. Biosci. Bioeng. 94:251–257.
    • (2002) J. Biosci. Bioeng. , vol.94 , pp. 251-257
    • Huang, J.1    Nanami, H.2    Kanda, A.3    Shimizu, H.4    Shioya, S.5
  • 37
    • 33745947864 scopus 로고    scopus 로고
    • Application of genetic algorithm for optimization of vegetable oil hydrogenation process
    • M.Izadifar, and M.Z.Jahromi,, 2007. Application of genetic algorithm for optimization of vegetable oil hydrogenation process. J. Food Eng. 78:1–8.
    • (2007) J. Food Eng. , vol.78 , pp. 1-8
    • Izadifar, M.1    Jahromi, M.Z.2
  • 38
    • 0037042199 scopus 로고    scopus 로고
    • Action pattern and subsite mapping of Bacillus licheniformis α-amylase (BLA) with modified maltooligosaccharide substrates
    • L.Kandra,, G.Gyémánt,, J.Remenyik,, G.Hovánszki, and A.Lipták, (2002). Action pattern and subsite mapping of Bacillus licheniformis α-amylase (BLA) with modified maltooligosaccharide substrates. FEBS Lett. 518:79–82.
    • (2002) FEBS Lett. , vol.518 , pp. 79-82
    • Kandra, L.1    Gyémánt, G.2    Remenyik, J.3    Hovánszki, G.4    Lipták, A.5
  • 39
    • 0031055914 scopus 로고    scopus 로고
    • Global and local neural network models in biotechnology: Application to different cultivation processes
    • M.N.Karim,, T.Yoshida,, S.L.Rivera,, V.M.Saucedo,, B.Eikens, and G.-S.Oh, (1997). Global and local neural network models in biotechnology: Application to different cultivation processes. J. Ferm. Bioeng. 83:1–11.
    • (1997) J. Ferm. Bioeng. , vol.83 , pp. 1-11
    • Karim, M.N.1    Yoshida, T.2    Rivera, S.L.3    Saucedo, V.M.4    Eikens, B.5    Oh, G.-S.6
  • 40
    • 0030214890 scopus 로고    scopus 로고
    • A model for the prediction of β-glucanase activity and β-glucan concentration during mashing
    • A.Kettunen,, J.J.Hämäläinen,, K.Stenholm, and K.Pietilä, (1996). A model for the prediction of β-glucanase activity and β-glucan concentration during mashing. J. Food Eng. 29:185–200.
    • (1996) J. Food Eng. , vol.29 , pp. 185-200
    • Kettunen, A.1    Hämäläinen, J.J.2    Stenholm, K.3    Pietilä, K.4
  • 41
    • 0001072952 scopus 로고
    • A model for the prediction of fermentable sugar concentrations during mashing
    • T.Koljonen,, J.J.Hämäläinen,, K.Sjöholm, and K.Pietilä, (1995). A model for the prediction of fermentable sugar concentrations during mashing. J. Food Eng. 26:329--350.
    • (1995) J. Food Eng. , vol.26 , pp. 329-350
    • Koljonen, T.1    Hämäläinen, J.J.2    Sjöholm, K.3    Pietilä, K.4
  • 42
    • 0025728058 scopus 로고
    • Starch hydrolysis kinetics of Bacillus licheniformis α-amylase
    • V.Komolprasert, and R.Y.Ofoli, (1991). Starch hydrolysis kinetics of Bacillus licheniformis α-amylase.J Chem. Technol. Biot. 51:209–223.
    • (1991) J Chem. Technol. Biot. , vol.51 , pp. 209-223
    • Komolprasert, V.1    Ofoli, R.Y.2
  • 43
    • 0001455869 scopus 로고
    • The relationship between stochastic and deterministic models for chemical reaction
    • T.G.Kurtz, (1972). The relationship between stochastic and deterministic models for chemical reaction. J. Chem. Phys. 57:2976–2978.
    • (1972) J. Chem. Phys. , vol.57 , pp. 2976-2978
    • Kurtz, T.G.1
  • 45
    • 0034333338 scopus 로고    scopus 로고
    • Kinetic modeling of lactose hydrolysis with an immobilized β-galactosidase from Kluyveromyces fragilis
    • M.Ladero,, A.Santos, and F.Garćia-Ochoa, (2000). Kinetic modeling of lactose hydrolysis with an immobilized β-galactosidase from Kluyveromyces fragilis. Enzyme Microb. Tech. 27:583–592.
