메뉴 건너뛰기




Volumn 31, Issue 5, 2015, Pages 274-280

The alternative role of DNA methylation in splicing regulation

Author keywords

Alternative splicing; Chromatin organization; CpG; DNA methylation; Histone modifications; Nucleosome positioning; Transcription

Indexed keywords

HETEROCHROMATIN PROTEIN 1; METHYL CPG BINDING PROTEIN 2; RNA POLYMERASE II; TRANSCRIPTION FACTOR CTCF; CCCTC-BINDING FACTOR; HETEROCHROMATIN-SPECIFIC NONHISTONE CHROMOSOMAL PROTEIN HP-1; NONHISTONE PROTEIN; REPRESSOR PROTEIN;

EID: 84928761297     PISSN: 01689525     EISSN: 13624555     Source Type: Journal    
DOI: 10.1016/j.tig.2015.03.002     Document Type: Review
Times cited : (405)

References (76)
  • 1
    • 84855327164 scopus 로고    scopus 로고
    • Changes in exon-intron structure during vertebrate evolution affect the splicing pattern of exons
    • Gelfman S., et al. Changes in exon-intron structure during vertebrate evolution affect the splicing pattern of exons. Genome Res. 2012, 22:35-50.
    • (2012) Genome Res. , vol.22 , pp. 35-50
    • Gelfman, S.1
  • 2
    • 69949132191 scopus 로고    scopus 로고
    • Chromatin organization marks exon-intron structure
    • Schwartz S., et al. Chromatin organization marks exon-intron structure. Nat. Struct. Mol. Biol. 2009, 16:990-995.
    • (2009) Nat. Struct. Mol. Biol. , vol.16 , pp. 990-995
    • Schwartz, S.1
  • 3
    • 84861694712 scopus 로고    scopus 로고
    • Differential GC content between exons and introns establishes distinct strategies of splice-site recognition
    • Amit M., et al. Differential GC content between exons and introns establishes distinct strategies of splice-site recognition. Cell Rep. 2012, 1:543-556.
    • (2012) Cell Rep. , vol.1 , pp. 543-556
    • Amit, M.1
  • 4
    • 84881113432 scopus 로고    scopus 로고
    • When epigenetics meets alternative splicing: the roles of DNA methylation and GC architecture
    • Gelfman S., Ast G. When epigenetics meets alternative splicing: the roles of DNA methylation and GC architecture. Epigenomics 2013, 5:351-353.
    • (2013) Epigenomics , vol.5 , pp. 351-353
    • Gelfman, S.1    Ast, G.2
  • 5
    • 84877108379 scopus 로고    scopus 로고
    • DNA-methylation effect on cotranscriptional splicing is dependent on GC architecture of the exon-intron structure
    • Gelfman S., et al. DNA-methylation effect on cotranscriptional splicing is dependent on GC architecture of the exon-intron structure. Genome Res. 2013, 23:789-799.
    • (2013) Genome Res. , vol.23 , pp. 789-799
    • Gelfman, S.1
  • 6
    • 84889081371 scopus 로고    scopus 로고
    • Chromatin's thread to alternative splicing regulation
    • Iannone C., Valcarcel J. Chromatin's thread to alternative splicing regulation. Chromosoma 2013, 122:465-474.
    • (2013) Chromosoma , vol.122 , pp. 465-474
    • Iannone, C.1    Valcarcel, J.2
  • 7
    • 78650961149 scopus 로고    scopus 로고
    • Epigenetics in alternative pre-mRNA splicing
    • Luco R.F., et al. Epigenetics in alternative pre-mRNA splicing. Cell 2011, 144:16-26.
    • (2011) Cell , vol.144 , pp. 16-26
    • Luco, R.F.1
  • 8
    • 77649267695 scopus 로고    scopus 로고
    • Dynamic changes in the human methylome during differentiation
    • Laurent L., et al. Dynamic changes in the human methylome during differentiation. Genome Res. 2010, 20:320-331.
