-
1
-
-
0034175920
-
A kinetic model for enzymatic wheat starch saccharification
-
C.Åkerberg,, G.Zacchi,, N.Torto, and L.Gorton, (2000). A kinetic model for enzymatic wheat starch saccharification. J. Chem. Technol. Biot. 75:306–314.
-
(2000)
J. Chem. Technol. Biot.
, vol.75
, pp. 306-314
-
-
Åkerberg, C.1
Zacchi, G.2
Torto, N.3
Gorton, L.4
-
2
-
-
0017089959
-
Subsite mapping of enzymes: Depolymerase computer modeling
-
J.D.Allen, and J.A.Thoma, (1976). Subsite mapping of enzymes: Depolymerase computer modeling. J. Biochem. 159:105–120.
-
(1976)
J. Biochem.
, vol.159
, pp. 105-120
-
-
Allen, J.D.1
Thoma, J.A.2
-
3
-
-
0036469175
-
Predictive non-linear modeling of complex data by artificial neural networks
-
J.S.Almeida, (2002). Predictive non-linear modeling of complex data by artificial neural networks. Curr. Opin. Biotech. 13:72–76.
-
(2002)
Curr. Opin. Biotech
, vol.13
, pp. 72-76
-
-
Almeida, J.S.1
-
4
-
-
77949570744
-
Reactor design for minimizing product inhibition enzymatic lignocellulose hydrolysis: I. Significance and mechanism of cellobiose and glucose inhibition on cellulotic enzymes
-
P.Andrić,, A.S.Meyer,, P.A.Jensen, and K.Dam-Johansen, (2010). Reactor design for minimizing product inhibition enzymatic lignocellulose hydrolysis: I. Significance and mechanism of cellobiose and glucose inhibition on cellulotic enzymes. Biotechnol. Adv. 28:308–324.
-
(2010)
Biotechnol. Adv.
, vol.28
, pp. 308-324
-
-
Andrić, P.1
Meyer, A.S.2
Jensen, P.A.3
Dam-Johansen, K.4
-
5
-
-
33745223864
-
A kinetic model to explain the maximum in α-amylase activity measurements in the presence of small carbohydrates
-
T.Baks,, A.E.M.Janssen, and R.M.Boom, (2006). A kinetic model to explain the maximum in α-amylase activity measurements in the presence of small carbohydrates. Biotechnol. Bioeng. 94:431–440.
-
(2006)
Biotechnol. Bioeng.
, vol.94
, pp. 431-440
-
-
Baks, T.1
Janssen, A.E.M.2
Boom, R.M.3
-
7
-
-
70349991285
-
Modeling cellulase kinetics on lignocellulosic substrates
-
P.Bansal,, M.Hall,, M.J.Realff,, J.H.Lee, and A.S.Bommarius, (2009). Modeling cellulase kinetics on lignocellulosic substrates. Biotechnol. Adv. 27:833–848.
-
(2009)
Biotechnol. Adv.
, vol.27
, pp. 833-848
-
-
Bansal, P.1
Hall, M.2
Realff, M.J.3
Lee, J.H.4
Bommarius, A.S.5
-
8
-
-
0021120106
-
A kinetic model for the hydrolysis and synthesis of maltose, isomaltose and maltotriose by glucoamylase
-
V.Beschkov,, A.Marc, and J.M.Engasser, (1984). A kinetic model for the hydrolysis and synthesis of maltose, isomaltose and maltotriose by glucoamylase. Biotechnol. Bioeng. 26:22–26.
-
(1984)
Biotechnol. Bioeng.
, vol.26
, pp. 22-26
-
-
Beschkov, V.1
Marc, A.2
Engasser, J.M.3
-
9
-
-
46249107660
-
A stochastic model for predicting dextrose equivalent and saccharide composition during hydrolysis of starch by α-amylase
-
T.Besselink,, T.Baks,, A.E.M.Janssen, and R.M.Boom, (2008). A stochastic model for predicting dextrose equivalent and saccharide composition during hydrolysis of starch by α-amylase. Biotechnol. Bioeng. 100:684–697.
-
(2008)
Biotechnol. Bioeng.
, vol.100
, pp. 684-697
-
-
Besselink, T.1
Baks, T.2
Janssen, A.E.M.3
Boom, R.M.4
-
10
-
-
0037230981
-
An original kinetic model for the enzymatic hydrolysis of starch during mashing
-
C.Brandam,, X.M.Meyer,, J.Proth,, P.Strehaiano, and H.Pingaud, (2003). An original kinetic model for the enzymatic hydrolysis of starch during mashing. Biochem. Eng. J. 13:43–52.
-
(2003)
Biochem. Eng. J.
, vol.13
, pp. 43-52
-
-
Brandam, C.1
Meyer, X.M.2
Proth, J.3
Strehaiano, P.4
Pingaud, H.5
-
11
-
-
4644368380
-
Modelling of glucoamylase thermal inactivation in the presence of starch by artificial neural network
-
J.Bryjak,, K.Ciesielski, and I.Zbiciński, (2004). Modelling of glucoamylase thermal inactivation in the presence of starch by artificial neural network. J. Biotechnol. 114:177–185.
-
(2004)
J. Biotechnol.
, vol.114
, pp. 177-185
-
-
Bryjak, J.1
Ciesielski, K.2
Zbiciński, I.3
-
12
-
-
0034429643
-
Application of artificial neural networks to modeling of starch hydrolysis by glucoamylase
-
J.Bryjak,, K.Murlikiewicz,, I.Zbicinski, and J.Stawczyk, (2000). Application of artificial neural networks to modeling of starch hydrolysis by glucoamylase. Bioproc. Biosyst. Eng. 23:351–357.
-
(2000)
Bioproc. Biosyst. Eng.
, vol.23
, pp. 351-357
-
-
Bryjak, J.1
Murlikiewicz, K.2
Zbicinski, I.3
Stawczyk, J.4
-
13
-
-
34247508024
-
Stability and catalytic activity of α-amylase from barley malt at different pressure-temperature conditions
-
R.Buckow,, U.Weiss,, V.Heinz, and D.Knorr (2006). Stability and catalytic activity of α-amylase from barley malt at different pressure-temperature conditions. Biotechnol. Bioeng. 97:1–11.
-
(2006)
Biotechnol. Bioeng.
, vol.97
, pp. 1-11
-
-
Buckow, R.1
Weiss, U.2
Heinz, V.3
Knorr, D.4
-
15
-
-
0022732557
-
Design of immobilized glucoamylase reactors using a simple kinetic model for the hydrolysis of starch
-
J.M.S.Cabral,, J.M.Novais,, J.P.Cardoso, and J.F.Kennedy, (1986). Design of immobilized glucoamylase reactors using a simple kinetic model for the hydrolysis of starch. J. Chem. Technol. Biot. 36:247–254.