    • (2000) Enzyme Microb. Tech. , vol.27 , pp. 583-592
    • Ladero, M.1    Santos, A.2    Garćia-Ochoa, F.3
  • 46
    • 0026767119 scopus 로고
    • A kinetic model and simulation of starch saccharification and simultaneous ethanol fermentation by amyloglucosidase and Zymomonas mobilis
    • C.G.Lee,, C.H.Kim, and S.K.Rhee, (1992). A kinetic model and simulation of starch saccharification and simultaneous ethanol fermentation by amyloglucosidase and Zymomonas mobilis. Bioprocess Eng. 7:335–341.
    • (1992) Bioprocess Eng. , vol.7 , pp. 335-341
    • Lee, C.G.1    Kim, C.H.2    Rhee, S.K.3
  • 47
    • 33748791219 scopus 로고    scopus 로고
    • Artificial neural network for production of antioxidant peptides derived from bighead carp muscles with alcalase
    • L.Li,, J.Wang,, M.Zhao,, C.Cui, and Y.Jiang, (2006). Artificial neural network for production of antioxidant peptides derived from bighead carp muscles with alcalase. Food Technol. Biotech. 44:441–448.
    • (2006) Food Technol. Biotech. , vol.44 , pp. 441-448
    • Li, L.1    Wang, J.2    Zhao, M.3    Cui, C.4    Jiang, Y.5
  • 48
    • 53549108875 scopus 로고    scopus 로고
    • Kinetic modeling of enzymatic hydrolysis of cellulose in differently pretreated fibers from dairy manure
    • W.Liao,, Y.Liu,, Z.Wen,, C.Frear, and S.Chen, (2008). Kinetic modeling of enzymatic hydrolysis of cellulose in differently pretreated fibers from dairy manure. Biotechnol. Bioeng. 101:441–451.
    • (2008) Biotechnol. Bioeng. , vol.101 , pp. 441-451
    • Liao, W.1    Liu, Y.2    Wen, Z.3    Frear, C.4    Chen, S.5
  • 49
    • 0000679593 scopus 로고
    • A model for the action of cereal alpha amylases on amylose
    • E.A.MacGregor, and A.W.MacGregor, (1985). A model for the action of cereal alpha amylases on amylose. Carbohyd. Res. 142:223–236.
    • (1985) Carbohyd. Res. , vol.142 , pp. 223-236
    • MacGregor, E.A.1    MacGregor, A.W.2
  • 50
    • 0028765161 scopus 로고
    • Models for the action of barley alpha-amylase isozymes on linear substrates
    • E.A.MacGregor,, A.W.MacGregor,, L.J.Macri, and J.E.Morgan, (1994). Models for the action of barley alpha-amylase isozymes on linear substrates. Carbohyd. Res. 257:249–268.
    • (1994) Carbohyd. Res. , vol.257 , pp. 249-268
    • MacGregor, E.A.1    MacGregor, A.W.2    Macri, L.J.3    Morgan, J.E.4
  • 51
    • 0020704746 scopus 로고
    • A kinetic model of starch hydrolysis by α- and β-amylase during mashing
    • A.Marc,, J.M.Engasser,, M.Moll, and R.Flayeux, (1983). A kinetic model of starch hydrolysis by α- and β-amylase during mashing. Biotechnol. Bioeng. 25:481–496.
    • (1983) Biotechnol. Bioeng. , vol.25 , pp. 481-496
    • Marc, A.1    Engasser, J.M.2    Moll, M.3    Flayeux, R.4
  • 52
    • 0345830720 scopus 로고    scopus 로고
    • Monte Carlo simulation of the α-amylolysis of amylopectin potato starch. Part II: α-amylolysis of amylopectin
    • L.M.Marchal,, R.V.Ulijn,, C.D.de Gooijer,, G.T.Franke, and J.Tramper, (2003). Monte Carlo simulation of the α-amylolysis of amylopectin potato starch. Part II: α-amylolysis of amylopectin. Bioproc. Biosyst. Eng. 26:123–132.
    • (2003) Bioproc. Biosyst. Eng. , vol.26 , pp. 123-132
    • Marchal, L.M.1    Ulijn, R.V.2    de Gooijer, C.D.3    Franke, G.T.4    Tramper, J.5
  • 54
    • 0030762638 scopus 로고    scopus 로고
    • Empirical kinetic models for tryptic whey-protein hydrolysis
    • A.Margot,, E.Flaschel, and A.Renken, (1997). Empirical kinetic models for tryptic whey-protein hydrolysis. Process Biochem. 32:217–223.
