-
1
-
-
84874217979
-
Candida albicans pathogenicity mechanisms
-
Mayer FL, Wilson D, Hube B. 2013. Candida albicans pathogenicity mechanisms. Virulence 4:119-128. http://dx.doi.org/10.4161/viru.22913.
-
(2013)
Virulence
, vol.4
, pp. 119-128
-
-
Mayer, F.L.1
Wilson, D.2
Hube, B.3
-
3
-
-
42549152508
-
Factors associated with candidemia caused by non-albicans Candida species versus Candida albicans in the intensive care unit
-
Chow JK, Golan Y, Ruthazer R, Karchmer AW, Carmeli Y, Lichtenberg D, Chawla V, Young J, Hadley S. 2008. Factors associated with candidemia caused by non-albicans Candida species versus Candida albicans in the intensive care unit. Clin Infect Dis 46:1206-1213. http://dx.doi.org/10.1086/529435.
-
(2008)
Clin Infect Dis
, vol.46
, pp. 1206-1213
-
-
Chow, J.K.1
Golan, Y.2
Ruthazer, R.3
Karchmer, A.W.4
Carmeli, Y.5
Lichtenberg, D.6
Chawla, V.7
Young, J.8
Hadley, S.9
-
4
-
-
4143119933
-
From commensal to pathogen: stage-and tissue-specific gene expression of Candida albicans
-
Hube B. 2004. From commensal to pathogen: stage-and tissue-specific gene expression of Candida albicans. Curr Opin Microbiol 7:336-341. http://dx.doi.org/10.1016/j.mib.2004.06.003.
-
(2004)
Curr Opin Microbiol
, vol.7
, pp. 336-341
-
-
Hube, B.1
-
5
-
-
84880676381
-
Diverse novel functions of neutrophils in immunity, inflammation, and beyond
-
Mócsai A. 2013. Diverse novel functions of neutrophils in immunity, inflammation, and beyond. J Exp Med 210:1283-1299. http://dx.doi.org/10.1084/jem.20122220.
-
(2013)
J Exp Med
, vol.210
, pp. 1283-1299
-
-
Mócsai, A.1
-
6
-
-
34447525439
-
Beneficial suicide: why neutrophils die to make NETs
-
Brinkmann V, Zychlinsky A. 2007. Beneficial suicide: why neutrophils die to make NETs. Nat Rev Microbiol 5:577-582. http://dx.doi.org/10.1038/nrmicro1710.
-
(2007)
Nat Rev Microbiol
, vol.5
, pp. 577-582
-
-
Brinkmann, V.1
Zychlinsky, A.2
-
7
-
-
0035877995
-
Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3
-
Sørensen OE. 2001. Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood 97:3951-3959. http://dx.doi.org/10.1182/blood.V97.12.3951.
-
(2001)
Blood
, vol.97
, pp. 3951-3959
-
-
Sørensen, O.E.1
-
8
-
-
84887412947
-
Little peptide, big effects: the role of LL-37 in inflammation and autoimmune disease
-
Kahlenberg JM, Kaplan MJ. 2013. Little peptide, big effects: the role of LL-37 in inflammation and autoimmune disease. J Immunol 191:4895-4901. http://dx.doi.org/10.4049/jimmunol.1302005.
-
(2013)
J Immunol
, vol.191
, pp. 4895-4901
-
-
Kahlenberg, J.M.1
Kaplan, M.J.2
-
9
-
-
16844381376
-
Impact of LL-37 on anti-infective immunity
-
Bowdish DME, Davidson DJ, Lau YE, Lee K, Scott MG, Hancock REW. 2005. Impact of LL-37 on anti-infective immunity. J Leukoc Biol 77:451-459. http://dx.doi.org/10.1189/jlb.0704380.
-
(2005)
J Leukoc Biol
, vol.77
, pp. 451-459
-
-
Bowdish, D.M.E.1
Davidson, D.J.2
Lau, Y.E.3
Lee, K.4
Scott, M.G.5
Hancock, R.E.W.6
-
10
-
-
84855827374
-
Multiple trauma induces serum production of host defence peptides
-
Lippross S, Klueter T, Steubesand N, Oestern S, Mentlein R, Hildebrandt F, Podschun R, Pufe T, Seekamp A, Varoga D. 2012. Multiple trauma induces serum production of host defence peptides. Injury 43: 137-142. http://dx.doi.org/10.1016/j.injury.2011.03.044.
-
(2012)
Injury
, vol.43
, pp. 137-142
-
-
Lippross, S.1
Klueter, T.2
Steubesand, N.3
Oestern, S.4
Mentlein, R.5
Hildebrandt, F.6
Podschun, R.7
Pufe, T.8
Seekamp, A.9
Varoga, D.10
-
11
-
-
77950973496
-
Host defence peptides: antimicrobial and immunomodulatory activity and potential applications for tackling antibiotic-resistant infections
-
Nijnik A, Hancock R. 2009. Host defence peptides: antimicrobial and immunomodulatory activity and potential applications for tackling antibiotic-resistant infections. Emerg Health Threats J 2:e1. http://dx.doi.org/10.3134/ehtj.09.001.
-
(2009)
Emerg Health Threats J
, vol.2
-
-
Nijnik, A.1
Hancock, R.2
-
12
-
-
84860610161
-
Cathelicidin LL-37: an antimicrobial peptide with a role in inflammatory skin disease
-
Reinholz M, Ruzicka T, Schauber J. 2012. Cathelicidin LL-37: an antimicrobial peptide with a role in inflammatory skin disease. Ann Dermatol 24:126-135. http://dx.doi.org/10.5021/ad.2012.24.2.126.
-
(2012)
Ann Dermatol
, vol.24
, pp. 126-135
-
-
Reinholz, M.1
Ruzicka, T.2
Schauber, J.3
-
13
-
-
77958124580
-
Dual functions of the human antimicrobial peptide LL-37-targetmembraneperturbationandhost cellcargodelivery
-
Zhang X, Oglȩêcka K, Sandgren S, Belting M, Esbjörner EK, Nordén B, Gräslund A. 2010. Dual functions of the human antimicrobial peptide LL-37-targetmembraneperturbationandhost cellcargodelivery. BiochimBiophysActa 1798:2201-2208. http://dx.doi.org/10.1016/j.bbamem.2009.12.011.