    • (2010) Genome Res. , vol.20 , pp. 320-331
    • Laurent, L.1
  • 9
    • 77952584374 scopus 로고    scopus 로고
    • Chromatin density and splicing destiny: on the cross-talk between chromatin structure and splicing
    • Schwartz S., Ast G. Chromatin density and splicing destiny: on the cross-talk between chromatin structure and splicing. EMBO J. 2010, 29:1629-1636.
    • (2010) EMBO J. , vol.29 , pp. 1629-1636
    • Schwartz, S.1    Ast, G.2
  • 10
    • 5044222204 scopus 로고    scopus 로고
    • How did alternative splicing evolve?
    • Ast G. How did alternative splicing evolve?. Nat. Rev. Genet. 2004, 5:773-782.
    • (2004) Nat. Rev. Genet. , vol.5 , pp. 773-782
    • Ast, G.1
  • 11
    • 56549101959 scopus 로고    scopus 로고
    • Alternative isoform regulation in human tissue transcriptomes
    • Wang E.T., et al. Alternative isoform regulation in human tissue transcriptomes. Nature 2008, 456:470-476.
    • (2008) Nature , vol.456 , pp. 470-476
    • Wang, E.T.1
  • 12
    • 56749098074 scopus 로고    scopus 로고
    • Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing
    • Pan Q., et al. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 2008, 40:1413-1415.
    • (2008) Nat. Genet. , vol.40 , pp. 1413-1415
    • Pan, Q.1
  • 13
    • 77951120000 scopus 로고    scopus 로고
    • Alternative splicing and evolution: diversification, exon definition and function
    • Keren H., et al. Alternative splicing and evolution: diversification, exon definition and function. Nat. Rev. Genet. 2010, 11:345-355.
    • (2010) Nat. Rev. Genet. , vol.11 , pp. 345-355
    • Keren, H.1
  • 14
    • 70350569286 scopus 로고    scopus 로고
    • Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches
    • Chen M., Manley J.L. Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches. Nat. Rev. Mol. Cell Biol. 2009, 10:741-754.
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , pp. 741-754
    • Chen, M.1    Manley, J.L.2
  • 15
    • 33745962893 scopus 로고    scopus 로고
    • Unweaving the meanings of messenger RNA sequences
    • Guigo R., Valcarcel J. Unweaving the meanings of messenger RNA sequences. Mol. Cell 2006, 23:150-151.
    • (2006) Mol. Cell , vol.23 , pp. 150-151
    • Guigo, R.1    Valcarcel, J.2
  • 16
    • 80053027909 scopus 로고    scopus 로고
    • Functional consequences of developmentally regulated alternative splicing
    • Kalsotra A., Cooper T.A. Functional consequences of developmentally regulated alternative splicing. Nat. Rev. Genet. 2011, 12:715-729.
    • (2011) Nat. Rev. Genet. , vol.12 , pp. 715-729
    • Kalsotra, A.1    Cooper, T.A.2
  • 17
    • 60149093432 scopus 로고    scopus 로고
    • RNA and disease
    • Cooper T.A., et al. RNA and disease. Cell 2009, 136:777-793.
    • (2009) Cell , vol.136 , pp. 777-793
    • Cooper, T.A.1
  • 18
    • 38049029652 scopus 로고    scopus 로고
    • Large-scale comparative analysis of splicing signals and their corresponding splicing factors in eukaryotes
    • Schwartz S.H., et al. Large-scale comparative analysis of splicing signals and their corresponding splicing factors in eukaryotes. Genome Res. 2008, 18:88-103.
    • (2008) Genome Res. , vol.18 , pp. 88-103
    • Schwartz, S.H.1
  • 19
    • 0033753779 scopus 로고    scopus 로고
    • The DNA methyltransferases of mammals
    • Bestor T.H. The DNA methyltransferases of mammals. Hum. Mol. Genet. 2000, 9:2395-2402.
    • (2000) Hum. Mol. Genet. , vol.9 , pp. 2395-2402
    • Bestor, T.H.1
  • 20
    • 0026708177 scopus 로고
    • Targeted mutation of the DNA methyltransferase gene results in embryonic lethality
    • Li E., et al. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 1992, 69:915-926.
    • (1992) Cell , vol.69 , pp. 915-926
    • Li, E.1
  • 21
    • 0033615717 scopus 로고    scopus 로고
    • DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development
    • Okano M., et al. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999, 99:247-257.