    • (1997) Process Biochem. , vol.32 , pp. 217-223
    • Margot, A.1    Flaschel, E.2    Renken, A.3
  • 56
    • 77955271876 scopus 로고    scopus 로고
    • Kinetic assessment on the autohydrolysis of pectin-rich by-products
    • M.Martίnez,, B.Gullón,, R.Yáñez,, J.L.Alonso, and J.C.Parajó, (2010). Kinetic assessment on the autohydrolysis of pectin-rich by-products. Chem. Eng. J. 162:480–486.
    • (2010) Chem. Eng. , vol.162 , pp. 480-486
    • Martίnez, M.1    Gullón, B.2    Yáñez, R.3    Alonso, J.L.4    Parajó, J.C.5
  • 57
    • 58149084975 scopus 로고    scopus 로고
    • Inulinase production in a batch bioreactor using agroindustrial residues as the substrate: Experimental data and modeling
    • M.A.Mazutti,, M.L.Corazza,, F.M.Filho,, M.I.Rodrigues,, F.C.Corazza, and H.Treichel, (2009). Inulinase production in a batch bioreactor using agroindustrial residues as the substrate: Experimental data and modeling. Bioproc. Biosyst. Eng. 32:85–95.
    • (2009) Bioproc. Biosyst. Eng. , vol.32 , pp. 85-95
    • Mazutti, M.A.1    Corazza, M.L.2    Filho, F.M.3    Rodrigues, M.I.4    Corazza, F.C.5    Treichel, H.6
  • 59
    • 0022861817 scopus 로고
    • Chemical and probabilistic modeling of complex reactions: A lignin depolymerization example
    • J.B.McDermott, and M.T.Klein, (1986). Chemical and probabilistic modeling of complex reactions: A lignin depolymerization example. Chem. Eng. Sci. 41:1053–1060.
    • (1986) Chem. Eng. Sci. , vol.41 , pp. 1053-1060
    • McDermott, J.B.1    Klein, M.T.2
  • 60
    • 0025206313 scopus 로고
    • Quantitative use of model compound information: Monte Carlo simulation of the reactions of complex macromolecules
    • J.B.McDermott,, C.Libanati,, C.LaMarca, and M.T.Klein, (1990). Quantitative use of model compound information: Monte Carlo simulation of the reactions of complex macromolecules. Ind. Eng. Chem. Res. 29:22–29.
    • (1990) Ind. Eng. Chem. Res. , vol.29 , pp. 22-29
    • McDermott, J.B.1    Libanati, C.2    LaMarca, C.3    Klein, M.T.4
  • 61
    • 41849101077 scopus 로고    scopus 로고
    • Dynamic models for the production of glucose syrups from cassava starch
    • S.Morales,, H.Álvarez, and C.Sánchez, (2008). Dynamic models for the production of glucose syrups from cassava starch. Food Bioprod. Process. 86:25–30.
    • (2008) Food Bioprod. Process. , vol.86 , pp. 25-30
    • Morales, S.1    Álvarez, H.2    Sánchez, C.3
  • 62
    • 0014431681 scopus 로고
    • The complex active sites of bacterial neutral proteases in relation to their specificities
    • K.Morihara, and T.Oka, (1968). The complex active sites of bacterial neutral proteases in relation to their specificities. Biophys. Res. Commun. 30:625–630.
    • (1968) Biophys. Res. Commun. , vol.30 , pp. 625-630
    • Morihara, K.1    Oka, T.2
  • 63
    • 0034255698 scopus 로고    scopus 로고
    • A mathematical model of the formation of fermentable sugars from starch hydrolysis during high-temperature mashing
    • R.Muller, (2000). A mathematical model of the formation of fermentable sugars from starch hydrolysis during high-temperature mashing. Enzyme Microb. Tech. 27:337–344.
    • (2000) Enzyme Microb. Tech. , vol.27 , pp. 337-344
    • Muller, R.1
  • 64
  • 65
    • 0030298071 scopus 로고    scopus 로고
    • Monte Carlo simulation of multiple attack mechanism of α-amylase
    • H.Nakatani, (1996). Monte Carlo simulation of multiple attack mechanism of α-amylase. Biopolymers 39:665–669.