-
(2010)
Biochim Biophys Acta
, vol.1798
, pp. 2201-2208
-
-
Zhang, X.1
Oglȩêcka, K.2
Sandgren, S.3
Belting, M.4
Esbjörner, E.K.5
Nordén, B.6
Gräslund, A.7
-
14
-
-
79952679401
-
Human antimicrobial peptide LL-37 inhibits adhesion of Candida albicans by interacting with yeast cell-wall carbohydrates
-
Tsai P-W, Yang C-Y, Chang H-T, Lan C-Y. 2011. Human antimicrobial peptide LL-37 inhibits adhesion of Candida albicans by interacting with yeast cell-wall carbohydrates. PLoS One 6:e17755. http://dx.doi.org/10.1371/journal.pone.0017755.
-
(2011)
PLoS One
, vol.6
-
-
Tsai, P.-W.1
Yang, C.-Y.2
Chang, H.-T.3
Lan, C.-Y.4
-
15
-
-
21444456146
-
Antimicrobial and chemoattractant activity, lipopolysaccharide neutralization, cytotoxicity, and inhibition by serum of analogs of human cathelicidin LL-37
-
Ciornei CD, Sigurdardóttir T, Schmidtchen A, Bodelsson M. 2005. Antimicrobial and chemoattractant activity, lipopolysaccharide neutralization, cytotoxicity, and inhibition by serum of analogs of human cathelicidin LL-37. Antimicrob Agents Chemother 49:2845-2850. http://dx.doi.org/10.1128/AAC.49.7.2845-2850.2005.
-
(2005)
Antimicrob Agents Chemother
, vol.49
, pp. 2845-2850
-
-
Ciornei, C.D.1
Sigurdardóttir, T.2
Schmidtchen, A.3
Bodelsson, M.4
-
16
-
-
77951044334
-
The antimicrobial peptide LL-37 modulates the inflammatory and host defense response of human neutrophils
-
Alalwani SM, Sierigk J, Herr C, Pinkenburg O, Gallo R, Vogelmeier C, Bals R. 2010. The antimicrobial peptide LL-37 modulates the inflammatory and host defense response of human neutrophils. Eur J Immunol 40:1118-1126. http://dx.doi.org/10.1002/eji.200939275.
-
(2010)
Eur J Immunol
, vol.40
, pp. 1118-1126
-
-
Alalwani, S.M.1
Sierigk, J.2
Herr, C.3
Pinkenburg, O.4
Gallo, R.5
Vogelmeier, C.6
Bals, R.7
-
17
-
-
42649142893
-
The role of the multifunctional peptide LL-37 in host defense
-
Kai-Larsen Y, Agerberth B. 2008. The role of the multifunctional peptide LL-37 in host defense. Front Biosci 13:3760-3767. https://www.bioscience.org/2008/v13/af/2964/fulltext.htm.
-
(2008)
Front Biosci
, vol.13
, pp. 3760-3767
-
-
Kai-Larsen, Y.1
Agerberth, B.2
-
18
-
-
33644511380
-
An antimicrobial cathelicidin peptide, human CAP18/LL-37, suppresses neutrophil apoptosis via the activation of formyl-peptide receptor-like 1 and P2X7
-
Nagaoka I, Tamura H, Hirata M. 2006. An antimicrobial cathelicidin peptide, human CAP18/LL-37, suppresses neutrophil apoptosis via the activation of formyl-peptide receptor-like 1 and P2X7. J Immunol 176: 3044-3052. http://dx.doi.org/10.4049/jimmunol.176.5.3044.
-
(2006)
J Immunol
, vol.176
, pp. 3044-3052
-
-
Nagaoka, I.1
Tamura, H.2
Hirata, M.3
-
19
-
-
0034831625
-
Staphylococcal resistance to antimicrobial peptides of mammalian and bacterial origin
-
Peschel A, Vincent Collins L. 2001. Staphylococcal resistance to antimicrobial peptides of mammalian and bacterial origin. Peptides 22:1651-1659. http://dx.doi.org/10.1016/S0196-9781(01)00500-9.
-
(2001)
Peptides
, vol.22
, pp. 1651-1659
-
-
Peschel, A.1
Vincent Collins, L.2
-
20
-
-
0033605557
-
Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides
-
Peschel A, Otto M, Jack RW, Kalbacher H, Jung G, Gotz F. 1999. Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J Biol Chem 274:8405-8410. http://dx.doi.org/10.1074/jbc.274.13.8405.
-
(1999)
J Biol Chem
, vol.274
, pp. 8405-8410
-
-
Peschel, A.1
Otto, M.2
Jack, R.W.3
Kalbacher, H.4
Jung, G.5
Gotz, F.6
-
21
-
-
55749111413
-
Bacterial exotoxins downregulate cathelicidin (hCAP-18/LL-37) and human beta-defensin 1 (HBD-1) expression in the intestinal epithelial cells
-
Chakraborty K, Ghosh S, Koley H, Mukhopadhyay AK, Ramamurthy T, Saha DR, Mukhopadhyay D, Roychowdhury S, Hamabata T, Takeda Y, Das S. 2008. Bacterial exotoxins downregulate cathelicidin (hCAP-18/LL-37) and human beta-defensin 1 (HBD-1) expression in the intestinal epithelial cells. Cell Microbiol 10:2520-2537. http://dx.doi.org/10.1111/j.1462-5822.2008.01227.x.
-
(2008)
Cell Microbiol
, vol.10
, pp. 2520-2537
-
-
Chakraborty, K.1
Ghosh, S.2
Koley, H.3
Mukhopadhyay, A.K.4
Ramamurthy, T.5
Saha, D.R.6
Mukhopadhyay, D.7
Roychowdhury, S.8
Hamabata, T.9
Takeda, Y.10
Das, S.11
-
22
-
-
73849117463
-
Generic and specific adaptive responses of Streptococcus pneumoniae to challenge with three distinct antimicrobial peptides, bacitracin, LL-37, and nisin
-
Majchrzykiewicz JA, Kuipers OP, Bijlsma JJ. 2010. Generic and specific adaptive responses of Streptococcus pneumoniae to challenge with three distinct antimicrobial peptides, bacitracin, LL-37, and nisin. Antimicrob Agents Chemother 54:440-451. http://dx.doi.org/10.1128/AAC.00769-09.
-
(2010)
Antimicrob Agents Chemother
, vol.54
, pp. 440-451
-
-
Majchrzykiewicz, J.A.1
Kuipers, O.P.2
Bijlsma, J.J.3
-
23
-
-
0036030617
-
Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37
-
Schmidtchen A, Frick I-M, Andersson E, Tapper H, Björck L. 2002. Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol Microbiol 46:157-168. http://dx.doi.org/10.1046/j.1365-2958.2002.03146.x.
