메뉴 건너뛰기




Volumn 114, Issue 1-2, 2004, Pages 177-185

Modelling of glucoamylase thermal inactivation in the presence of starch by artificial neural network

Author keywords

Artificial neural network; Glucoamylase; Modelling; Stability modulation; Thermal inactivation

Indexed keywords

DYNAMIC NETWORKS; GLUCOAMYLASES; NEURAL MODELS; THERMAL INACTIVATION;

EID: 4644368380     PISSN: 01681656     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jbiotec.2004.07.003     Document Type: Article
Times cited : (22)

References (24)
  • 1
    • 0036469175 scopus 로고    scopus 로고
    • Predictive non-linear modelling of complex data by artificial neural networks
    • O.J.S. Almeida Predictive non-linear modelling of complex data by artificial neural networks Curr. Opin. Biotechnol. 13 2002 72 76
    • (2002) Curr. Opin. Biotechnol. , vol.13 , pp. 72-76
    • Almeida, O.J.S.1
  • 2
    • 0034694819 scopus 로고    scopus 로고
    • Trehalose delays the reversible but not the irreversible thermal denaturation of cutinase
    • R.P. Baptista, J.M.S. Cabral, and E.P. Melo Trehalose delays the reversible but not the irreversible thermal denaturation of cutinase Biotechnol. Bioeng. 70 2000 699 703
    • (2000) Biotechnol. Bioeng. , vol.70 , pp. 699-703
    • Baptista, R.P.1    Cabral, J.M.S.2    Melo, E.P.3
  • 4
    • 0035724354 scopus 로고    scopus 로고
    • Dynamic neural networks as a tool for the online optimization of industrial fermentation
    • T. Becker, T. Enders, and A. Delgado Dynamic neural networks as a tool for the online optimization of industrial fermentation Bioprocess. Biosyst. Eng. 24 2002 347 354
    • (2002) Bioprocess. Biosyst. Eng. , vol.24 , pp. 347-354
    • Becker, T.1    Enders, T.2    Delgado, A.3
  • 5
    • 0034429643 scopus 로고    scopus 로고
    • Application of artificial neural networks to modelling of starch hydrolysis by glucoamylase
    • J. Bryjak, K. Murlikiewicz, I. Zbiciński, and J. Stawczyk Application of artificial neural networks to modelling of starch hydrolysis by glucoamylase Bioprocess. Eng. 23 2000 351 357
    • (2000) Bioprocess. Eng. , vol.23 , pp. 351-357
    • Bryjak, J.1    Murlikiewicz, K.2    Zbiciński, I.3    Stawczyk, J.4
  • 6
    • 0033951434 scopus 로고    scopus 로고
    • Issues regarding artificial neural network modeling for reactors and fermentors
    • V.C.P. Chen, and D.K. Rollings Issues regarding artificial neural network modeling for reactors and fermentors Bioprocess. Eng. 22 2000 85 93
    • (2000) Bioprocess. Eng. , vol.22 , pp. 85-93
    • Chen, V.C.P.1    Rollings, D.K.2
  • 8
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • M.T. Hagan, and M.B. Menhaj Training feedforward networks with the Marquardt algorithm IEEE Trans. Neural Networks 5 1994 989 993
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 9
    • 0028838794 scopus 로고
    • Stabilizing effect of sucrose irreversible denaturation of rabbit muscle dehydrogenase
    • D.R. Hall, M.P. Jacobsen, and D.J. Winzor Stabilizing effect of sucrose irreversible denaturation of rabbit muscle dehydrogenase Biophys. Chem. 57 1995 47 54
    • (1995) Biophys. Chem. , vol.57 , pp. 47-54
    • Hall, D.R.1    Jacobsen, M.P.2    Winzor, D.J.3
  • 10
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornik, M. Stinchcombe, and H. White Multilayer feedforward networks are universal approximators Neural Networks 2 1989 183 192
    • (1989) Neural Networks , vol.2 , pp. 183-192
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 11
    • 0031055914 scopus 로고    scopus 로고
    • Global and local neural network models in biotechnology: Application to different cultivation processes
    • M.M. Karim, T. Yoshida, S.L. Rivera, V.M. Saucedo, B. Eikens, and G.-S. Oh Global and local neural network models in biotechnology: application to different cultivation processes J. Ferm. Bioeng. 83 1997 1 11
    • (1997) J. Ferm. Bioeng. , vol.83 , pp. 1-11
    • Karim, M.M.1    Yoshida, T.2    Rivera, S.L.3    Saucedo, V.M.4    Eikens, B.5    Oh, G.-S.6
  • 12
    • 0343294372 scopus 로고    scopus 로고
    • Application of model-predictive control based on artificial neural networks to optimize the fed-batch process for riboflavin production