-
(1986)
J. Chem. Technol. Biot.
, vol.36
, pp. 247-254
-
-
Cabral, J.M.S.1
Novais, J.M.2
Cardoso, J.P.3
Kennedy, J.F.4
-
16
-
-
57949112098
-
Optimization of membrane bioreactor performances during enzymatic oxidation of waste bio-phenols
-
V.Calabrò,, S.Curcio,, M.G.De Paola, and G.Iorio, (2009). Optimization of membrane bioreactor performances during enzymatic oxidation of waste bio-phenols. Desalination 236:30–38.
-
(2009)
Desalination
, vol.236
, pp. 30-38
-
-
Calabrò, V.1
Curcio, S.2
De Paola, M.G.3
Iorio, G.4
-
17
-
-
0032487352
-
A Monte Carlo simulation of the depolymerization of linear homopolymers by endo-enzymes exhibiting random-attack probability and single-attack mechanism: Application to the (1 → 3),(→ 4)-β-D-glucan/endo-(1 → 3),(1→ 4)-β-D-glucanase system
-
J.V.Carbonel,, L.Izquierdo,, J.M.Sendra, and P.Manzanares, (1998). A Monte Carlo simulation of the depolymerization of linear homopolymers by endo-enzymes exhibiting random-attack probability and single-attack mechanism: Application to the (1 → 3),(→ 4)-β-D-glucan/endo-(1 → 3),(1→ 4)-β-D-glucanase system. Biotechnol. Bioeng. 60:105–113.
-
(1998)
Biotechnol. Bioeng.
, vol.60
, pp. 105-113
-
-
Carbonel, J.V.1
Izquierdo, L.2
Sendra, J.M.3
Manzanares, P.4
-
18
-
-
65649102679
-
Recent developments in parameter estimation and structure identification of biochemical and genomic systems
-
I.C.Chow, and E.O.Voit, (2009). Recent developments in parameter estimation and structure identification of biochemical and genomic systems. Mathem. Biosci. 219:57–83.
-
(2009)
Mathem. Biosci.
, vol.219
, pp. 57-83
-
-
Chow, I.C.1
Voit, E.O.2
-
19
-
-
0035947514
-
Optimization of maltodextrin hydrolysis by glucoamylase in a batch reactor
-
E.Cepeda,, M.Hermosa, and A.Ballesteros, (2001). Optimization of maltodextrin hydrolysis by glucoamylase in a batch reactor. Biotechnol. Bioeng. 76:70–76.
-
(2001)
Biotechnol. Bioeng.
, vol.76
, pp. 70-76
-
-
Cepeda, E.1
Hermosa, M.2
Ballesteros, A.3
-
20
-
-
5444240869
-
Modeling of starch saccharification by a two-enzyme system using an artificial neural network
-
K.Ciesielski,, J.Bryjak, and I.Zbicinski, (2004). Modeling of starch saccharification by a two-enzyme system using an artificial neural network. Inzynieria Chemiczna I Procesowa 25:801–806.
-
(2004)
Inzynieria Chemiczna I Procesowa
, vol.25
, pp. 801-806
-
-
Ciesielski, K.1
Bryjak, J.2
Zbicinski, I.3
-
22
-
-
0031239027
-
Molecular weight distribution of hydrolysis products during biodegradation of model macromolecules in suspended and biofilm cultures I. Bovine serum albumin
-
D.R.Confer, and B.E.Logan, (1997). Molecular weight distribution of hydrolysis products during biodegradation of model macromolecules in suspended and biofilm cultures I. Bovine serum albumin. Water Res. 31:2127–2136.
-
(1997)
Water Res.
, vol.31
, pp. 2127-2136
-
-
Confer, D.R.1
Logan, B.E.2
-
23
-
-
10044271142
-
Determination of inhibition in the enzymatic hydrolysis of cellobiose using hybrid neural modeling
-
F.C.Corazza,, L.P.V.Calsavara,, F.F.Moraes,, G.M.Zanin, and I.Neitzel, (2005). Determination of inhibition in the enzymatic hydrolysis of cellobiose using hybrid neural modeling. Braz. J. Chem. Eng. 22:19–29.
-
(2005)
Braz. J. Chem. Eng.
, vol.22
, pp. 19-29
-
-
Corazza, F.C.1
Calsavara, L.P.V.2
Moraes, F.F.3
Zanin, G.M.4
Neitzel, I.5
-
24
-
-
0042766429
-
Integrated approach in the biotreatment of starch wastes by Rhizopus oligosporus: Kinetic analysis
-
G.Del Re,, G.Di Giacomo,, L.Spera, and F.Vegliò, (2003). Integrated approach in the biotreatment of starch wastes by Rhizopus oligosporus: Kinetic analysis. Desalination 156:389–396.
-
(2003)
Desalination
, vol.156
, pp. 389-396
-
-
Del Re, G.1
Di Giacomo, G.2
Spera, L.3
Vegliò, F.4
-
25
-
-
70449375187
-
A modeling study on hydrolysis of lactose recovered from whey and β-galactosidase stability under sonic treatment
-
E.Demirhan, and B.Özbek, (2009). A modeling study on hydrolysis of lactose recovered from whey and β-galactosidase stability under sonic treatment. Chem. Eng. Commun. 196:767–787.
-
(2009)
Chem. Eng. Commun.
, vol.196
, pp. 767-787
-
-
Demirhan, E.1
Özbek, B.2
-
26
-
-
84860483231
-
Effect of pressure and temperature on alcoholic fermentation by Saccharomyces cerevisiae immobilized on γ-alumina pellets
-
C.M.Galanakis,, C.Kordulis,, M.Kanellaki,, A.A.Koutinas,, A.Bekatorou, and A.Lycourgiotis, (2012). Effect of pressure and temperature on alcoholic fermentation by Saccharomyces cerevisiae immobilized on γ-alumina pellets. Bioresource Technol. 114:492–498.
-
(2012)
Bioresource Technol.
, vol.114
, pp. 492-498
-
-
Galanakis, C.M.1
Kordulis, C.2
Kanellaki, M.3
Koutinas, A.A.4
Bekatorou, A.5
Lycourgiotis, A.6
-
27
-
-
0038019825
-
Kinetic dynamics in heterogeneous enzymatic hydrolysis of cellulose: An overview, an experimental study and mathematical modeling
-
Q.Gan,, S.J.Allen, and G.Taylor, (2003). Kinetic dynamics in heterogeneous enzymatic hydrolysis of cellulose: An overview, an experimental study and mathematical modeling. Process Biochem. 38:1003--1018.
-
(2003)
Process Biochem.
, vol.38
, pp. 1003-1018
-
-
Gan, Q.1
Allen, S.J.2
Taylor, G.3
-
28
-
-
0011386342
-
Kinetic studies on the hydrolysis of soluble and cassava starches by maltogenase
-
Q.Gaouar,, C.Aymard,, N.Zakhia, and G.M.Rios, (1997). Kinetic studies on the hydrolysis of soluble and cassava starches by maltogenase. Starch 49:231--237.