-
(2002)
Mol Microbiol
, vol.46
, pp. 157-168
-
-
Schmidtchen, A.1
Frick, I.-M.2
Andersson, E.3
Tapper, H.4
Björck, L.5
-
24
-
-
4544365934
-
Candida albicans proteinases and host/pathogen interactions
-
Naglik J, Albrecht A, Bader O, Hube B. 2004. Candida albicans proteinases and host/pathogen interactions. Cell Microbiol 6:915-926. http://dx.doi.org/10.1111/j.1462-5822.2004.00439.x.
-
(2004)
Cell Microbiol
, vol.6
, pp. 915-926
-
-
Naglik, J.1
Albrecht, A.2
Bader, O.3
Hube, B.4
-
25
-
-
80053474775
-
Comprehensive characterization of secreted aspartic proteases encoded by a virulence gene family in Candida albicans
-
Aoki W, Kitahara N, Miura N, Morisaka H, Yamamoto Y, Kuroda K, Ueda M. 2011. Comprehensive characterization of secreted aspartic proteases encoded by a virulence gene family in Candida albicans. J Biochem 150:431-438. http://dx.doi.org/10.1093/jb/mvr073.
-
(2011)
J Biochem
, vol.150
, pp. 431-438
-
-
Aoki, W.1
Kitahara, N.2
Miura, N.3
Morisaka, H.4
Yamamoto, Y.5
Kuroda, K.6
Ueda, M.7
-
26
-
-
0014949207
-
Cleavage of structural proteins during the assembly of the head of bacteriophage T4
-
Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685. http://dx.doi.org/10.1038/227680a0.
-
(1970)
Nature
, vol.227
, pp. 680-685
-
-
Laemmli, U.K.1
-
27
-
-
84988074679
-
Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels
-
Blum H, Beier H, Gross HJ. 1987. Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8:93-99. http://dx.doi.org/10.1002/elps.1150080203.
-
(1987)
Electrophoresis
, vol.8
, pp. 93-99
-
-
Blum, H.1
Beier, H.2
Gross, H.J.3
-
28
-
-
0017184389
-
A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding
-
Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-254. http://dx.doi.org/10.1016/0003-2697(76)90527-3.
-
(1976)
Anal Biochem
, vol.72
, pp. 248-254
-
-
Bradford, M.M.1
-
29
-
-
0035710746
-
Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method
-
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402-408. http://dx.doi.org/10.1006/meth.2001.1262.
-
(2001)
Methods
, vol.25
, pp. 402-408
-
-
Livak, K.J.1
Schmittgen, T.D.2
-
30
-
-
68049137750
-
Fungal adaptation to the host environment
-
Hube B. 2009. Fungal adaptation to the host environment. Curr Opin Microbiol 12:347-349. http://dx.doi.org/10.1016/j.mib.2009.06.009.
-
(2009)
Curr Opin Microbiol
, vol.12
, pp. 347-349
-
-
Hube, B.1
-
31
-
-
0027940569
-
Expression of seven members of the gene family encoding secretory aspartyl proteinases in Candida albicans
-
Hube B, Monod M, Schofield DA, Brown AJ, Gow NA. 1994. Expression of seven members of the gene family encoding secretory aspartyl proteinases in Candida albicans. Mol Microbiol 14:87-99. http://dx.doi.org/10.1111/j.1365-2958.1994.tb01269.x.
-
(1994)
Mol Microbiol
, vol.14
, pp. 87-99
-
-
Hube, B.1
Monod, M.2
Schofield, D.A.3
Brown, A.J.4
Gow, N.A.5
-
32
-
-
32944463724
-
Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms
-
Urban CF, Reichard U, Brinkmann V, Zychlinsky A. 2006. Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell Microbiol 8:668-676. http://dx.doi.org/10.1111/j.1462-5822.2005.00659.x.
-
(2006)
Cell Microbiol
, vol.8
, pp. 668-676
-
-
Urban, C.F.1
Reichard, U.2
Brinkmann, V.3
Zychlinsky, A.4
-
33
-
-
20144367318
-
Structure-function relationships among human cathelicidin peptides: dissociation of antimicrobial properties from host immunostimulatory activities
-
Braff MH, Hawkins MA, Di Nardo A, Lopez-Garcia B, Howell MD, Wong C, Lin K, Streib JE, Dorschner R, Leung DYM, Gallo RL. 2005. Structure-function relationships among human cathelicidin peptides: dissociation of antimicrobial properties from host immunostimulatory activities. J Immunol 174:4271-4278. http://dx.doi.org/10.4049/jimmunol.174.7.4271.
-
(2005)
J Immunol
, vol.174
, pp. 4271-4278
-
-
Braff, M.H.1
Hawkins, M.A.2
Di Nardo, A.3
Lopez-Garcia, B.4
Howell, M.D.5
Wong, C.6
Lin, K.7
Streib, J.E.8
Dorschner, R.9
Leung, D.Y.M.10
Gallo, R.L.11
-
34
-
-
33751532376
-
The human cationic host defense peptide LL-37 mediates contrasting effects on apoptotic pathways in different primary cells of the innate immune system
-
Barlow PG, Li Y, Wilkinson TS, Bowdish DME, Lau YE, Cosseau C, Haslett C, Simpson AJ, Hancock REW, Davidson DJ. 2006. The human cationic host defense peptide LL-37 mediates contrasting effects on apoptotic pathways in different primary cells of the innate immune system. J Leukoc Biol 80:509-520. http://dx.doi.org/10.1189/jlb.1005560.
-
(2006)
J Leukoc Biol
, vol.80
, pp. 509-520
-
-
Barlow, P.G.1
Li, Y.2
Wilkinson, T.S.3
Bowdish, D.M.E.4
Lau, Y.E.5
Cosseau, C.6
Haslett, C.7
Simpson, A.J.8
Hancock, R.E.W.9
Davidson, D.J.10
-
35
-
-
36148980891
-
Cathelicidin LL-37 induces the generation of reactive oxygen species and release of human alpha-defensins from neutrophils
-
Zheng Y, Niyonsaba F, Ushio H, Nagaoka I, Ikeda S, Okumura K, Ogawa H. 2007. Cathelicidin LL-37 induces the generation of reactive oxygen species and release of human alpha-defensins from neutrophils. Br J Dermatol 157:1124-1131. http://dx.doi.org/10.1111/j.1365-2133.2007.08196.x.
-
(2007)
Br J Dermatol
, vol.157
, pp. 1124-1131
-
-
Zheng, Y.1
Niyonsaba, F.2
Ushio, H.3
Nagaoka, I.4
Ikeda, S.5
Okumura, K.6
Ogawa, H.7
-
36
-
-
70449363613
-
Evidence that cathelicidin peptide LL-37 may act as a functional ligand for CXCR2 on human neutrophils
-
Zhang Z, Cherryholmes G, Chang F, Rose DM, Schraufstatter I, Shively JE. 2009. Evidence that cathelicidin peptide LL-37 may act as a functional ligand for CXCR2 on human neutrophils. Eur J Immunol 39:3181-3194. http://dx.doi.org/10.1002/eji.200939496.