    • K. Kovarova-Kovar, S. Gehlen, A. Kunze, T. Keller, R. von Daniken, M. Kolb, and A.P.G.M. van Loon Application of model-predictive control based on artificial neural networks to optimize the fed-batch process for riboflavin production J. Biotechnol. 79 2000 39 52
    • (2000) J. Biotechnol. , vol.79 , pp. 39-52
    • Kovarova-Kovar, K.1    Gehlen, S.2    Kunze, A.3    Keller, T.4    Von Daniken, R.5    Kolb, M.6    Van Loon, A.P.G.M.7
  • 14
    • 0028207871 scopus 로고
    • Artificial neural networks: Studies in process modelling and control
    • A.J. Morris, G.A. Montague, and M.J. Willis Artificial neural networks: studies in process modelling and control Trans. I. Chem. Eng. 72A 1994 3 19
    • (1994) Trans. I. Chem. Eng. , vol.72 , pp. 3-19
    • Morris, A.J.1    Montague, G.A.2    Willis, M.J.3
  • 15
    • 0033403306 scopus 로고    scopus 로고
    • Applications of neural networks to recovery of biological products
    • P.R. Patnaik Applications of neural networks to recovery of biological products Biotechnol. Adv. 17 1999 477 488
    • (1999) Biotechnol. Adv. , vol.17 , pp. 477-488
    • Patnaik, P.R.1
  • 16
    • 0034758744 scopus 로고    scopus 로고
    • Hybrid neural simulation of a fed-batch bioreactor for nonideal recombinant fermentation
    • P.R. Patnaik Hybrid neural simulation of a fed-batch bioreactor for nonideal recombinant fermentation Bioprocess. Eng. 24 2001 151 162
    • (2001) Bioprocess. Eng. , vol.24 , pp. 151-162
    • Patnaik, P.R.1
  • 17
    • 0030456785 scopus 로고    scopus 로고
    • Preliminary screening of neural network configurations for bioreactor applications
    • P.R. Patnaik Preliminary screening of neural network configurations for bioreactor applications Biotechnol. Tech. 10 1996 967 970
    • (1996) Biotechnol. Tech. , vol.10 , pp. 967-970
    • Patnaik, P.R.1
  • 18
    • 0031059537 scopus 로고    scopus 로고
    • Neural network modelling of fermentation processes: Microorganisms cultivation model
    • M. Petrova, P. Koprinkova, and T. Patarinska Neural network modelling of fermentation processes: microorganisms cultivation model Bioprocess. Eng. 16 1997 145 149
    • (1997) Bioprocess. Eng. , vol.16 , pp. 145-149
    • Petrova, M.1    Koprinkova, P.2    Patarinska, T.3
  • 19
    • 0037010713 scopus 로고    scopus 로고
    • Modeling of the kinetics of thermal inactivation of glucoamylase from Aspergillus niger
    • M. Polakovic, and J. Bryjak Modeling of the kinetics of thermal inactivation of glucoamylase from Aspergillus niger J. Mol. Catal. B: Enzymatic 19-20 2002 443 450
    • (2002) J. Mol. Catal. B: Enzymatic , vol.1920 , pp. 443-450
    • Polakovic, M.1    Bryjak, J.2
  • 20
    • 0033997342 scopus 로고    scopus 로고
    • Comparison of simple neural networks and non-linear regression models for descriptive modeling of Lactobacillus helveticus growth in pH-controlled batch cultures
    • A.W. Schepers, J. Thibault, and C. Lacroix Comparison of simple neural networks and non-linear regression models for descriptive modeling of Lactobacillus helveticus growth in pH-controlled batch cultures Enzyme Microb. Technol. 26 2000 431 445
    • (2000) Enzyme Microb. Technol. , vol.26 , pp. 431-445
    • Schepers, A.W.1    Thibault, J.2    Lacroix, C.3
  • 23
    • 0035810311 scopus 로고    scopus 로고
    • Using historical data for bioprocess optimization: Modeling wine characteristics using artificial neural networks and archived process information
    • S. Vlassides, J.G. Ferrier, and D.E. Block Using historical data for bioprocess optimization: modeling wine characteristics using artificial neural networks and archived process information Biotechnol. Bioeng. 73 2000 55 68
    • (2000) Biotechnol. Bioeng. , vol.73 , pp. 55-68
    • Vlassides, S.1    Ferrier, J.G.2    Block, D.E.3
  • 24
    • 4644277832 scopus 로고    scopus 로고
    • Two-dimensional fluorometry coupled with artificial neural networks: A novel method for on-line monitoring of complex biological processes
    • G. Wolf, J.S. Almeida, C. Pinheiro, V. Correia, C. Rodriques, M.A.M. Reis, and J.G. Crespo Two-dimensional fluorometry coupled with artificial neural networks: a novel method for on-line monitoring of complex biological processes Biotechnol. Bioeng. 73 2000 55 68
    • (2000) Biotechnol. Bioeng. , vol.73 , pp. 55-68
    • Wolf, G.1    Almeida, J.S.2    Pinheiro, C.3    Correia, V.4    Rodriques, C.5    Reis, M.A.M.6    Crespo, J.G.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.