-
(1997)
Starch
, vol.49
, pp. 231-237
-
-
Gaouar, Q.1
Aymard, C.2
Zakhia, N.3
Rios, G.M.4
-
29
-
-
0002976888
-
Hydrolysis of lactose—A literature review
-
V.Gekas, and M.Lopez-Leiva, (1985). Hydrolysis of lactose—A literature review. Process Biochem. 20:2--12.
-
(1985)
Process Biochem.
, vol.20
, pp. 2-12
-
-
Gekas, V.1
Lopez-Leiva, M.2
-
30
-
-
0030297745
-
A simple method for obtaining kinetic equations to describe the enzymatic hydrolysis of biopolymers
-
P.González-Tello,, F.Camacho,, E.Jurado, and E.M.Guadix, (1996). A simple method for obtaining kinetic equations to describe the enzymatic hydrolysis of biopolymers. J. Chem. Technol. Biot. 67:286–290.
-
(1996)
J. Chem. Technol. Biot.
, vol.67
, pp. 286-290
-
-
González-Tello, P.1
Camacho, F.2
Jurado, E.3
Guadix, E.M.4
-
31
-
-
0036428546
-
Subsite mapping of the binding region of α-amylases with a computer program
-
G.Gyémánt,, G.Hovánszki, and L.Kandra, (2002). Subsite mapping of the binding region of α-amylases with a computer program. Eur. J. Biochem. 269:5157–5162.
-
(2002)
Eur. J. Biochem.
, vol.269
, pp. 5157-5162
-
-
Gyémánt, G.1
Hovánszki, G.2
Kandra, L.3
-
32
-
-
44449105134
-
Medium factor optimization and fermentation kinetics for phenazine-1-carboxylic acid production by Pseudomonas sp. M18G
-
L.He,, Y.Q.Xu, and X.H.Zhang, (2008). Medium factor optimization and fermentation kinetics for phenazine-1-carboxylic acid production by Pseudomonas sp. M18G. Biotechnol. Bioeng. 100:250–259.
-
(2008)
Biotechnol. Bioeng
, vol.100
, pp. 250-259
-
-
He, L.1
Xu, Y.Q.2
Zhang, X.H.3
-
33
-
-
0014943898
-
Interpretation of dependency of rate parameters on the degree of polymerization of substrate in enzyme-catalyzed reactions. Evaluation of subsite affinities of exo-enzyme
-
K.Hiromi, (1970). Interpretation of dependency of rate parameters on the degree of polymerization of substrate in enzyme-catalyzed reactions. Evaluation of subsite affinities of exo-enzyme. Biochem. Bioph. Res. Co. 40:1–6.
-
(1970)
Biochem. Bioph. Res. Co.
, vol.40
, pp. 1-6
-
-
Hiromi, K.1
-
34
-
-
0020687024
-
Subsite structure and ligand binding mechanism of glucoamylase
-
K.Hiromi,, M.Ohnishi, and A.Tanaka (1983). Subsite structure and ligand binding mechanism of glucoamylase. Mol. Cell Biochem. 51:79–95.
-
(1983)
Mol. Cell Biochem.
, vol.51
, pp. 79-95
-
-
Hiromi, K.1
Ohnishi, M.2
Tanaka, A.3
-
35
-
-
0030057479
-
Process integration aspects for the production of fine chemicals illustrated with the biotransformation of γ-butyrobetaine into L-carnitine
-
F.W.J.M.M.Hoeks,, J.Mühle,, L.Böhlen, and I.Pšenička, (1996). Process integration aspects for the production of fine chemicals illustrated with the biotransformation of γ-butyrobetaine into L-carnitine. The Chem. Eng. J. Biochem. Eng. J. 61:53–61.
-
(1996)
The Chem. Eng. J. Biochem. Eng. J.
, vol.61
, pp. 53-61
-
-
Hoeks, F.W.J.M.M.1
Mühle, J.2
Böhlen, L.3
Pšenička, I.4
-
36
-
-
0036401887
-
Classification of fermentation performance by multivariate analysis based on mean hypothesis testing
-
J.Huang,, H.Nanami,, A.Kanda,, H.Shimizu, and S.Shioya, (2002). Classification of fermentation performance by multivariate analysis based on mean hypothesis testing. J. Biosci. Bioeng. 94:251–257.
-
(2002)
J. Biosci. Bioeng.
, vol.94
, pp. 251-257
-
-
Huang, J.1
Nanami, H.2
Kanda, A.3
Shimizu, H.4
Shioya, S.5
-
37
-
-
33745947864
-
Application of genetic algorithm for optimization of vegetable oil hydrogenation process
-
M.Izadifar, and M.Z.Jahromi,, 2007. Application of genetic algorithm for optimization of vegetable oil hydrogenation process. J. Food Eng. 78:1–8.
-
(2007)
J. Food Eng.
, vol.78
, pp. 1-8
-
-
Izadifar, M.1
Jahromi, M.Z.2
-
38
-
-
0037042199
-
Action pattern and subsite mapping of Bacillus licheniformis α-amylase (BLA) with modified maltooligosaccharide substrates
-
L.Kandra,, G.Gyémánt,, J.Remenyik,, G.Hovánszki, and A.Lipták, (2002). Action pattern and subsite mapping of Bacillus licheniformis α-amylase (BLA) with modified maltooligosaccharide substrates. FEBS Lett. 518:79–82.
-
(2002)
FEBS Lett.
, vol.518
, pp. 79-82
-
-
Kandra, L.1
Gyémánt, G.2
Remenyik, J.3
Hovánszki, G.4
Lipták, A.5
-
39
-
-
0031055914
-
Global and local neural network models in biotechnology: Application to different cultivation processes
-
M.N.Karim,, T.Yoshida,, S.L.Rivera,, V.M.Saucedo,, B.Eikens, and G.-S.Oh, (1997). Global and local neural network models in biotechnology: Application to different cultivation processes. J. Ferm. Bioeng. 83:1–11.
-
(1997)
J. Ferm. Bioeng.
, vol.83
, pp. 1-11
-
-
Karim, M.N.1
Yoshida, T.2
Rivera, S.L.3
Saucedo, V.M.4
Eikens, B.5
Oh, G.-S.6
-
40
-
-
0030214890
-
A model for the prediction of β-glucanase activity and β-glucan concentration during mashing
-
A.Kettunen,, J.J.Hämäläinen,, K.Stenholm, and K.Pietilä, (1996). A model for the prediction of β-glucanase activity and β-glucan concentration during mashing. J. Food Eng. 29:185–200.