-
(2009)
Eur J Immunol
, vol.39
, pp. 3181-3194
-
-
Zhang, Z.1
Cherryholmes, G.2
Chang, F.3
Rose, D.M.4
Schraufstatter, I.5
Shively, J.E.6
-
37
-
-
33646586648
-
Human cathelicidin LL-37 is a chemoattractant for eosinophils and neutrophils that acts via formyl-peptide receptors
-
Tjabringa GS, Ninaber DK, Drijfhout JW, Rabe KF, Hiemstra PS. 2006. Human cathelicidin LL-37 is a chemoattractant for eosinophils and neutrophils that acts via formyl-peptide receptors. Int Arch Allergy Immunol 140:103-112. http://dx.doi.org/10.1159/000092305.
-
(2006)
Int Arch Allergy Immunol
, vol.140
, pp. 103-112
-
-
Tjabringa, G.S.1
Ninaber, D.K.2
Drijfhout, J.W.3
Rabe, K.F.4
Hiemstra, P.S.5
-
38
-
-
84884959307
-
Human cathelicidin LL-37-derived peptide IG-19 confers protection in a murine model of collagen-induced arthritis
-
Chow LNY, Choi K-YG, Piyadasa H, Bossert M, Uzonna J, Klonisch T, Mookherjee N. 2014. Human cathelicidin LL-37-derived peptide IG-19 confers protection in a murine model of collagen-induced arthritis. Mol Immunol 57:86-92. http://dx.doi.org/10.1016/j.molimm.2013.08.011.
-
(2014)
Mol Immunol
, vol.57
, pp. 86-92
-
-
Chow, L.N.Y.1
Choi, K.-Y.G.2
Piyadasa, H.3
Bossert, M.4
Uzonna, J.5
Klonisch, T.6
Mookherjee, N.7
-
39
-
-
84883688534
-
The human cathelicidin antimicrobial peptide LL-37 as a potential treatment for polymicrobial infected wounds
-
Duplantier AJ, van Hoek ML. 2013. The human cathelicidin antimicrobial peptide LL-37 as a potential treatment for polymicrobial infected wounds. Front Immunol 4:143. http://dx.doi.org/10.3389/fimmu.2013.00143.
-
(2013)
Front Immunol
, vol.4
, pp. 143
-
-
Duplantier, A.J.1
van Hoek, M.L.2
-
40
-
-
20544447535
-
Candidacidal effects of two antimicrobial peptides: histatin 5 causes small membrane defects, but LL-37 causes massive disruption of the cell membrane
-
den Hertog AL, van Marle J, van Veen HA, Van't Hof W, Bolsche JGM, Veerman ECI, Nieuw Amerongen AV. 2005. Candidacidal effects of two antimicrobial peptides: histatin 5 causes small membrane defects, but LL-37 causes massive disruption of the cell membrane. Biochem J 388: 689-695. http://dx.doi.org/10.1042/BJ20042099.
-
(2005)
Biochem J
, vol.388
, pp. 689-695
-
-
den Hertog, A.L.1
van Marle, J.2
van Veen, H.A.3
Van't Hof, W.4
Bolsche, J.G.M.5
Veerman, E.C.I.6
Nieuw Amerongen, A.V.7
-
41
-
-
33750623420
-
The human cathelicidin peptide LL-37 and truncated variants induce segregation of lipids and proteins in the plasma membrane of Candida albicans
-
den Hertog AL, van Marle J, Veerman ECI, Valentijn-Benz M, Nazmi K, Kalay H, Grün CH, Van't Hof W, Bolscher JGM, Nieuw Amerongen AV. 2006. The human cathelicidin peptide LL-37 and truncated variants induce segregation of lipids and proteins in the plasma membrane of Candida albicans. Biol Chem 387:1495-1502. http://dx.doi.org/10.1515/BC.2006.187.
-
(2006)
Biol Chem
, vol.387
, pp. 1495-1502
-
-
den Hertog, A.L.1
van Marle, J.2
Veerman, E.C.I.3
Valentijn-Benz, M.4
Nazmi, K.5
Kalay, H.6
Grün, C.H.7
Van't Hof, W.8
Bolscher, J.G.M.9
Nieuw Amerongen, A.V.10
-
42
-
-
84896905018
-
Fungicidal mechanisms of cathelicidins LL-37 and CATH-2 revealed by live-cell imaging
-
Ordonez SR, Amarullah IH, Wubbolts RW, Veldhuizen EJA, Haagsman HP. 2014. Fungicidal mechanisms of cathelicidins LL-37 and CATH-2 revealed by live-cell imaging. Antimicrob Agents Chemother 58:2240-2248. http://dx.doi.org/10.1128/AAC.01670-13.
-
(2014)
Antimicrob Agents Chemother
, vol.58
, pp. 2240-2248
-
-
Ordonez, S.R.1
Amarullah, I.H.2
Wubbolts, R.W.3
Veldhuizen, E.J.A.4
Haagsman, H.P.5
-
43
-
-
84903603741
-
Responses of Candida albicans to the human antimicrobial peptide LL-37
-
Tsai P-W, Cheng Y-L, Hsieh W-P, Lan C-Y. 2014. Responses of Candida albicans to the human antimicrobial peptide LL-37. J Microbiol 52:581-589. http://dx.doi.org/10.1007/s12275-014-3630-2.
-
(2014)
J Microbiol
, vol.52
, pp. 581-589
-
-
Tsai, P.-W.1
Cheng, Y.-L.2
Hsieh, W.-P.3
Lan, C.-Y.4
-
44
-
-
22144453571
-
Anti-fungal activity of cathelicidins and their potential role in Candida albicans skin infection
-
López-García B, Lee PHA, Yamasaki K, Gallo RL. 2005. Anti-fungal activity of cathelicidins and their potential role in Candida albicans skin infection. J Investig Dermatol 125:108-115. http://dx.doi.org/10.1111/j.0022-202X.2005.23713.x.
-
(2005)
J Investig Dermatol
, vol.125
, pp. 108-115
-
-
López-García, B.1
Lee, P.H.A.2
Yamasaki, K.3
Gallo, R.L.4
-
45
-
-
68949117860
-
LL-37 complexation with glycosaminoglycans in cystic fibrosis lungs inhibits antimicrobial activity, which can be restored by hypertonic saline
-
Bergsson G, Reeves EP, McNally P, Chotirmall SH, Greene CM, Greally P, Murphy P, O'Neill SJ, McElvaney NG. 2009. LL-37 complexation with glycosaminoglycans in cystic fibrosis lungs inhibits antimicrobial activity, which can be restored by hypertonic saline. J Immunol 183:543-551. http://dx.doi.org/10.4049/jimmunol.0803959.