    • (1999) Cell , vol.99 , pp. 247-257
    • Okano, M.1
  • 22
    • 0036144048 scopus 로고    scopus 로고
    • DNA methylation patterns and epigenetic memory
    • Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002, 16:6-21.
    • (2002) Genes Dev. , vol.16 , pp. 6-21
    • Bird, A.1
  • 23
    • 70350046301 scopus 로고    scopus 로고
    • Rethinking how DNA methylation patterns are maintained
    • Jones P.A., Liang G. Rethinking how DNA methylation patterns are maintained. Nat. Rev. Genet. 2009, 10:805-811.
    • (2009) Nat. Rev. Genet. , vol.10 , pp. 805-811
    • Jones, P.A.1    Liang, G.2
  • 24
  • 25
    • 78049419464 scopus 로고    scopus 로고
    • Orphan CpG islands identify numerous conserved promoters in the mammalian genome
    • Illingworth R.S., et al. Orphan CpG islands identify numerous conserved promoters in the mammalian genome. PLoS Genet. 2010, 6:e1001134.
    • (2010) PLoS Genet. , vol.6 , pp. e1001134
    • Illingworth, R.S.1
  • 26
    • 84905052378 scopus 로고    scopus 로고
    • DNA methylation dynamics of the human preimplantation embryo
    • Smith Z.D., et al. DNA methylation dynamics of the human preimplantation embryo. Nature 2014, 511:611-615.
    • (2014) Nature , vol.511 , pp. 611-615
    • Smith, Z.D.1
  • 27
    • 84882884517 scopus 로고    scopus 로고
    • Charting a dynamic DNA methylation landscape of the human genome
    • Ziller M.J., et al. Charting a dynamic DNA methylation landscape of the human genome. Nature 2013, 500:477-481.
    • (2013) Nature , vol.500 , pp. 477-481
    • Ziller, M.J.1
  • 28
    • 84923366467 scopus 로고    scopus 로고
    • Transcription factor binding dynamics during human ES cell differentiation
    • Tsankov A.M., et al. Transcription factor binding dynamics during human ES cell differentiation. Nature 2015, 518:344-349.
    • (2015) Nature , vol.518 , pp. 344-349
    • Tsankov, A.M.1
  • 29
    • 84355163093 scopus 로고    scopus 로고
    • DNA-binding factors shape the mouse methylome at distal regulatory regions
    • Stadler M.B., et al. DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 2011, 480:490-495.
    • (2011) Nature , vol.480 , pp. 490-495
    • Stadler, M.B.1
  • 30
    • 49649125042 scopus 로고    scopus 로고
    • Genome-scale DNA methylation maps of pluripotent and differentiated cells
    • Meissner A., et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 2008, 454:766-770.
    • (2008) Nature , vol.454 , pp. 766-770
    • Meissner, A.1
  • 31
    • 79956330964 scopus 로고    scopus 로고
    • CpG islands and the regulation of transcription
    • Deaton A.M., Bird A. CpG islands and the regulation of transcription. Genes Dev. 2011, 25:1010-1022.
    • (2011) Genes Dev. , vol.25 , pp. 1010-1022
    • Deaton, A.M.1    Bird, A.2
  • 32
    • 0032890965 scopus 로고    scopus 로고
    • The DNA methylation paradox
    • Jones P.A. The DNA methylation paradox. Trends Genet. 1999, 15:34-37.
    • (1999) Trends Genet. , vol.15 , pp. 34-37
    • Jones, P.A.1
  • 33
    • 79952265169 scopus 로고    scopus 로고
    • A genome-wide study of DNA methylation patterns and gene expression levels in multiple human and chimpanzee tissues
    • Pai A.A., et al. A genome-wide study of DNA methylation patterns and gene expression levels in multiple human and chimpanzee tissues. PLoS Genet. 2011, 7:e1001316.
    • (2011) PLoS Genet. , vol.7 , pp. e1001316
    • Pai, A.A.1
  • 34
    • 70349138460 scopus 로고    scopus 로고
    • Insulin gene expression is regulated by DNA methylation
    • Kuroda A., et al. Insulin gene expression is regulated by DNA methylation. PLoS ONE 2009, 4:e6953.