    • (1996) Biopolymers , vol.39 , pp. 665-669
    • Nakatani, H.1
  • 66
    • 0031540792 scopus 로고    scopus 로고
    • Monte Carlo simulation of multiple attack mechanism of β-amylase-catalyzed reaction
    • H.Nakatani (1997). Monte Carlo simulation of multiple attack mechanism of β-amylase-catalyzed reaction. Biopolymers 42:831–836.
    • (1997) Biopolymers , vol.42 , pp. 831-836
    • Nakatani, H.1
  • 67
    • 0025846017 scopus 로고
    • Stochastic anaysis of stepwise cellulose degradation
    • R.Nassar,, S.T.Chou, and L.T.Fan, (1991). Stochastic anaysis of stepwise cellulose degradation. Chem. Eng. Sci. 46:1651–1657.
    • (1991) Chem. Eng. Sci. , vol.46 , pp. 1651-1657
    • Nassar, R.1    Chou, S.T.2    Fan, L.T.3
  • 68
    • 0345790334 scopus 로고    scopus 로고
    • Hybrid neural network—prior knowledge model in temperature control of a semi-batch polymerization process
    • C.W.Ng, and M.A.Hussain, (2004). Hybrid neural network—prior knowledge model in temperature control of a semi-batch polymerization process. Chemical Engineering and Processing. 43:559–570.
    • (2004) Chemical Engineering and Processing. , vol.43 , pp. 559-570
    • Ng, C.W.1    Hussain, M.A.2
  • 69
    • 0024715519 scopus 로고
    • Kinetics, equilibria, and modeling of the formation of oligosaccharides from D-glucose with Aspergillus niger glucoamylases I and II
    • Z.L.Nikolov,, M.M.Meagher, and P.J.Reilly, (1989). Kinetics, equilibria, and modeling of the formation of oligosaccharides from D-glucose with Aspergillus niger glucoamylases I and II. Biotechnol. Bioeng. 34:694–704.
    • (1989) Biotechnol. Bioeng. , vol.34 , pp. 694-704
    • Nikolov, Z.L.1    Meagher, M.M.2    Reilly, P.J.3
  • 70
    • 79952695040 scopus 로고    scopus 로고
    • Kinetics of enzymatic high-solid hydrolysis of lignocellulosic biomass studied by calorimetry
    • S.N.Olsen,, E.Lumby,, K.McFarland,, K.Borch, and P.Westh, (2011). Kinetics of enzymatic high-solid hydrolysis of lignocellulosic biomass studied by calorimetry. Appl. Biochem. Biotech. 163:626–635.
    • (2011) Appl. Biochem. Biotech. , vol.163 , pp. 626-635
    • Olsen, S.N.1    Lumby, E.2    McFarland, K.3    Borch, K.4    Westh, P.5
  • 71
    • 84856585065 scopus 로고    scopus 로고
    • Optimization of enzymatic hydrolysis of visceral waste proteins of yellowfin tuna (Thunnus albacares)
    • M.Ovissipour,, A.A.Kenari,, A.Motamezadegan, and R.M.Nazari, (2012). Optimization of enzymatic hydrolysis of visceral waste proteins of yellowfin tuna (Thunnus albacares). Food Bioprocess Tech. 5:696–705.
    • (2012) Food Bioprocess Tech. , vol.5 , pp. 696-705
    • Ovissipour, M.1    Kenari, A.A.2    Motamezadegan, A.3    Nazari, R.M.4
  • 74
    • 0024673674 scopus 로고
    • Biopolymeric substrate structural effects of α-amylase-catalyzed amylose depolymerization
    • J.T.Park, and J.E.Rollings, (1989). Biopolymeric substrate structural effects of α-amylase-catalyzed amylose depolymerization. Enzyme Microb. Tech. 11:334–340.
    • (1989) Enzyme Microb. Tech. , vol.11 , pp. 334-340
    • Park, J.T.1    Rollings, J.E.2
  • 75
    • 0028500815 scopus 로고
    • Effects of substrate branching characteristics on kinetics of enzymatic depolymerization of mixed linear and branched polysaccharides: I. Amylose/amylopectin α-amylolysis
    • J.T.Park, and J.E.Rollings, (1994). Effects of substrate branching characteristics on kinetics of enzymatic depolymerization of mixed linear and branched polysaccharides: I. Amylose/amylopectin α-amylolysis. Biotechnol. Bioeng. 44:792–800.