-
(2009)
J Immunol
, vol.183
, pp. 543-551
-
-
Bergsson, G.1
Reeves, E.P.2
McNally, P.3
Chotirmall, S.H.4
Greene, C.M.5
Greally, P.6
Murphy, P.7
O'Neill, S.J.8
McElvaney, N.G.9
-
46
-
-
0032488904
-
Conformation-dependent antibacterial activity of the naturally occurring human peptide LL-37
-
Johansson J, Gudmundsson GH, Rottenberg ME, Berndt KD, Agerberth B. 1998. Conformation-dependent antibacterial activity of the naturally occurring human peptide LL-37. J Biol Chem 273:3718-3724. http://dx.doi.org/10.1074/jbc.273.6.3718.
-
(1998)
J Biol Chem
, vol.273
, pp. 3718-3724
-
-
Johansson, J.1
Gudmundsson, G.H.2
Rottenberg, M.E.3
Berndt, K.D.4
Agerberth, B.5
-
47
-
-
9644255763
-
Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases
-
Sieprawska-Lupa M, Mydel P, Krawczyk K, Wójcik K, Puklo M, Lupa B, Suder P, Silberring J, Reed M, Pohl J, Shafer W, MCAleese I, Foster T, Travis J, Potempa J. 2004. Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrob Agents Chemother 48:4673-4679. http://dx.doi.org/10.1128/AAC.48.12.4673-4679.2004.
-
(2004)
Antimicrob Agents Chemother
, vol.48
, pp. 4673-4679
-
-
Sieprawska-Lupa, M.1
Mydel, P.2
Krawczyk, K.3
Wójcik, K.4
Puklo, M.5
Lupa, B.6
Suder, P.7
Silberring, J.8
Reed, M.9
Pohl, J.10
Shafer, W.11
M.C.Aleese, I.12
Foster, T.13
Travis, J.14
Potempa, J.15
-
48
-
-
77953396498
-
Proteolytic inactivation of LL-37 by karilysin, a novel virulence mechanism of Tannerella forsythia
-
Koziel J, Karim AY, Przybyszewska K, Ksiazek M, Rapala-Kozik M, Nguyen K-A, Potempa J. 2010. Proteolytic inactivation of LL-37 by karilysin, a novel virulence mechanism of Tannerella forsythia. J Innate Immun 2:288-293. http://dx.doi.org/10.1159/000281881.
-
(2010)
J Innate Immun
, vol.2
, pp. 288-293
-
-
Koziel, J.1
Karim, A.Y.2
Przybyszewska, K.3
Ksiazek, M.4
Rapala-Kozik, M.5
Nguyen, K.-A.6
Potempa, J.7
-
49
-
-
84883546762
-
LL-37 in periodontal health and disease and its susceptibility to degradation by proteinases present in gingival crevicular fluid
-
McCrudden MT, Orr DF, Yu Y, Coulter WA, Manning G, Irwin CR, Lundy FT. 2013. LL-37 in periodontal health and disease and its susceptibility to degradation by proteinases present in gingival crevicular fluid. J Clin Periodontol 40:933-941. http://dx.doi.org/10.1111/jcpe.12141.
-
(2013)
J Clin Periodontol
, vol.40
, pp. 933-941
-
-
McCrudden, M.T.1
Orr, D.F.2
Yu, Y.3
Coulter, W.A.4
Manning, G.5
Irwin, C.R.6
Lundy, F.T.7
-
50
-
-
0141789642
-
Candida albicans secreted aspartyl proteinases in virulence and pathogenesis
-
Naglik JR, Challacombe SJ, Hube B. 2003. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev 67:400-428. http://dx.doi.org/10.1128/MMBR.67.3.400-428.2003.
-
(2003)
Microbiol Mol Biol Rev
, vol.67
, pp. 400-428
-
-
Naglik, J.R.1
Challacombe, S.J.2
Hube, B.3
-
51
-
-
33644861572
-
Glycosylphosphatidylinositol-anchored proteases of Candida albicans target proteins necessary for both cellular processes and host-pathogen interactions
-
Albrecht A, Felk A, Pichova I, Naglik JR, Schaller M, de Groot P, Maccallum D, Odds FC, Schäfer W, Klis F, Monod M, Hube B. 2006. Glycosylphosphatidylinositol-anchored proteases of Candida albicans target proteins necessary for both cellular processes and host-pathogen interactions. J Biol Chem 281:688-694. http://dx.doi.org/10.1074/jbc.M509297200.
-
(2006)
J Biol Chem
, vol.281
, pp. 688-694
-
-
Albrecht, A.1
Felk, A.2
Pichova, I.3
Naglik, J.R.4
Schaller, M.5
de Groot, P.6
Maccallum, D.7
Odds, F.C.8
Schäfer, W.9
Klis, F.10
Monod, M.11
Hube, B.12
-
52
-
-
0032900510
-
In vivo analysis of secreted aspartyl proteinase expression in human oral candidiasis
-
Naglik JR, Newport G, White TC, Fernandes-Naglik LL, Greenspan JS, Greenspan D, Sweet SP, Challacombe SJ, Agabian N. 1999. In vivo analysis of secreted aspartyl proteinase expression in human oral candidiasis. Infect Immun 67:2482-2490.
-
(1999)
Infect Immun
, vol.67
, pp. 2482-2490
-
-
Naglik, J.R.1
Newport, G.2
White, T.C.3
Fernandes-Naglik, L.L.4
Greenspan, J.S.5
Greenspan, D.6
Sweet, S.P.7
Challacombe, S.J.8
Agabian, N.9
-
53
-
-
0043159196
-
Differential expression of Candida albicans secreted aspartyl proteinase and phospholipase B genes in humans correlates with active oral and vaginal infections
-
Naglik JR, Rodgers CA, Shirlaw PJ, Dobbie JL, Fernandes-Naglik LL, Greenspan D, Agabian N, Challacombe SJ. 2003. Differential expression of Candida albicans secreted aspartyl proteinase and phospholipase B genes in humans correlates with active oral and vaginal infections. J Infect Dis 188:469-479. http://dx.doi.org/10.1086/376536.