    • (2009) PLoS ONE , vol.4 , pp. e6953
    • Kuroda, A.1
  • 35
    • 77954504873 scopus 로고    scopus 로고
    • Conserved role of intragenic DNA methylation in regulating alternative promoters
    • Maunakea A.K., et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 2010, 466:253-257.
    • (2010) Nature , vol.466 , pp. 253-257
    • Maunakea, A.K.1
  • 36
    • 43749098985 scopus 로고    scopus 로고
    • DNA methylation landscapes: provocative insights from epigenomics
    • Suzuki M.M., Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat. Rev. Genet. 2008, 9:465-476.
    • (2008) Nat. Rev. Genet. , vol.9 , pp. 465-476
    • Suzuki, M.M.1    Bird, A.2
  • 37
    • 0032509187 scopus 로고    scopus 로고
    • CpG doublets, CpG islands and Alu repeats in long human DNA sequences from different isochore families
    • Jabbari K., Bernardi G. CpG doublets, CpG islands and Alu repeats in long human DNA sequences from different isochore families. Gene 1998, 224:123-127.
    • (1998) Gene , vol.224 , pp. 123-127
    • Jabbari, K.1    Bernardi, G.2
  • 38
    • 33846066292 scopus 로고    scopus 로고
    • A unique configuration of genome-wide DNA methylation patterns in the testis
    • Oakes C.C., et al. A unique configuration of genome-wide DNA methylation patterns in the testis. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:228-233.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 228-233
    • Oakes, C.C.1
  • 39
    • 68149120313 scopus 로고    scopus 로고
    • Nucleosomal fluctuations govern the transcription dynamics of RNA polymerase II
    • Hodges C., et al. Nucleosomal fluctuations govern the transcription dynamics of RNA polymerase II. Science 2009, 325:626-628.
    • (2009) Science , vol.325 , pp. 626-628
    • Hodges, C.1
  • 40
    • 77954659099 scopus 로고    scopus 로고
    • Relationship between nucleosome positioning and DNA methylation
    • Chodavarapu R.K., et al. Relationship between nucleosome positioning and DNA methylation. Nature 2010, 466:388-392.
    • (2010) Nature , vol.466 , pp. 388-392
    • Chodavarapu, R.K.1
  • 41
    • 78649955848 scopus 로고    scopus 로고
    • The honey bee epigenomes: differential methylation of brain DNA in queens and workers
    • Lyko F., et al. The honey bee epigenomes: differential methylation of brain DNA in queens and workers. PLoS Biol. 2010, 8:e1000506.
    • (2010) PLoS Biol. , vol.8 , pp. e1000506
    • Lyko, F.1
  • 42
    • 79952258043 scopus 로고    scopus 로고
    • Nucleosomes containing methylated DNA stabilize DNA methyltransferases 3A/3B and ensure faithful epigenetic inheritance
    • Sharma S., et al. Nucleosomes containing methylated DNA stabilize DNA methyltransferases 3A/3B and ensure faithful epigenetic inheritance. PLoS Genet. 2011, 7:e1001286.
    • (2011) PLoS Genet. , vol.7 , pp. e1001286
    • Sharma, S.1
  • 43
    • 84896324622 scopus 로고    scopus 로고
    • Dnmt1-independent CG methylation contributes to nucleosome positioning in diverse eukaryotes
    • Huff J.T., Zilberman D. Dnmt1-independent CG methylation contributes to nucleosome positioning in diverse eukaryotes. Cell 2014, 156:1286-1297.
    • (2014) Cell , vol.156 , pp. 1286-1297
    • Huff, J.T.1    Zilberman, D.2
  • 44
    • 66149146320 scopus 로고    scopus 로고
    • Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1
    • Tahiliani M., et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009, 324:930-935.
    • (2009) Science , vol.324 , pp. 930-935
    • Tahiliani, M.1
  • 45
    • 66149123748 scopus 로고    scopus 로고
    • The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain
    • Kriaucionis S., Heintz N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 2009, 324:929-930.