    • (1994) Biotechnol. Bioeng. , vol.44 , pp. 792-800
    • Park, J.T.1    Rollings, J.E.2
  • 76
    • 0029636266 scopus 로고
    • Effects of substrate branching characteristics on kinetics of enzymatic depolymerization of mixed linear and branched polysaccharides: II. Amylose/glycogen α-amylolysis
    • J.T.Park, and J.E.Rollings, (1995). Effects of substrate branching characteristics on kinetics of enzymatic depolymerization of mixed linear and branched polysaccharides: II. Amylose/glycogen α-amylolysis. Biotechnol. Bioeng. 46:36–42.
    • (1995) Biotechnol. Bioeng. , vol.46 , pp. 36-42
    • Park, J.T.1    Rollings, J.E.2
  • 77
    • 0030456785 scopus 로고    scopus 로고
    • Preliminary screening of neural network configurations for bioreactor applications
    • P.R.Patnaik, (1996). Preliminary screening of neural network configurations for bioreactor applications. Biotechnol. Tech. 10:967–970.
    • (1996) Biotechnol. Tech. , vol.10 , pp. 967-970
    • Patnaik, P.R.1
  • 78
    • 79953743885 scopus 로고    scopus 로고
    • Ultrafiltration optimization for the recovery of β-glucan from oat mill waste
    • A.Patsioura,, C.M.Galanakis, and V.Gekas, (2011). Ultrafiltration optimization for the recovery of β-glucan from oat mill waste. J. Membrane Sci. 373:53–63.
    • (2011) J. Membrane Sci. , vol.373 , pp. 53-63
    • Patsioura, A.1    Galanakis, C.M.2    Gekas, V.3
  • 79
    • 0031059537 scopus 로고    scopus 로고
    • Neural network modeling of fermentation processes. Microorganisms cultivation model
    • M.Petrova,, P.Koprinkova, and T.Patarinska, (1997). Neural network modeling of fermentation processes. Microorganisms cultivation model. Bioproc. Biosyst. Eng. 16:145–149.
    • (1997) Bioproc. Biosyst. Eng. , vol.16 , pp. 145-149
    • Petrova, M.1    Koprinkova, P.2    Patarinska, T.3
  • 80
    • 27944507297 scopus 로고    scopus 로고
    • Comparison of performance of different algorithms in noisy signals filtering of process in enzymatic hydrolysis of cheese whey
    • A.P.Pinto,, R.S.Júnior, and R.C.Giordano, (2005). Comparison of performance of different algorithms in noisy signals filtering of process in enzymatic hydrolysis of cheese whey. Braz. Arch. Biol. Techn. 48:151–159.
    • (2005) Braz. Arch. Biol. Techn. , vol.48 , pp. 151-159
    • Pinto, A.P.1    Júnior, R.S.2    Giordano, R.C.3
  • 81
    • 37449006368 scopus 로고    scopus 로고
    • Neural network inference of molar mass distributions of peptides during tailor-made enzymatic hydrolysis of cheese whey: Effects of pH and temperature
    • G.A.Pinto, and R.L.C.Giordano, (2007). Neural network inference of molar mass distributions of peptides during tailor-made enzymatic hydrolysis of cheese whey: Effects of pH and temperature. Appl. Biochem. Biotech. 143:142–152.
    • (2007) Appl. Biochem. Biotech. , vol.143 , pp. 142-152
    • Pinto, G.A.1    Giordano, R.L.C.2
  • 82
    • 0026171676 scopus 로고
    • A Monte Carlo analysis of acid hydrolysis of glycosidic bonds in polysaccharides
    • J.H.Pinto, and S.Kaliaguine, (1991). A Monte Carlo analysis of acid hydrolysis of glycosidic bonds in polysaccharides. AIChE J. 37:905–914.
    • (1991) AIChE J. , vol.37 , pp. 905-914
    • Pinto, J.H.1    Kaliaguine, S.2
  • 83
    • 1542268878 scopus 로고    scopus 로고
    • Modelling of potato starch saccharification by an Aspergillus niger glucoamylase
    • M.Polakovič, and J.Bryjak, (2004). Modelling of potato starch saccharification by an Aspergillus niger glucoamylase. Biochem. Eng. J. 18:57–63.