-
(2003)
J Infect Dis
, vol.188
, pp. 469-479
-
-
Naglik, J.R.1
Rodgers, C.A.2
Shirlaw, P.J.3
Dobbie, J.L.4
Fernandes-Naglik, L.L.5
Greenspan, D.6
Agabian, N.7
Challacombe, S.J.8
-
54
-
-
57349145280
-
Quantitative expression of the Candida albicans secreted aspartyl proteinase gene family in human oral and vaginal candidiasis
-
Naglik JR, Moyes D, Makwana J, Kanzaria P, Tsichlaki E, Weindl G, Tappuni AR, Rodgers CA, Woodman AJ, Challacombe SJ, Schaller M, Hube B. 2008. Quantitative expression of the Candida albicans secreted aspartyl proteinase gene family in human oral and vaginal candidiasis. Microbiology 154: 3266-3280. http://dx.doi.org/10.1099/mic.0.2008/022293-0.
-
(2008)
Microbiology
, vol.154
, pp. 3266-3280
-
-
Naglik, J.R.1
Moyes, D.2
Makwana, J.3
Kanzaria, P.4
Tsichlaki, E.5
Weindl, G.6
Tappuni, A.R.7
Rodgers, C.A.8
Woodman, A.J.9
Challacombe, S.J.10
Schaller, M.11
Hube, B.12
-
55
-
-
0031875677
-
Differential expression of secreted aspartyl proteinases in a model of human oral candidosis and in patient samples from the oral cavity
-
Schaller M, Schafer W, Korting HC, Hube B. 1998. Differential expression of secreted aspartyl proteinases in a model of human oral candidosis and in patient samples from the oral cavity. Mol Microbiol 29:605-615. http://dx.doi.org/10.1046/j.1365-2958.1998.00957.x.
-
(1998)
Mol Microbiol
, vol.29
, pp. 605-615
-
-
Schaller, M.1
Schafer, W.2
Korting, H.C.3
Hube, B.4
-
56
-
-
0037767275
-
The secreted aspartyl proteinases Sap1 and Sap2 cause tissue damage in an in vitro model of vaginal candidiasis based on reconstituted human vaginal epithelium
-
Schaller M, Bein M, Korting HC, Baur S, Hamm G, Monod M, Beinhauer S, Hube B. 2003. The secreted aspartyl proteinases Sap1 and Sap2 cause tissue damage in an in vitro model of vaginal candidiasis based on reconstituted human vaginal epithelium. Infect Immun 71:3227-3234. http://dx.doi.org/10.1128/IAI.71.6.3227-3234.2003.
-
(2003)
Infect Immun
, vol.71
, pp. 3227-3234
-
-
Schaller, M.1
Bein, M.2
Korting, H.C.3
Baur, S.4
Hamm, G.5
Monod, M.6
Beinhauer, S.7
Hube, B.8
-
57
-
-
0001421998
-
Secreted aspartic proteinase (Sap) activity contributes to tissue damage in a model of human oral candidosis
-
Schaller M, Korting HC, Schafer W, Baster J, Chen W, Hube B. 1999. Secreted aspartic proteinase (Sap) activity contributes to tissue damage in a model of human oral candidosis. Mol Microbiol 34:169-180. http://dx.doi.org/10.1046/j.1365-2958.1999.01590.x.
-
(1999)
Mol Microbiol
, vol.34
, pp. 169-180
-
-
Schaller, M.1
Korting, H.C.2
Schafer, W.3
Baster, J.4
Chen, W.5
Hube, B.6
-
58
-
-
64549125592
-
A novel immune evasion strategy of Candida albicans: proteolytic cleavage of a salivary antimicrobial peptide
-
Meiller TF, Hube B, Schild L, Shirtliff ME, Scheper MA, Winkler R, Ton A, Jabra-Rizk MA. 2009. A novel immune evasion strategy of Candida albicans: proteolytic cleavage of a salivary antimicrobial peptide. PLoS One 4:e5039. http://dx.doi.org/10.1371/journal.pone.0005039.
-
(2009)
PLoS One
, vol.4
-
-
Meiller, T.F.1
Hube, B.2
Schild, L.3
Shirtliff, M.E.4
Scheper, M.A.5
Winkler, R.6
Ton, A.7
Jabra-Rizk, M.A.8
-
59
-
-
78651507997
-
Proteolytic cleavage of covalently linked cell wall proteins by Candida albicans Sap9 and Sap10
-
Schild L, Heyken A, de Groot PWJ, Hiller E, Mock M, de Koster C, Horn U, Rupp S, Hube B. 2011. Proteolytic cleavage of covalently linked cell wall proteins by Candida albicans Sap9 and Sap10. Eukaryot Cell 10: 98-109. http://dx.doi.org/10.1128/EC.00210-10.
-
(2011)
Eukaryot Cell
, vol.10
, pp. 98-109
-
-
Schild, L.1
Heyken, A.2
de Groot, P.W.J.3
Hiller, E.4
Mock, M.5
de Koster, C.6
Horn, U.7
Rupp, S.8
Hube, B.9
-
60
-
-
84864380035
-
Role of aspartic proteinases in Candida albicans virulence. Part I. Substrate specificity of aspartic proteinases and Candida albicans pathogenesis
-
Staniszewska M, Bondaryk M, Siennicka K, Pilat J, Schaller M, Kurzatkowski W. 2012. Role of aspartic proteinases in Candida albicans virulence. Part I. Substrate specificity of aspartic proteinases and Candida albicans pathogenesis. Postepy Mikrobiol 51:127-135. http://www.pm.microbiology.pl/web/archiwum/vol5122012127.pdf.
-
(2012)
Postepy Mikrobiol
, vol.51
, pp. 127-135
-
-
Staniszewska, M.1
Bondaryk, M.2
Siennicka, K.3
Pilat, J.4
Schaller, M.5
Kurzatkowski, W.6
-
61
-
-
20444484565
-
The immune response to fungal infections
-
Shoham S, Levitz SM. 2005. The immune response to fungal infections. Br J Haematol 129:569-582. http://dx.doi.org/10.1111/j.1365-2141.2005.05397.x.
-
(2005)
Br J Haematol
, vol.129
, pp. 569-582
-
-
Shoham, S.1
Levitz, S.M.2
-
62
-
-
0034923216
-
Different isoformsof secreted aspartyl proteinases(Sap)areexpressedbyCandida albicans during oral and cutaneous candidosis in vivo
-
Schaller M, Januschke E, Schackert C, Woerle B, Korting HC. 2001. Different isoformsof secreted aspartyl proteinases(Sap)areexpressedbyCandida albicans during oral and cutaneous candidosis in vivo. J Med Microbiol 50:743-747. http://jmm.sgmjournals.org/content/50/8/743.long.