-
(1996)
J. Food Eng.
, vol.29
, pp. 185-200
-
-
Kettunen, A.1
Hämäläinen, J.J.2
Stenholm, K.3
Pietilä, K.4
-
41
-
-
0001072952
-
A model for the prediction of fermentable sugar concentrations during mashing
-
T.Koljonen,, J.J.Hämäläinen,, K.Sjöholm, and K.Pietilä, (1995). A model for the prediction of fermentable sugar concentrations during mashing. J. Food Eng. 26:329--350.
-
(1995)
J. Food Eng.
, vol.26
, pp. 329-350
-
-
Koljonen, T.1
Hämäläinen, J.J.2
Sjöholm, K.3
Pietilä, K.4
-
42
-
-
0025728058
-
Starch hydrolysis kinetics of Bacillus licheniformis α-amylase
-
V.Komolprasert, and R.Y.Ofoli, (1991). Starch hydrolysis kinetics of Bacillus licheniformis α-amylase.J Chem. Technol. Biot. 51:209–223.
-
(1991)
J Chem. Technol. Biot.
, vol.51
, pp. 209-223
-
-
Komolprasert, V.1
Ofoli, R.Y.2
-
43
-
-
0001455869
-
The relationship between stochastic and deterministic models for chemical reaction
-
T.G.Kurtz, (1972). The relationship between stochastic and deterministic models for chemical reaction. J. Chem. Phys. 57:2976–2978.
-
(1972)
J. Chem. Phys.
, vol.57
, pp. 2976-2978
-
-
Kurtz, T.G.1
-
44
-
-
84988099033
-
A kinetic expression for hydrolysis of soluble starch by glucoamylase
-
K.K.Kusunoki,, K.Kawakami,, F.Shiraishi,, K.Kato, and M.Kai, (1982). A kinetic expression for hydrolysis of soluble starch by glucoamylase. Biotechnol. Bioeng. 24:347–354.
-
(1982)
Biotechnol. Bioeng.
, vol.24
, pp. 347-354
-
-
Kusunoki, K.K.1
Kawakami, K.2
Shiraishi, F.3
Kato, K.4
Kai, M.5
-
45
-
-
0034333338
-
Kinetic modeling of lactose hydrolysis with an immobilized β-galactosidase from Kluyveromyces fragilis
-
M.Ladero,, A.Santos, and F.Garćia-Ochoa, (2000). Kinetic modeling of lactose hydrolysis with an immobilized β-galactosidase from Kluyveromyces fragilis. Enzyme Microb. Tech. 27:583–592.
-
(2000)
Enzyme Microb. Tech.
, vol.27
, pp. 583-592
-
-
Ladero, M.1
Santos, A.2
Garćia-Ochoa, F.3
-
46
-
-
0026767119
-
A kinetic model and simulation of starch saccharification and simultaneous ethanol fermentation by amyloglucosidase and Zymomonas mobilis
-
C.G.Lee,, C.H.Kim, and S.K.Rhee, (1992). A kinetic model and simulation of starch saccharification and simultaneous ethanol fermentation by amyloglucosidase and Zymomonas mobilis. Bioprocess Eng. 7:335–341.
-
(1992)
Bioprocess Eng.
, vol.7
, pp. 335-341
-
-
Lee, C.G.1
Kim, C.H.2
Rhee, S.K.3
-
47
-
-
33748791219
-
Artificial neural network for production of antioxidant peptides derived from bighead carp muscles with alcalase
-
L.Li,, J.Wang,, M.Zhao,, C.Cui, and Y.Jiang, (2006). Artificial neural network for production of antioxidant peptides derived from bighead carp muscles with alcalase. Food Technol. Biotech. 44:441–448.
-
(2006)
Food Technol. Biotech.
, vol.44
, pp. 441-448
-
-
Li, L.1
Wang, J.2
Zhao, M.3
Cui, C.4
Jiang, Y.5
-
48
-
-
53549108875
-
Kinetic modeling of enzymatic hydrolysis of cellulose in differently pretreated fibers from dairy manure
-
W.Liao,, Y.Liu,, Z.Wen,, C.Frear, and S.Chen, (2008). Kinetic modeling of enzymatic hydrolysis of cellulose in differently pretreated fibers from dairy manure. Biotechnol. Bioeng. 101:441–451.
-
(2008)
Biotechnol. Bioeng.
, vol.101
, pp. 441-451
-
-
Liao, W.1
Liu, Y.2
Wen, Z.3
Frear, C.4
Chen, S.5
-
49
-
-
0000679593
-
A model for the action of cereal alpha amylases on amylose
-
E.A.MacGregor, and A.W.MacGregor, (1985). A model for the action of cereal alpha amylases on amylose. Carbohyd. Res. 142:223–236.
-
(1985)
Carbohyd. Res.
, vol.142
, pp. 223-236
-
-
MacGregor, E.A.1
MacGregor, A.W.2
-
50
-
-
0028765161
-
Models for the action of barley alpha-amylase isozymes on linear substrates
-
E.A.MacGregor,, A.W.MacGregor,, L.J.Macri, and J.E.Morgan, (1994). Models for the action of barley alpha-amylase isozymes on linear substrates. Carbohyd. Res. 257:249–268.
-
(1994)
Carbohyd. Res.
, vol.257
, pp. 249-268
-
-
MacGregor, E.A.1
MacGregor, A.W.2
Macri, L.J.3
Morgan, J.E.4
-
51
-
-
0020704746
-
A kinetic model of starch hydrolysis by α- and β-amylase during mashing
-
A.Marc,, J.M.Engasser,, M.Moll, and R.Flayeux, (1983). A kinetic model of starch hydrolysis by α- and β-amylase during mashing. Biotechnol. Bioeng. 25:481–496.
-
(1983)
Biotechnol. Bioeng.
, vol.25
, pp. 481-496
-
-
Marc, A.1
Engasser, J.M.2
Moll, M.3
Flayeux, R.4
-
52
-
-
0345830720
-
Monte Carlo simulation of the α-amylolysis of amylopectin potato starch. Part II: α-amylolysis of amylopectin
-
L.M.Marchal,, R.V.Ulijn,, C.D.de Gooijer,, G.T.Franke, and J.Tramper, (2003). Monte Carlo simulation of the α-amylolysis of amylopectin potato starch. Part II: α-amylolysis of amylopectin. Bioproc. Biosyst. Eng. 26:123–132.
-
(2003)
Bioproc. Biosyst. Eng.
, vol.26
, pp. 123-132
-
-
Marchal, L.M.1
Ulijn, R.V.2
de Gooijer, C.D.3
Franke, G.T.4
Tramper, J.5
-
53
-
-
0034760093
-
Monte Carlo simulation of the α-amylolysis of amylopectin potato starch
-
L.M.Marchal,, J.Zondervan,, J.Bergsma,, H.H.Beeftink, and J.Tramper, (2001). Monte Carlo simulation of the α-amylolysis of amylopectin potato starch. Bioproc. Biosyst. Eng. 24:163–170.