    • (2009) Science , vol.324 , pp. 929-930
    • Kriaucionis, S.1    Heintz, N.2
  • 46
    • 80052495940 scopus 로고    scopus 로고
    • Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA
    • He Y.F., et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 2011, 333:1303-1307.
    • (2011) Science , vol.333 , pp. 1303-1307
    • He, Y.F.1
  • 47
    • 80052461558 scopus 로고    scopus 로고
    • Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine
    • Ito S., et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 2011, 333:1300-1303.
    • (2011) Science , vol.333 , pp. 1300-1303
    • Ito, S.1
  • 48
    • 78650826181 scopus 로고    scopus 로고
    • Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates
    • Globisch D., et al. Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS ONE 2010, 5:e15367.
    • (2010) PLoS ONE , vol.5 , pp. e15367
    • Globisch, D.1
  • 49
    • 84867230056 scopus 로고    scopus 로고
    • 5-hmC in the brain is abundant in synaptic genes and shows differences at the exon-introl boundary
    • Khare T., et al. 5-hmC in the brain is abundant in synaptic genes and shows differences at the exon-introl boundary. Nat. Struct. Mol. Biol. 2012, 19:1037-1043.
    • (2012) Nat. Struct. Mol. Biol. , vol.19 , pp. 1037-1043
    • Khare, T.1
  • 50
    • 84885909715 scopus 로고    scopus 로고
    • Integrative analysis of tissue-specific methylation and alternative splicing identifies conserved transcription factor binding motifs
    • Wan J., et al. Integrative analysis of tissue-specific methylation and alternative splicing identifies conserved transcription factor binding motifs. Nucleic Acids Res. 2013, 41:8503-8514.
    • (2013) Nucleic Acids Res. , vol.41 , pp. 8503-8514
    • Wan, J.1
  • 51
    • 84881107424 scopus 로고    scopus 로고
    • RNA interference knockdown of DNA methyl-transferase 3 affects gene alternative splicing in the honey bee
    • Li-Byarlay H., et al. RNA interference knockdown of DNA methyl-transferase 3 affects gene alternative splicing in the honey bee. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:12750-12755.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 12750-12755
    • Li-Byarlay, H.1
  • 52
    • 84924578243 scopus 로고    scopus 로고
    • HP1 is involved in regulating the global impact of DNA methylation on alternative splicing
    • Yearim A., et al. HP1 is involved in regulating the global impact of DNA methylation on alternative splicing. Cell Rep. 2015, 10:1122-1134.
    • (2015) Cell Rep. , vol.10 , pp. 1122-1134
    • Yearim, A.1
  • 53
    • 77954171220 scopus 로고    scopus 로고
    • Contrasting chromatin organization of CpG islands and exons in the human genome
    • Choi J.K. Contrasting chromatin organization of CpG islands and exons in the human genome. Genome Biol. 2010, 11:R70.
    • (2010) Genome Biol. , vol.11 , pp. R70
    • Choi, J.K.1
  • 54
    • 77956504685 scopus 로고    scopus 로고
    • Evolution of eukaryotic DNA methylation and the pursuit of safer sex
    • Zemach A., Zilberman D. Evolution of eukaryotic DNA methylation and the pursuit of safer sex. Curr. Biol. 2010, 20:R780-R785.
    • (2010) Curr. Biol. , vol.20 , pp. R780-R785
    • Zemach, A.1    Zilberman, D.2
  • 55
    • 80455176999 scopus 로고    scopus 로고
    • CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing
    • Shukla S., et al. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature 2011, 479:74-79.
    • (2011) Nature , vol.479 , pp. 74-79
    • Shukla, S.1
  • 56
    • 84899415536 scopus 로고    scopus 로고
    • CTCF: an architectural protein bridging genome topology and function
    • Ong C.T., Corces V.G. CTCF: an architectural protein bridging genome topology and function. Nat. Rev. Genet. 2014, 15:234-246.
    • (2014) Nat. Rev. Genet. , vol.15 , pp. 234-246
    • Ong, C.T.1    Corces, V.G.2
  • 57
    • 0342437491 scopus 로고    scopus 로고
    • MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin
    • Nan X., et al. MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell 1997, 88:471-481.