    • (2004) Biochem. Eng. J. , vol.18 , pp. 57-63
    • Polakovič, M.1    Bryjak, J.2
  • 85
    • 0014140609 scopus 로고
    • Multiple attack hypothesis of α-amylase action: Action of porcine pancreatic, human salivary, and aspergillus oryzae α-amylases
    • J.F.Robyt, and D.French, (1967). Multiple attack hypothesis of α-amylase action: Action of porcine pancreatic, human salivary, and aspergillus oryzae α-amylases. Arch. Biochem. Biophys. 122:8–16.
    • (1967) Arch. Biochem. Biophys. , vol.122 , pp. 8-16
    • Robyt, J.F.1    French, D.2
  • 86
    • 33748324882 scopus 로고    scopus 로고
    • Experimental design and response surface modeling applied for the optimisation of pectin hydrolysis by enzymes from A. niger CECT 2088
    • J.M.Rodriguez-Nogales,, N.Ortega,, M.Perez-Mateos, and M.D.Busto, (2007). Experimental design and response surface modeling applied for the optimisation of pectin hydrolysis by enzymes from A. niger CECT 2088. Food Chemistry. 101:634–642.
    • (2007) Food Chemistry. , vol.101 , pp. 634-642
    • Rodriguez-Nogales, J.M.1    Ortega, N.2    Perez-Mateos, M.3    Busto, M.D.4
  • 87
    • 0021671749 scopus 로고
    • Kinetics of enzymatic starch liquefaction: Simulation of the high-molecular-weight product distribution
    • J.E.Rollings, and R.W.Thompson, (1984). Kinetics of enzymatic starch liquefaction: Simulation of the high-molecular-weight product distribution. Biotechnol. Bioeng. 26:1475–1484.
    • (1984) Biotechnol. Bioeng. , vol.26 , pp. 1475-1484
    • Rollings, J.E.1    Thompson, R.W.2
  • 88
    • 77958139106 scopus 로고    scopus 로고
    • Kinetics of hydrolysis of egg white protein by pepsin
    • C.Q.Ruan,, Y.J.Chi, and R.D.Zhang, (2010). Kinetics of hydrolysis of egg white protein by pepsin. Czech J. Food Sci. 28:355–363.
    • (2010) Czech J. Food Sci. , vol.28 , pp. 355-363
    • Ruan, C.Q.1    Chi, Y.J.2    Zhang, R.D.3
  • 89
    • 0023435073 scopus 로고
    • Single step unimolecular non-first-order enzyme deactivation kinetics
    • A.Sadana, and J.M.Henley, (1987). Single step unimolecular non-first-order enzyme deactivation kinetics. Biotechnol. Bioeng. 30:717–723.
    • (1987) Biotechnol. Bioeng. , vol.30 , pp. 717-723
    • Sadana, A.1    Henley, J.M.2
  • 90
    • 0032549162 scopus 로고    scopus 로고
    • A theoretical equation describing the time evolution of the concentration of a selected range of substrate molecular weights in depolymerization processes mediated by single-attack mechanism endo-enzymes
    • J.M.Sendra, and J.V.Carbonell, (1998). A theoretical equation describing the time evolution of the concentration of a selected range of substrate molecular weights in depolymerization processes mediated by single-attack mechanism endo-enzymes. Biotechnol. Bioeng. 57:387–393.
    • (1998) Biotechnol. Bioeng. , vol.57 , pp. 387-393
    • Sendra, J.M.1    Carbonell, J.V.2
  • 91
    • 0014211618 scopus 로고
    • On the size of the active site in proteases. I. Papain
    • I.Schechter, and A.Berger. (1967). On the size of the active site in proteases. I. Papain. Biochem. Bioph. Res. Co. 27:157–162.
    • (1967) Biochem. Bioph. Res. Co. , vol.27 , pp. 157-162
    • Schechter, I.1    Berger, A.2
  • 92
    • 73249131640 scopus 로고    scopus 로고
    • Application of modeling and simulation tools for the evaluation of biocatalytic processes: A future perspective
    • G.Sin,, J.M.Woodley, and K.V.Gernaey, (2009). Application of modeling and simulation tools for the evaluation of biocatalytic processes: A future perspective. Biotechnol. Prog. 25:1529–1538.