-
(2001)
J Med Microbiol
, vol.50
, pp. 743-747
-
-
Schaller, M.1
Januschke, E.2
Schackert, C.3
Woerle, B.4
Korting, H.C.5
-
63
-
-
34247881897
-
Developmental regulation of an adhesin gene during cellular morphogenesis in the fungal pathogen Candida albicans
-
Argimón S, Wishart JA, Leng R, Macaskill S, Mavor A, Alexandris T, Nicholls S, Knight AW, Enjalbert B, Walmsley R, Odds FC, Gow NA, Brown AJ. 2007. Developmental regulation of an adhesin gene during cellular morphogenesis in the fungal pathogen Candida albicans. Eukaryot Cell 6:682-692. http://dx.doi.org/10.1128/EC.00340-06.
-
(2007)
Eukaryot Cell
, vol.6
, pp. 682-692
-
-
Argimón, S.1
Wishart, J.A.2
Leng, R.3
Macaskill, S.4
Mavor, A.5
Alexandris, T.6
Nicholls, S.7
Knight, A.W.8
Enjalbert, B.9
Walmsley, R.10
Odds, F.C.11
Gow, N.A.12
Brown, A.J.13
-
64
-
-
82955194847
-
Farnesol, a fungal quorum-sensing molecule, triggers Candida albicans morphological changes by downregulating the expression of different secreted aspartyl proteinase genes
-
Décanis N, Tazi N, Correia A, Vilanova M, Rouabhia M. 2011. Farnesol, a fungal quorum-sensing molecule, triggers Candida albicans morphological changes by downregulating the expression of different secreted aspartyl proteinase genes. Open Microbiol J 5:119-126. http://dx.doi.org/10.2174/1874285801105010119.
-
(2011)
Open Microbiol J
, vol.5
, pp. 119-126
-
-
Décanis, N.1
Tazi, N.2
Correia, A.3
Vilanova, M.4
Rouabhia, M.5
-
65
-
-
35948998096
-
In vivo transcript profiling of Candida albicans identifies a gene essential for interepithelial dissemination
-
Zakikhany K, Naglik JR, Schmidt-Westhausen A, Holland G, Schaller M, Hube B. 2007. In vivo transcript profiling of Candida albicans identifies a gene essential for interepithelial dissemination. Cell Microbiol 9:2938-2954. http://dx.doi.org/10.1111/j.1462-5822.2007.01009.x.
-
(2007)
Cell Microbiol
, vol.9
, pp. 2938-2954
-
-
Zakikhany, K.1
Naglik, J.R.2
Schmidt-Westhausen, A.3
Holland, G.4
Schaller, M.5
Hube, B.6
-
66
-
-
84871027267
-
A comprehensive summary of LL-37, the factotum human cathelicidin peptide
-
Vandamme D, Landuyt B, Luyten W, Schoofs L. 2012. A comprehensive summary of LL-37, the factotum human cathelicidin peptide. Cell Immunol 280:22-35. http://dx.doi.org/10.1016/j.cellimm.2012.11.009.
-
(2012)
Cell Immunol
, vol.280
, pp. 22-35
-
-
Vandamme, D.1
Landuyt, B.2
Luyten, W.3
Schoofs, L.4
-
67
-
-
80054073461
-
Antifungal action of human cathelicidin fragment (LL13-37) on Candida albicans
-
Wong JH, Ng TB, Legowska A, Rolka K, Hui M, Cho CH. 2011. Antifungal action of human cathelicidin fragment (LL13-37) on Candida albicans. Peptides 32:1996-2002. http://dx.doi.org/10.1016/j.peptides.2011.08.018.
-
(2011)
Peptides
, vol.32
, pp. 1996-2002
-
-
Wong, J.H.1
Ng, T.B.2
Legowska, A.3
Rolka, K.4
Hui, M.5
Cho, C.H.6
-
68
-
-
1342282224
-
Postsecretory processing generates multiple cathelicidins for enhanced topical antimicrobial defense
-
Murakami M, Lopez-Garcia B, Braff M, Dorschner RA, Gallo RL. 2004. Postsecretory processing generates multiple cathelicidins for enhanced topical antimicrobial defense. J Immunol 172:3070-3077. http://dx.doi.org/10.4049/jimmunol.172.5.3070.
-
(2004)
J Immunol
, vol.172
, pp. 3070-3077
-
-
Murakami, M.1
Lopez-Garcia, B.2
Braff, M.3
Dorschner, R.A.4
Gallo, R.L.5
-
69
-
-
33750139445
-
Kallikreinmediated proteolysis regulates the antimicrobial effects of cathelicidins in skin
-
Yamasaki K, Schauber J, Coda A, Lin H, Dorschner RA, Schechter NM, Bonnart C, Descargues P, Hovnanian A, Gallo RL. 2006. Kallikreinmediated proteolysis regulates the antimicrobial effects of cathelicidins in skin. FASEB J 20:2068-2080. http://dx.doi.org/10.1096/fj.06-6075com.
-
(2006)
FASEB J
, vol.20
, pp. 2068-2080
-
-
Yamasaki, K.1
Schauber, J.2
Coda, A.3
Lin, H.4
Dorschner, R.A.5
Schechter, N.M.6
Bonnart, C.7
Descargues, P.8
Hovnanian, A.9
Gallo, R.L.10
-
70
-
-
84895747383
-
A virtual infection model quantifies innate effector mechanisms and Candida albicans immune escape in human blood
-
Hünniger K, Lehnert T, Bieber K, Martin R, Figge MT, Kurzai O. 2014. A virtual infection model quantifies innate effector mechanisms and Candida albicans immune escape in human blood. PLoS Comput Biol 10: e1003479. http://dx.doi.org/10.1371/journal.pcbi.1003479.
-
(2014)
PLoS Comput Biol
, vol.10
-
-
Hünniger, K.1
Lehnert, T.2
Bieber, K.3
Martin, R.4
Figge, M.T.5
Kurzai, O.6
-
71
-
-
84879116005
-
Thriving within the host: Candida spp. interactions with phagocytic cells
-
Miramón P, Kasper L, Hube B. 2013. Thriving within the host: Candida spp. interactions with phagocytic cells. Med Microbiol Immunol 202:183-195. http://dx.doi.org/10.1007/s00430-013-0288-z.
-
(2013)
Med Microbiol Immunol
, vol.202
, pp. 183-195
-
-
Miramón, P.1
Kasper, L.2
Hube, B.3
-
72
-
-
0344603595
-
Regulation of Fas antibody induced neutrophil apoptosis is both caspase and mitochondrial dependent
-
Watson RW, O'Neill A, Brannigan AE, Brannigen AE, Coffey R, Marshall JC, Brady HR, Fitzpatrick JM. 1999. Regulation of Fas antibody induced neutrophil apoptosis is both caspase and mitochondrial dependent. FEBS Lett 453:67-71. http://dx.doi.org/10.1016/S0014-5793(99)00688-2.