    • (1997) Cell , vol.88 , pp. 471-481
    • Nan, X.1
  • 58
    • 0037423186 scopus 로고    scopus 로고
    • The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation
    • Fuks F., et al. The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J. Biol. Chem. 2003, 278:4035-4040.
    • (2003) J. Biol. Chem. , vol.278 , pp. 4035-4040
    • Fuks, F.1
  • 59
    • 0026658662 scopus 로고
    • Characterization of MeCP2, a vertebrate DNA binding protein with affinity for methylated DNA
    • Meehan R.R., et al. Characterization of MeCP2, a vertebrate DNA binding protein with affinity for methylated DNA. Nucleic Acids Res. 1992, 20:5085-5092.
    • (1992) Nucleic Acids Res. , vol.20 , pp. 5085-5092
    • Meehan, R.R.1
  • 60
    • 29144447632 scopus 로고    scopus 로고
    • Regulation of RNA splicing by the methylation-dependent transcriptional repressor methyl-CpG binding protein 2
    • Young J.I., et al. Regulation of RNA splicing by the methylation-dependent transcriptional repressor methyl-CpG binding protein 2. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:17551-17558.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 17551-17558
    • Young, J.I.1
  • 61
    • 84887214395 scopus 로고    scopus 로고
    • Intragenic DNA methylation modulates alternative splicing by recruiting MeCP2 to promote exon recognition
    • Maunakea A.K., et al. Intragenic DNA methylation modulates alternative splicing by recruiting MeCP2 to promote exon recognition. Cell Res. 2013, 23:1256-1269.
    • (2013) Cell Res. , vol.23 , pp. 1256-1269
    • Maunakea, A.K.1
  • 62
    • 3242755077 scopus 로고    scopus 로고
    • Conserved properties of HP1(Hsalpha)
    • Norwood L.E., et al. Conserved properties of HP1(Hsalpha). Gene 2004, 336:37-46.
    • (2004) Gene , vol.336 , pp. 37-46
    • Norwood, L.E.1
  • 63
    • 60549110477 scopus 로고    scopus 로고
    • Chromatin binding of SRp20 and ASF/SF2 and dissociation from mitotic chromosomes is modulated by histone H3 serine 10 phosphorylation
    • Loomis R.J., et al. Chromatin binding of SRp20 and ASF/SF2 and dissociation from mitotic chromosomes is modulated by histone H3 serine 10 phosphorylation. Mol. Cell 2009, 33:450-461.
    • (2009) Mol. Cell , vol.33 , pp. 450-461
    • Loomis, R.J.1
  • 64
    • 73449102588 scopus 로고    scopus 로고
    • Heterochromatin protein 1 (HP1a) positively regulates euchromatic gene expression through RNA transcript association and interaction with hnRNPs in Drosophila
    • Piacentini L., et al. Heterochromatin protein 1 (HP1a) positively regulates euchromatic gene expression through RNA transcript association and interaction with hnRNPs in Drosophila. PLoS Genet. 2009, 5:e1000670.
    • (2009) PLoS Genet. , vol.5 , pp. e1000670
    • Piacentini, L.1
  • 65
    • 84867230570 scopus 로고    scopus 로고
    • Argonaute proteins couple chromatin silencing to alternative splicing
    • Ameyar-Zazoua M., et al. Argonaute proteins couple chromatin silencing to alternative splicing. Nat. Struct. Mol. Biol. 2012, 19:998-1004.
    • (2012) Nat. Struct. Mol. Biol. , vol.19 , pp. 998-1004
    • Ameyar-Zazoua, M.1
  • 66
    • 67650299463 scopus 로고    scopus 로고
    • Control of alternative splicing through siRNA-mediated transcriptional gene silencing
    • Allo M., et al. Control of alternative splicing through siRNA-mediated transcriptional gene silencing. Nat. Struct. Mol. Biol. 2009, 16:717-724.
    • (2009) Nat. Struct. Mol. Biol. , vol.16 , pp. 717-724
    • Allo, M.1
  • 67
    • 84882452116 scopus 로고    scopus 로고
    • Intragenic epigenetic changes modulate NCAM alternative splicing in neuronal differentiation
    • Schor I.E., et al. Intragenic epigenetic changes modulate NCAM alternative splicing in neuronal differentiation. EMBO J. 2013, 32:2264-2274.