    • (2009) Biotechnol. Prog. , vol.25 , pp. 1529-1538
    • Sin, G.1    Woodley, J.M.2    Gernaey, K.V.3
  • 93
    • 77949656928 scopus 로고    scopus 로고
    • Empirical evaluation of inhibitory product, substrate, and enzyme effects during the enzymatic saccharification of lignocellulosic biomass
    • B.T.Smith,, J.S.Knutsen, and R.H.Davis, (2010). Empirical evaluation of inhibitory product, substrate, and enzyme effects during the enzymatic saccharification of lignocellulosic biomass. Appl. Biochem. Biotech. 161:468--482.
    • (2010) Appl. Biochem. Biotech. , vol.161 , pp. 468-482
    • Smith, B.T.1    Knutsen, J.S.2    Davis, R.H.3
  • 94
    • 0030033388 scopus 로고    scopus 로고
    • Elucidation of the subsite structure of bacterial saccharifying alpha-amylase and its mode of degradation of maltose
    • T.Suganuma,, M.Ohnishi,, K.Hiromi, and T.Nagahama, (1996). Elucidation of the subsite structure of bacterial saccharifying alpha-amylase and its mode of degradation of maltose. Carbohyd. Res. 282:171--180.
    • (1996) Carbohyd. Res. , vol.282 , pp. 171-180
    • Suganuma, T.1    Ohnishi, M.2    Hiromi, K.3    Nagahama, T.4
  • 95
    • 0016960327 scopus 로고
    • Models for depolymerizing enzymes: Criteria for discrimination of models
    • J.A.Thoma, (1976). Models for depolymerizing enzymes: Criteria for discrimination of models. Carbohyd. Res. 48:85–103.
    • (1976) Carbohyd. Res. , vol.48 , pp. 85-103
    • Thoma, J.A.1
  • 96
    • 0014944762 scopus 로고
    • Subsite mapping of enzymes. Studies on Bacillus subtilis amylase
    • J.A.Thoma,, C.Brothers, and J.Spradlin, (1970). Subsite mapping of enzymes. Studies on Bacillus subtilis amylase. Biochemistry-US 9:1768--1775.
    • (1970) Biochemistry-US , vol.9 , pp. 1768-1775
    • Thoma, J.A.1    Brothers, C.2    Spradlin, J.3
  • 97
    • 0015240182 scopus 로고
    • Subsite mapping of enzymes: Correlation of product patterns with Michaelis parameters and substrate-induced strain
    • J.A.Thoma,, G.V.K.Rao,, C.Brothers,, J.Spradlin, and L.H.Li, (1971). Subsite mapping of enzymes: Correlation of product patterns with Michaelis parameters and substrate-induced strain. J. Biol. Chem. 246:5621--5635.
    • (1971) J. Biol. Chem. , vol.246 , pp. 5621-5635
    • Thoma, J.A.1    Rao, G.V.K.2    Brothers, C.3    Spradlin, J.4    Li, L.H.5
  • 98
    • 65249172116 scopus 로고    scopus 로고
    • A kinetic model for the enzymatic action of cellulase
    • C.L.Ting,, D.E.Makarov, and Z.G.Wang, (2009). A kinetic model for the enzymatic action of cellulase. J. Phys. Chem. B 113:4970--4977.
    • (2009) J. Phys. Chem. B , vol.113 , pp. 4970-4977
    • Ting, C.L.1    Makarov, D.E.2    Wang, Z.G.3
  • 99
    • 0018502518 scopus 로고
    • Subsite mapping of enzymes. Use of subsite map to simulate complete time course of hydrolysis of a polymeric substrate
    • E.M.Torgerson,, L.C.Brewer, and J.A.Thoma, (1979). Subsite mapping of enzymes. Use of subsite map to simulate complete time course of hydrolysis of a polymeric substrate. Arch. Biochem. Biophys. 196:13--22.
    • (1979) Arch. Biochem. Biophys. , vol.196 , pp. 13-22
    • Torgerson, E.M.1    Brewer, L.C.2    Thoma, J.A.3
  • 100
    • 38349029092 scopus 로고    scopus 로고
    • Peptides removing in enzymatic membrane bioreactor
    • A.Trusek-Holownia, and A.Noworyta, (2008). Peptides removing in enzymatic membrane bioreactor. Desalination 221:543–551.