-
(2001)
Bioproc. Biosyst. Eng.
, vol.24
, pp. 163-170
-
-
Marchal, L.M.1
Zondervan, J.2
Bergsma, J.3
Beeftink, H.H.4
Tramper, J.5
-
54
-
-
0030762638
-
Empirical kinetic models for tryptic whey-protein hydrolysis
-
A.Margot,, E.Flaschel, and A.Renken, (1997). Empirical kinetic models for tryptic whey-protein hydrolysis. Process Biochem. 32:217–223.
-
(1997)
Process Biochem.
, vol.32
, pp. 217-223
-
-
Margot, A.1
Flaschel, E.2
Renken, A.3
-
55
-
-
84864398416
-
Modeling of enzymatic hydrolysis of whey proteins
-
G.Martínez-Araiza,, E.Castaño-Tostado,, S.L.Amaya-Llano,, C.Regalado-González,, C.Martínez-Vera,, and L.Ozimek, (2012). Modeling of enzymatic hydrolysis of whey proteins. Food & Bioprocess. Technology. 5:2596–2601.
-
(2012)
Food & Bioprocess. Technology.
, vol.5
, pp. 2596-2601
-
-
Martínez-Araiza, G.1
Castaño-Tostado, E.2
Amaya-Llano, S.L.3
Regalado-González, C.4
Martínez-Vera, C.5
Ozimek, L.6
-
56
-
-
77955271876
-
Kinetic assessment on the autohydrolysis of pectin-rich by-products
-
M.Martίnez,, B.Gullón,, R.Yáñez,, J.L.Alonso, and J.C.Parajó, (2010). Kinetic assessment on the autohydrolysis of pectin-rich by-products. Chem. Eng. J. 162:480–486.
-
(2010)
Chem. Eng.
, vol.162
, pp. 480-486
-
-
Martίnez, M.1
Gullón, B.2
Yáñez, R.3
Alonso, J.L.4
Parajó, J.C.5
-
57
-
-
58149084975
-
Inulinase production in a batch bioreactor using agroindustrial residues as the substrate: Experimental data and modeling
-
M.A.Mazutti,, M.L.Corazza,, F.M.Filho,, M.I.Rodrigues,, F.C.Corazza, and H.Treichel, (2009). Inulinase production in a batch bioreactor using agroindustrial residues as the substrate: Experimental data and modeling. Bioproc. Biosyst. Eng. 32:85–95.
-
(2009)
Bioproc. Biosyst. Eng.
, vol.32
, pp. 85-95
-
-
Mazutti, M.A.1
Corazza, M.L.2
Filho, F.M.3
Rodrigues, M.I.4
Corazza, F.C.5
Treichel, H.6
-
58
-
-
77949504347
-
Hybrid modeling of inulinase bio-production process
-
M.A.Mazutti,, M.L.Corazza,, F.Maugeri,, M.I.Rodrigues,, J.V.Oliveira,, H.Treichel, and F.C.Corazza, (2010). Hybrid modeling of inulinase bio-production process. J. Chem. Technol. Biot. 85:512–519.
-
(2010)
J. Chem. Technol. Biot.
, vol.85
, pp. 512-519
-
-
Mazutti, M.A.1
Corazza, M.L.2
Maugeri, F.3
Rodrigues, M.I.4
Oliveira, J.V.5
Treichel, H.6
Corazza, F.C.7
-
59
-
-
0022861817
-
Chemical and probabilistic modeling of complex reactions: A lignin depolymerization example
-
J.B.McDermott, and M.T.Klein, (1986). Chemical and probabilistic modeling of complex reactions: A lignin depolymerization example. Chem. Eng. Sci. 41:1053–1060.
-
(1986)
Chem. Eng. Sci.
, vol.41
, pp. 1053-1060
-
-
McDermott, J.B.1
Klein, M.T.2
-
60
-
-
0025206313
-
Quantitative use of model compound information: Monte Carlo simulation of the reactions of complex macromolecules
-
J.B.McDermott,, C.Libanati,, C.LaMarca, and M.T.Klein, (1990). Quantitative use of model compound information: Monte Carlo simulation of the reactions of complex macromolecules. Ind. Eng. Chem. Res. 29:22–29.
-
(1990)
Ind. Eng. Chem. Res.
, vol.29
, pp. 22-29
-
-
McDermott, J.B.1
Libanati, C.2
LaMarca, C.3
Klein, M.T.4
-
61
-
-
41849101077
-
Dynamic models for the production of glucose syrups from cassava starch
-
S.Morales,, H.Álvarez, and C.Sánchez, (2008). Dynamic models for the production of glucose syrups from cassava starch. Food Bioprod. Process. 86:25–30.
-
(2008)
Food Bioprod. Process.
, vol.86
, pp. 25-30
-
-
Morales, S.1
Álvarez, H.2
Sánchez, C.3
-
62
-
-
0014431681
-
The complex active sites of bacterial neutral proteases in relation to their specificities
-
K.Morihara, and T.Oka, (1968). The complex active sites of bacterial neutral proteases in relation to their specificities. Biophys. Res. Commun. 30:625–630.
-
(1968)
Biophys. Res. Commun.
, vol.30
, pp. 625-630
-
-
Morihara, K.1
Oka, T.2
-
63
-
-
0034255698
-
A mathematical model of the formation of fermentable sugars from starch hydrolysis during high-temperature mashing
-
R.Muller, (2000). A mathematical model of the formation of fermentable sugars from starch hydrolysis during high-temperature mashing. Enzyme Microb. Tech. 27:337–344.
-
(2000)
Enzyme Microb. Tech.
, vol.27
, pp. 337-344
-
-
Muller, R.1
-
65
-
-
0030298071
-
Monte Carlo simulation of multiple attack mechanism of α-amylase
-
H.Nakatani, (1996). Monte Carlo simulation of multiple attack mechanism of α-amylase. Biopolymers 39:665–669.
-
(1996)
Biopolymers
, vol.39
, pp. 665-669
-
-
Nakatani, H.1
-
66
-
-
0031540792
-
Monte Carlo simulation of multiple attack mechanism of β-amylase-catalyzed reaction
-
H.Nakatani (1997). Monte Carlo simulation of multiple attack mechanism of β-amylase-catalyzed reaction. Biopolymers 42:831–836.
-
(1997)
Biopolymers
, vol.42
, pp. 831-836
-
-
Nakatani, H.1
-
67
-
-
0025846017
-
Stochastic anaysis of stepwise cellulose degradation
-
R.Nassar,, S.T.Chou, and L.T.Fan, (1991). Stochastic anaysis of stepwise cellulose degradation. Chem. Eng. Sci. 46:1651–1657.
-
(1991)
Chem. Eng. Sci.