-
(1999)
FEBS Lett
, vol.453
, pp. 67-71
-
-
Watson, R.W.1
O'Neill, A.2
Brannigan, A.E.3
Brannigen, A.E.4
Coffey, R.5
Marshall, J.C.6
Brady, H.R.7
Fitzpatrick, J.M.8
-
73
-
-
50849112078
-
Neutrophil secondary necrosis is induced by LL-37 derived from cathelicidin
-
Zhang Z, Cherryholmes G, Shively JE. 2008. Neutrophil secondary necrosis is induced by LL-37 derived from cathelicidin. J Leukoc Biol 84:780-788. http://dx.doi.org/10.1189/jlb.0208086.
-
(2008)
J Leukoc Biol
, vol.84
, pp. 780-788
-
-
Zhang, Z.1
Cherryholmes, G.2
Shively, J.E.3
-
74
-
-
0034596945
-
LL-37, the neutrophil granule-and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells
-
De Yang Chen Q, Schmidt AP, Anderson GM, Wang JM, Wooters J, Oppenheim JJ, Chertov O. 2000. LL-37, the neutrophil granule-and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med 192:1069-1074. http://dx.doi.org/10.1084/jem.192.7.1069.
-
(2000)
J Exp Med
, vol.192
, pp. 1069-1074
-
-
De Yang Chen, Q.1
Schmidt, A.P.2
Anderson, G.M.3
Wang, J.M.4
Wooters, J.5
Oppenheim, J.J.6
Chertov, O.7
-
75
-
-
0021742042
-
Isolation of the Candida albicans gene for orotidine-5'-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations
-
Gillum AM, Tsay EY, Kirsch DR. 1984. Isolation of the Candida albicans gene for orotidine-5'-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol Gen Genet 198:179-182. http://dx.doi.org/10.1007/BF00328721.
-
(1984)
Mol Gen Genet
, vol.198
, pp. 179-182
-
-
Gillum, A.M.1
Tsay, E.Y.2
Kirsch, D.R.3
-
76
-
-
0027192868
-
Isogenic strain construction and gene mapping in Candida albicans
-
Fonzi WA, Irwin MY. 1993. Isogenic strain construction and gene mapping in Candida albicans. Genetics 134:717-728.
-
(1993)
Genetics
, vol.134
, pp. 717-728
-
-
Fonzi, W.A.1
Irwin, M.Y.2
-
77
-
-
0034653201
-
CIp10, an efficient and convenient integrating vector for Candida albicans
-
Murad AM, Lee PR, Broadbent ID, Barelle CJ, Brown AJ. 2000. CIp10, an efficient and convenient integrating vector for Candida albicans. Yeast 16: 325-327. http://dx.doi.org/10.1002/1097-0061(20000315)16:4<325::AID-YEA538>3.0.CO;2-#.
-
(2000)
Yeast
, vol.16
, pp. 325-327
-
-
Murad, A.M.1
Lee, P.R.2
Broadbent, I.D.3
Barelle, C.J.4
Brown, A.J.5
-
78
-
-
0036354556
-
Individual acid aspartic proteinases (Saps) 1-6 of Candida albicans are not essential for invasion and colonization of the gastrointestinal tract in mice
-
Kretschmar M, Felk A, Staib P, Schaller M, Hess D, Callapina M, Morschhäuser J, Schäfer W, Korting HC, Hof H, Hube B, Nichterlein T. 2002. Individual acid aspartic proteinases (Saps) 1-6 of Candida albicans are not essential for invasion and colonization of the gastrointestinal tract in mice. Microb Pathog 32:61-70. http://dx.doi.org/10.1006/mpat.2001.0478.
-
(2002)
Microb Pathog
, vol.32
, pp. 61-70
-
-
Kretschmar, M.1
Felk, A.2
Staib, P.3
Schaller, M.4
Hess, D.5
Callapina, M.6
Morschhäuser, J.7
Schäfer, W.8
Korting, H.C.9
Hof, H.10
Hube, B.11
Nichterlein, T.12
-
79
-
-
0030884697
-
A triple deletion of the secreted aspartyl proteinase genes SAP4, SAP5, and SAP6 of Candida albicans causes attenuated virulence
-
Sanglard D, Hube B, Monod M, Odds FC, Gow NA. 1997. A triple deletion of the secreted aspartyl proteinase genes SAP4, SAP5, and SAP6 of Candida albicans causes attenuated virulence. Infect Immun 65:3539-3546.
-
(1997)
Infect Immun
, vol.65
, pp. 3539-3546
-
-
Sanglard, D.1
Hube, B.2
Monod, M.3
Odds, F.C.4
Gow, N.A.5
-
80
-
-
84872050716
-
Secreted aspartic protease cleavage of Candida albicans Msb2 activates Cek1 MAPK signaling affecting biofilm formation and oropharyngeal candidiasis
-
Puri S, Kumar R, Chadha S, Tati S, Conti HR, Hube B, Cullen PJ, Edgerton M. 2012. Secreted aspartic protease cleavage of Candida albicans Msb2 activates Cek1 MAPK signaling affecting biofilm formation and oropharyngeal candidiasis. PLoS One 7:e46020. http://dx.doi.org/10.1371/journal.pone.0046020.
-
(2012)
PLoS One
, vol.7
-
-
Puri, S.1
Kumar, R.2
Chadha, S.3
Tati, S.4
Conti, H.R.5
Hube, B.6
Cullen, P.J.7
Edgerton, M.8
-
81
-
-
84919683994
-
Microevolution of Candida albicans in macrophages restores filamentation in a nonfilamentous mutant
-
Wartenberg A, Linde J, Martin R, Schreiner M, Horn F, Jacobsen ID, Jenull S, Wolf T, Kuchler K, Guthke R, Kurzai O, Forche A, d'Enfert C, Brunke S, Hube B. 2014. Microevolution of Candida albicans in macrophages restores filamentation in a nonfilamentous mutant. PLoS Genet 10:e1004824. http://dx.doi.org/10.1371/journal.pgen.1004824.
-
(2014)
PLoS Genet
, vol.10
-
-
Wartenberg, A.1
Linde, J.2
Martin, R.3
Schreiner, M.4
Horn, F.5
Jacobsen, I.D.6
Jenull, S.7
Wolf, T.8
Kuchler, K.9
Guthke, R.10
Kurzai, O.11
Forche, A.12
d'Enfert, C.13
Brunke, S.14
Hube, B.15
|