    • (2008) Desalination , vol.221 , pp. 543-551
    • Trusek-Holownia, A.1    Noworyta, A.2
  • 101
    • 0344393718 scopus 로고    scopus 로고
    • The total quasi-steady-state approximation is valid for reversible enzyme kinetics
    • A.R.Tzafriri, and E.R.Edelman, (2004). The total quasi-steady-state approximation is valid for reversible enzyme kinetics. J. Theor. Biol. 226:303–313.
    • (2004) J. Theor. Biol. , vol.226 , pp. 303-313
    • Tzafriri, A.R.1    Edelman, E.R.2
  • 103
    • 70349591179 scopus 로고    scopus 로고
    • Kinetics of granular starch hydrolysis in corn dry-grind process
    • J.B.C.Vidal, Jr. B. C., K.D.Rausch,, M.E.Tumbleson, and V.Singh, (2009). Kinetics of granular starch hydrolysis in corn dry-grind process. Starch 61:448–456.
    • (2009) Starch , vol.61 , pp. 448-456
    • Vidal, J.B.C.1    Rausch, K.D.2    Tumbleson, M.E.3    Singh, V.4
  • 104
    • 0035814399 scopus 로고    scopus 로고
    • Iteration model of starch hydrolysis by amylolytic enzymes
    • P.M.Wojciechowski,, A.Koziol, and A.Noworyta, (2001). Iteration model of starch hydrolysis by amylolytic enzymes. Biotechnol. Bioeng. 75:530–539.
    • (2001) Biotechnol. Bioeng. , vol.75 , pp. 530-539
    • Wojciechowski, P.M.1    Koziol, A.2    Noworyta, A.3
  • 105
    • 0035809058 scopus 로고    scopus 로고
    • Two-dimensional fluorometry coupled with artificial neural networks: A novel method for on-line monitoring of complex biological processes
    • G.Wolf,, J.S.Almeida,, C.Pinheiro,, V.Correia,, C.Rodrigues,, M.A.M.Reis, and J.G.Crespo, (2000). Two-dimensional fluorometry coupled with artificial neural networks: A novel method for on-line monitoring of complex biological processes. Biotechnol. Bioeng. 72:297–306.
    • (2000) Biotechnol. Bioeng. , vol.72 , pp. 297-306
    • Wolf, G.1    Almeida, J.S.2    Pinheiro, C.3    Correia, V.4    Rodrigues, C.5    Reis, M.A.M.6    Crespo, J.G.7
  • 106
    • 0022806203 scopus 로고
    • Study of optimum conditions and kinetics of starch hydrolysis by means of thermostable α-amylase
    • D.Yankov,, E.Dobreva,, V.Beschkov, and E.Emanuilova, (1986). Study of optimum conditions and kinetics of starch hydrolysis by means of thermostable α-amylase. Enzyme Microb. Tech. 8:665–667.
    • (1986) Enzyme Microb. Tech. , vol.8 , pp. 665-667
    • Yankov, D.1    Dobreva, E.2    Beschkov, V.3    Emanuilova, E.4
  • 107
    • 0000209358 scopus 로고    scopus 로고
    • Modeling cassava starch saccharification with amyloglucosidase
    • G.M.Zanin, and F.F.Moraes, (1996). Modeling cassava starch saccharification with amyloglucosidase. Appl. Biochem. Biotech. 57–58:617–625.
    • (1996) Appl. Biochem. Biotech. , vol.57-58 , pp. 617-625
    • Zanin, G.M.1    Moraes, F.F.2
  • 108
    • 74649083867 scopus 로고    scopus 로고
    • Artificial neural network-genetic algorithm based optimization for the immobilization of cellulase on the smart polymer Eudragit L-100
    • Y.Zhang,, J.Xu,, Z.Yuan,, H.Xu, and Q.Yu, (2010). Artificial neural network-genetic algorithm based optimization for the immobilization of cellulase on the smart polymer Eudragit L-100. Bioresource Technol. 101:3153–3158.
    • (2010) Bioresource Technol. , vol.101 , pp. 3153-3158
    • Zhang, Y.1    Xu, J.2    Yuan, Z.3    Xu, H.4    Yu, Q.5
  • 109
    • 0033525429 scopus 로고    scopus 로고
    • Kinetic model for the co-action of β-amylase and debranching enzymes in the production of maltose
    • J.Zhou, (2000). Kinetic model for the co-action of β-amylase and debranching enzymes in the production of maltose. Biotechnol. Bioeng. 62:618–622.
    • (2000) Biotechnol. Bioeng. , vol.62 , pp. 618-622
    • Zhou, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.