, vol.46
, pp. 1651-1657
-
-
Nassar, R.1
Chou, S.T.2
Fan, L.T.3
-
68
-
-
0345790334
-
Hybrid neural network—prior knowledge model in temperature control of a semi-batch polymerization process
-
C.W.Ng, and M.A.Hussain, (2004). Hybrid neural network—prior knowledge model in temperature control of a semi-batch polymerization process. Chemical Engineering and Processing. 43:559–570.
-
(2004)
Chemical Engineering and Processing.
, vol.43
, pp. 559-570
-
-
Ng, C.W.1
Hussain, M.A.2
-
69
-
-
0024715519
-
Kinetics, equilibria, and modeling of the formation of oligosaccharides from D-glucose with Aspergillus niger glucoamylases I and II
-
Z.L.Nikolov,, M.M.Meagher, and P.J.Reilly, (1989). Kinetics, equilibria, and modeling of the formation of oligosaccharides from D-glucose with Aspergillus niger glucoamylases I and II. Biotechnol. Bioeng. 34:694–704.
-
(1989)
Biotechnol. Bioeng.
, vol.34
, pp. 694-704
-
-
Nikolov, Z.L.1
Meagher, M.M.2
Reilly, P.J.3
-
70
-
-
79952695040
-
Kinetics of enzymatic high-solid hydrolysis of lignocellulosic biomass studied by calorimetry
-
S.N.Olsen,, E.Lumby,, K.McFarland,, K.Borch, and P.Westh, (2011). Kinetics of enzymatic high-solid hydrolysis of lignocellulosic biomass studied by calorimetry. Appl. Biochem. Biotech. 163:626–635.
-
(2011)
Appl. Biochem. Biotech.
, vol.163
, pp. 626-635
-
-
Olsen, S.N.1
Lumby, E.2
McFarland, K.3
Borch, K.4
Westh, P.5
-
71
-
-
84856585065
-
Optimization of enzymatic hydrolysis of visceral waste proteins of yellowfin tuna (Thunnus albacares)
-
M.Ovissipour,, A.A.Kenari,, A.Motamezadegan, and R.M.Nazari, (2012). Optimization of enzymatic hydrolysis of visceral waste proteins of yellowfin tuna (Thunnus albacares). Food Bioprocess Tech. 5:696–705.
-
(2012)
Food Bioprocess Tech.
, vol.5
, pp. 696-705
-
-
Ovissipour, M.1
Kenari, A.A.2
Motamezadegan, A.3
Nazari, R.M.4
-
72
-
-
0033710967
-
Kinetics of continuous starch hydrolysis in a membrane reactor
-
D.Paolucci-Jeanjean,, M.P.Belleville,, G.M.Rios, and N.Zakhia, (2000a). Kinetics of continuous starch hydrolysis in a membrane reactor. Bioch. Eng. J. 6:233–238.
-
(2000)
Bioch. Eng. J.
, vol.6
, pp. 233-238
-
-
Paolucci-Jeanjean, D.1
Belleville, M.P.2
Rios, G.M.3
Zakhia, N.4
-
73
-
-
0034607273
-
Kinetics of cassava starch hydrolysis with Termamyl(R) enzyme
-
D.Paolucci-Jeanjean,, M.P.Belleville,, N.Zakhia, and G.M.Rios, (2000b). Kinetics of cassava starch hydrolysis with Termamyl(R) enzyme. Biotechnol. Bioeng. 68:71–77.
-
(2000)
Biotechnol. Bioeng.
, vol.68
, pp. 71-77
-
-
Paolucci-Jeanjean, D.1
Belleville, M.P.2
Zakhia, N.3
Rios, G.M.4
-
74
-
-
0024673674
-
Biopolymeric substrate structural effects of α-amylase-catalyzed amylose depolymerization
-
J.T.Park, and J.E.Rollings, (1989). Biopolymeric substrate structural effects of α-amylase-catalyzed amylose depolymerization. Enzyme Microb. Tech. 11:334–340.
-
(1989)
Enzyme Microb. Tech.
, vol.11
, pp. 334-340
-
-
Park, J.T.1
Rollings, J.E.2
-
75
-
-
0028500815
-
Effects of substrate branching characteristics on kinetics of enzymatic depolymerization of mixed linear and branched polysaccharides: I. Amylose/amylopectin α-amylolysis
-
J.T.Park, and J.E.Rollings, (1994). Effects of substrate branching characteristics on kinetics of enzymatic depolymerization of mixed linear and branched polysaccharides: I. Amylose/amylopectin α-amylolysis. Biotechnol. Bioeng. 44:792–800.
-
(1994)
Biotechnol. Bioeng.
, vol.44
, pp. 792-800
-
-
Park, J.T.1
Rollings, J.E.2
-
76
-
-
0029636266
-
Effects of substrate branching characteristics on kinetics of enzymatic depolymerization of mixed linear and branched polysaccharides: II. Amylose/glycogen α-amylolysis
-
J.T.Park, and J.E.Rollings, (1995). Effects of substrate branching characteristics on kinetics of enzymatic depolymerization of mixed linear and branched polysaccharides: II. Amylose/glycogen α-amylolysis. Biotechnol. Bioeng. 46:36–42.
-
(1995)
Biotechnol. Bioeng.
, vol.46
, pp. 36-42
-
-
Park, J.T.1
Rollings, J.E.2
-
77
-
-
0030456785
-
Preliminary screening of neural network configurations for bioreactor applications
-
P.R.Patnaik, (1996). Preliminary screening of neural network configurations for bioreactor applications. Biotechnol. Tech. 10:967–970.
-
(1996)
Biotechnol. Tech.
, vol.10
, pp. 967-970
-
-
Patnaik, P.R.1
-
78
-
-
79953743885
-
Ultrafiltration optimization for the recovery of β-glucan from oat mill waste
-
A.Patsioura,, C.M.Galanakis, and V.Gekas, (2011). Ultrafiltration optimization for the recovery of β-glucan from oat mill waste. J. Membrane Sci. 373:53–63.
-
(2011)
J. Membrane Sci.
, vol.373
, pp. 53-63
-
-
Patsioura, A.1
Galanakis, C.M.2
Gekas, V.3
-
79
-
-
0031059537
-
Neural network modeling of fermentation processes. Microorganisms cultivation model
-
M.Petrova,, P.Koprinkova, and T.Patarinska, (1997). Neural network modeling of fermentation processes. Microorganisms cultivation model. Bioproc. Biosyst. Eng. 16:145–149.
-
(1997)
Bioproc. Biosyst. Eng.
, vol.16
, pp. 145-149
-
-
Petrova, M.1
Koprinkova, P.2
Patarinska, T.3
-
80
-
-
27944507297
-
Comparison of performance of different algorithms in noisy signals filtering of process in enzymatic hydrolysis of cheese whey
-
A.P.Pinto,, R.S.Júnior, and R.C.Giordano, (2005). Comparison of performance of different algorithms in noisy signals filtering of process in enzymatic hydrolysis of cheese whey. Braz. Arch. Biol. Techn. 48:151–159.