    • (2013) EMBO J. , vol.32 , pp. 2264-2274
    • Schor, I.E.1
  • 68
    • 79952364016 scopus 로고    scopus 로고
    • Histone H3 lysine 9 trimethylation and HP1gamma favor inclusion of alternative exons
    • Saint-Andre V., et al. Histone H3 lysine 9 trimethylation and HP1gamma favor inclusion of alternative exons. Nat. Struct. Mol. Biol. 2011, 18:337-344.
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 337-344
    • Saint-Andre, V.1
  • 69
    • 84864618472 scopus 로고    scopus 로고
    • CBX3 regulates efficient RNA processing genome-wide
    • Smallwood A., et al. CBX3 regulates efficient RNA processing genome-wide. Genome Res. 2012, 22:1426-1436.
    • (2012) Genome Res. , vol.22 , pp. 1426-1436
    • Smallwood, A.1
  • 70
    • 77956342570 scopus 로고    scopus 로고
    • Position-dependent alternative splicing activity revealed by global profiling of alternative splicing events regulated by PTB
    • Llorian M., et al. Position-dependent alternative splicing activity revealed by global profiling of alternative splicing events regulated by PTB. Nat. Struct. Mol. Biol. 2010, 17:1114-1123.
    • (2010) Nat. Struct. Mol. Biol. , vol.17 , pp. 1114-1123
    • Llorian, M.1
  • 71
    • 84890192305 scopus 로고    scopus 로고
    • RBM5, 6, and 10 differentially regulate NUMB alternative splicing to control cancer cell proliferation
    • Bechara E.G., et al. RBM5, 6, and 10 differentially regulate NUMB alternative splicing to control cancer cell proliferation. Mol. Cell 2013, 52:720-733.
    • (2013) Mol. Cell , vol.52 , pp. 720-733
    • Bechara, E.G.1
  • 72
    • 84861161751 scopus 로고    scopus 로고
    • Integrative genome-wide analysis reveals cooperative regulation of alternative splicing by hnRNP proteins
    • Huelga S.C., et al. Integrative genome-wide analysis reveals cooperative regulation of alternative splicing by hnRNP proteins. Cell Rep. 2012, 1:167-178.
    • (2012) Cell Rep. , vol.1 , pp. 167-178
    • Huelga, S.C.1
  • 73
    • 33749056769 scopus 로고    scopus 로고
    • An RNA map predicting Nova-dependent splicing regulation
    • Ule J., et al. An RNA map predicting Nova-dependent splicing regulation. Nature 2006, 444:580-586.
    • (2006) Nature , vol.444 , pp. 580-586
    • Ule, J.1
  • 74
    • 59649107040 scopus 로고    scopus 로고
    • An RNA code for the FOX2 splicing regulator revealed by mapping RNA-protein interactions in stem cells
    • Yeo G.W., et al. An RNA code for the FOX2 splicing regulator revealed by mapping RNA-protein interactions in stem cells. Nat. Struct. Mol. Biol. 2009, 16:130-137.
    • (2009) Nat. Struct. Mol. Biol. , vol.16 , pp. 130-137
    • Yeo, G.W.1
  • 75
    • 76249102027 scopus 로고    scopus 로고
    • Aberrant alternative splicing and extracellular matrix gene expression in mouse models of myotonic dystrophy
    • Du H., et al. Aberrant alternative splicing and extracellular matrix gene expression in mouse models of myotonic dystrophy. Nat. Struct. Mol. Biol. 2010, 17:187-193.
    • (2010) Nat. Struct. Mol. Biol. , vol.17 , pp. 187-193
    • Du, H.1
  • 76
    • 84927585191 scopus 로고    scopus 로고
    • Identification by high-throughput imaging of the histone methyltransferase EHMT2 as an epigenetic regulator of VEGFA alternative splicing
    • Salton M., et al. Identification by high-throughput imaging of the histone methyltransferase EHMT2 as an epigenetic regulator of VEGFA alternative splicing. Nucleic Acids Res. 2014, 42:13662-13673.
    • (2014) Nucleic Acids Res. , vol.42 , pp. 13662-13673
    • Salton, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.