-
(2005)
Braz. Arch. Biol. Techn.
, vol.48
, pp. 151-159
-
-
Pinto, A.P.1
Júnior, R.S.2
Giordano, R.C.3
-
81
-
-
37449006368
-
Neural network inference of molar mass distributions of peptides during tailor-made enzymatic hydrolysis of cheese whey: Effects of pH and temperature
-
G.A.Pinto, and R.L.C.Giordano, (2007). Neural network inference of molar mass distributions of peptides during tailor-made enzymatic hydrolysis of cheese whey: Effects of pH and temperature. Appl. Biochem. Biotech. 143:142–152.
-
(2007)
Appl. Biochem. Biotech.
, vol.143
, pp. 142-152
-
-
Pinto, G.A.1
Giordano, R.L.C.2
-
82
-
-
0026171676
-
A Monte Carlo analysis of acid hydrolysis of glycosidic bonds in polysaccharides
-
J.H.Pinto, and S.Kaliaguine, (1991). A Monte Carlo analysis of acid hydrolysis of glycosidic bonds in polysaccharides. AIChE J. 37:905–914.
-
(1991)
AIChE J.
, vol.37
, pp. 905-914
-
-
Pinto, J.H.1
Kaliaguine, S.2
-
83
-
-
1542268878
-
Modelling of potato starch saccharification by an Aspergillus niger glucoamylase
-
M.Polakovič, and J.Bryjak, (2004). Modelling of potato starch saccharification by an Aspergillus niger glucoamylase. Biochem. Eng. J. 18:57–63.
-
(2004)
Biochem. Eng. J.
, vol.18
, pp. 57-63
-
-
Polakovič, M.1
Bryjak, J.2
-
85
-
-
0014140609
-
Multiple attack hypothesis of α-amylase action: Action of porcine pancreatic, human salivary, and aspergillus oryzae α-amylases
-
J.F.Robyt, and D.French, (1967). Multiple attack hypothesis of α-amylase action: Action of porcine pancreatic, human salivary, and aspergillus oryzae α-amylases. Arch. Biochem. Biophys. 122:8–16.
-
(1967)
Arch. Biochem. Biophys.
, vol.122
, pp. 8-16
-
-
Robyt, J.F.1
French, D.2
-
86
-
-
33748324882
-
Experimental design and response surface modeling applied for the optimisation of pectin hydrolysis by enzymes from A. niger CECT 2088
-
J.M.Rodriguez-Nogales,, N.Ortega,, M.Perez-Mateos, and M.D.Busto, (2007). Experimental design and response surface modeling applied for the optimisation of pectin hydrolysis by enzymes from A. niger CECT 2088. Food Chemistry. 101:634–642.
-
(2007)
Food Chemistry.
, vol.101
, pp. 634-642
-
-
Rodriguez-Nogales, J.M.1
Ortega, N.2
Perez-Mateos, M.3
Busto, M.D.4
-
87
-
-
0021671749
-
Kinetics of enzymatic starch liquefaction: Simulation of the high-molecular-weight product distribution
-
J.E.Rollings, and R.W.Thompson, (1984). Kinetics of enzymatic starch liquefaction: Simulation of the high-molecular-weight product distribution. Biotechnol. Bioeng. 26:1475–1484.
-
(1984)
Biotechnol. Bioeng.
, vol.26
, pp. 1475-1484
-
-
Rollings, J.E.1
Thompson, R.W.2
-
88
-
-
77958139106
-
Kinetics of hydrolysis of egg white protein by pepsin
-
C.Q.Ruan,, Y.J.Chi, and R.D.Zhang, (2010). Kinetics of hydrolysis of egg white protein by pepsin. Czech J. Food Sci. 28:355–363.
-
(2010)
Czech J. Food Sci.
, vol.28
, pp. 355-363
-
-
Ruan, C.Q.1
Chi, Y.J.2
Zhang, R.D.3
-
89
-
-
0023435073
-
Single step unimolecular non-first-order enzyme deactivation kinetics
-
A.Sadana, and J.M.Henley, (1987). Single step unimolecular non-first-order enzyme deactivation kinetics. Biotechnol. Bioeng. 30:717–723.
-
(1987)
Biotechnol. Bioeng.
, vol.30
, pp. 717-723
-
-
Sadana, A.1
Henley, J.M.2
-
90
-
-
0032549162
-
A theoretical equation describing the time evolution of the concentration of a selected range of substrate molecular weights in depolymerization processes mediated by single-attack mechanism endo-enzymes
-
J.M.Sendra, and J.V.Carbonell, (1998). A theoretical equation describing the time evolution of the concentration of a selected range of substrate molecular weights in depolymerization processes mediated by single-attack mechanism endo-enzymes. Biotechnol. Bioeng. 57:387–393.
-
(1998)
Biotechnol. Bioeng.
, vol.57
, pp. 387-393
-
-
Sendra, J.M.1
Carbonell, J.V.2
-
91
-
-
0014211618
-
On the size of the active site in proteases. I. Papain
-
I.Schechter, and A.Berger. (1967). On the size of the active site in proteases. I. Papain. Biochem. Bioph. Res. Co. 27:157–162.
-
(1967)
Biochem. Bioph. Res. Co.
, vol.27
, pp. 157-162
-
-
Schechter, I.1
Berger, A.2
-
92
-
-
73249131640
-
Application of modeling and simulation tools for the evaluation of biocatalytic processes: A future perspective
-
G.Sin,, J.M.Woodley, and K.V.Gernaey, (2009). Application of modeling and simulation tools for the evaluation of biocatalytic processes: A future perspective. Biotechnol. Prog. 25:1529–1538.
-
(2009)
Biotechnol. Prog.
, vol.25
, pp. 1529-1538
-
-
Sin, G.1
Woodley, J.M.2
Gernaey, K.V.3
-
93
-
-
77949656928
-
Empirical evaluation of inhibitory product, substrate, and enzyme effects during the enzymatic saccharification of lignocellulosic biomass
-
B.T.Smith,, J.S.Knutsen, and R.H.Davis, (2010). Empirical evaluation of inhibitory product, substrate, and enzyme effects during the enzymatic saccharification of lignocellulosic biomass. Appl. Biochem. Biotech. 161:468--482.
-
(2010)
Appl. Biochem. Biotech.
, vol.161
, pp. 468-482
-
-
Smith, B.T.1
Knutsen, J.S.2
Davis, R.H.3
-
94
-
-
0030033388
-
Elucidation of the subsite structure of bacterial saccharifying alpha-amylase and its mode of degradation of maltose
-
T.Suganuma,, M.Ohnishi,, K.Hiromi, and T.Nagahama, (1996). Elucidation of the subsite structure of bacterial saccharifying alpha-amylase and its mode of degradation of maltose. Carbohyd. Res. 282:171--180.
-
(1996)
Carbohyd. Res.
, vol.282
, pp. 171-180
-
-
Suganuma, T.1
Ohnishi, M.2
Hiromi, K.3
Nagahama, T.4
-
95
-
-
0016960327
-
Models for depolymerizing enzymes: Criteria for discrimination of models
-
J.A.Thoma, (1976). Models for depolymerizing enzymes: Criteria for discrimination of models. Carbohyd. Res. 48:85–103.
-
(1976)
Carbohyd. Res.
, vol.48
, pp. 85-103
-
-
Thoma, J.A.1
-
96
-
-
0014944762
-
Subsite mapping of enzymes. Studies on Bacillus subtilis amylase
-
J.A.Thoma,, C.Brothers, and J.Spradlin, (1970). Subsite mapping of enzymes. Studies on Bacillus subtilis amylase. Biochemistry-US 9:1768--1775.
-
(1970)
Biochemistry-US
, vol.9
, pp. 1768-1775
-
-
Thoma, J.A.1
Brothers, C.2
Spradlin, J.3
-
97
-
-
0015240182
-
Subsite mapping of enzymes: Correlation of product patterns with Michaelis parameters and substrate-induced strain
-
J.A.Thoma,, G.V.K.Rao,, C.Brothers,, J.Spradlin, and L.H.Li, (1971). Subsite mapping of enzymes: Correlation of product patterns with Michaelis parameters and substrate-induced strain. J. Biol. Chem. 246:5621--5635.
-
(1971)
J. Biol. Chem.
, vol.246
, pp. 5621-5635
-
-
Thoma, J.A.1
Rao, G.V.K.2
Brothers, C.3
Spradlin, J.4
Li, L.H.5
-
98
-
-
65249172116
-
A kinetic model for the enzymatic action of cellulase
-
C.L.Ting,, D.E.Makarov, and Z.G.Wang, (2009). A kinetic model for the enzymatic action of cellulase. J. Phys. Chem. B 113:4970--4977.
-
(2009)
J. Phys. Chem. B
, vol.113
, pp. 4970-4977
-
-
Ting, C.L.1
Makarov, D.E.2
Wang, Z.G.3
-
99
-
-
0018502518
-
Subsite mapping of enzymes. Use of subsite map to simulate complete time course of hydrolysis of a polymeric substrate
-
E.M.Torgerson,, L.C.Brewer, and J.A.Thoma, (1979). Subsite mapping of enzymes. Use of subsite map to simulate complete time course of hydrolysis of a polymeric substrate. Arch. Biochem. Biophys. 196:13--22.
-
(1979)
Arch. Biochem. Biophys.
, vol.196
, pp. 13-22
-
-
Torgerson, E.M.1
Brewer, L.C.2
Thoma, J.A.3
-
100
-
-
38349029092
-
Peptides removing in enzymatic membrane bioreactor
-
A.Trusek-Holownia, and A.Noworyta, (2008). Peptides removing in enzymatic membrane bioreactor. Desalination 221:543–551.
-
(2008)
Desalination
, vol.221
, pp. 543-551
-
-
Trusek-Holownia, A.1
Noworyta, A.2
-
101
-
-
0344393718
-
The total quasi-steady-state approximation is valid for reversible enzyme kinetics
-
A.R.Tzafriri, and E.R.Edelman, (2004). The total quasi-steady-state approximation is valid for reversible enzyme kinetics. J. Theor. Biol. 226:303–313.
-
(2004)
J. Theor. Biol.
, vol.226
, pp. 303-313
-
-
Tzafriri, A.R.1
Edelman, E.R.2
-
103
-
-
70349591179
-
Kinetics of granular starch hydrolysis in corn dry-grind process
-
J.B.C.Vidal, Jr. B. C., K.D.Rausch,, M.E.Tumbleson, and V.Singh, (2009). Kinetics of granular starch hydrolysis in corn dry-grind process. Starch 61:448–456.
-
(2009)
Starch
, vol.61
, pp. 448-456
-
-
Vidal, J.B.C.1
Rausch, K.D.2
Tumbleson, M.E.3
Singh, V.4
-
105
-
-
0035809058
-
Two-dimensional fluorometry coupled with artificial neural networks: A novel method for on-line monitoring of complex biological processes
-
G.Wolf,, J.S.Almeida,, C.Pinheiro,, V.Correia,, C.Rodrigues,, M.A.M.Reis, and J.G.Crespo, (2000). Two-dimensional fluorometry coupled with artificial neural networks: A novel method for on-line monitoring of complex biological processes. Biotechnol. Bioeng. 72:297–306.
-
(2000)
Biotechnol. Bioeng.
, vol.72
, pp. 297-306
-
-
Wolf, G.1
Almeida, J.S.2
Pinheiro, C.3
Correia, V.4
Rodrigues, C.5
Reis, M.A.M.6
Crespo, J.G.7
-
106
-
-
0022806203
-
Study of optimum conditions and kinetics of starch hydrolysis by means of thermostable α-amylase
-
D.Yankov,, E.Dobreva,, V.Beschkov, and E.Emanuilova, (1986). Study of optimum conditions and kinetics of starch hydrolysis by means of thermostable α-amylase. Enzyme Microb. Tech. 8:665–667.
-
(1986)
Enzyme Microb. Tech.
, vol.8
, pp. 665-667
-
-
Yankov, D.1
Dobreva, E.2
Beschkov, V.3
Emanuilova, E.4
-
107
-
-
0000209358
-
Modeling cassava starch saccharification with amyloglucosidase
-
G.M.Zanin, and F.F.Moraes, (1996). Modeling cassava starch saccharification with amyloglucosidase. Appl. Biochem. Biotech. 57–58:617–625.
-
(1996)
Appl. Biochem. Biotech.
, vol.57-58
, pp. 617-625
-
-
Zanin, G.M.1
Moraes, F.F.2
-
108
-
-
74649083867
-
Artificial neural network-genetic algorithm based optimization for the immobilization of cellulase on the smart polymer Eudragit L-100
-
Y.Zhang,, J.Xu,, Z.Yuan,, H.Xu, and Q.Yu, (2010). Artificial neural network-genetic algorithm based optimization for the immobilization of cellulase on the smart polymer Eudragit L-100. Bioresource Technol. 101:3153–3158.
-
(2010)
Bioresource Technol.
, vol.101
, pp. 3153-3158
-
-
Zhang, Y.1
Xu, J.2
Yuan, Z.3
Xu, H.4
Yu, Q.5
-
109
-
-
0033525429
-
Kinetic model for the co-action of β-amylase and debranching enzymes in the production of maltose
-
J.Zhou, (2000). Kinetic model for the co-action of β-amylase and debranching enzymes in the production of maltose. Biotechnol. Bioeng. 62:618–622.
-
(2000)
Biotechnol. Bioeng.
, vol.62
, pp. 618-622
-
-
Zhou, J.1
|