-
1
-
-
79959517565
-
Human fatty liver disease: old questions and new insights
-
Cohen J.C., et al. Human fatty liver disease: old questions and new insights. Science 2011, 332:1519-1523.
-
(2011)
Science
, vol.332
, pp. 1519-1523
-
-
Cohen, J.C.1
-
2
-
-
76049103016
-
Fatty liver and lipotoxicity
-
Trauner M., et al. Fatty liver and lipotoxicity. Biochim. Biophys. Acta 2010, 1801:299-310.
-
(2010)
Biochim. Biophys. Acta
, vol.1801
, pp. 299-310
-
-
Trauner, M.1
-
3
-
-
79953795047
-
Dissociation between fatty liver and insulin resistance: the role of adipose triacylglycerol lipase
-
Stefan N., et al. Dissociation between fatty liver and insulin resistance: the role of adipose triacylglycerol lipase. Diabetologia 2011, 54:7-9.
-
(2011)
Diabetologia
, vol.54
, pp. 7-9
-
-
Stefan, N.1
-
4
-
-
33845490856
-
The role of insulin resistance in nonalcoholic fatty liver disease
-
Utzschneider K.M., Kahn S.E. The role of insulin resistance in nonalcoholic fatty liver disease. J. Clin. Endocrinol. Metab. 2006, 91:4753-4761.
-
(2006)
J. Clin. Endocrinol. Metab.
, vol.91
, pp. 4753-4761
-
-
Utzschneider, K.M.1
Kahn, S.E.2
-
5
-
-
48349147074
-
The role of adipokines in liver fibrosis
-
Bertolani C., Marra F. The role of adipokines in liver fibrosis. Pathophysiology 2008, 15:91-101.
-
(2008)
Pathophysiology
, vol.15
, pp. 91-101
-
-
Bertolani, C.1
Marra, F.2
-
6
-
-
54049150442
-
Molecular mechanisms and therapeutic targets in steatosis and steatohepatitis
-
Anderson N., Borlak J. Molecular mechanisms and therapeutic targets in steatosis and steatohepatitis. Pharmacol. Rev. 2008, 60:311-357.
-
(2008)
Pharmacol. Rev.
, vol.60
, pp. 311-357
-
-
Anderson, N.1
Borlak, J.2
-
7
-
-
40549135297
-
Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice
-
Postic C., Girard J. Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J. Clin. Invest. 2008, 118:829-838.
-
(2008)
J. Clin. Invest.
, vol.118
, pp. 829-838
-
-
Postic, C.1
Girard, J.2
-
8
-
-
78049522194
-
Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis
-
Tilg H., Moschen A.R. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 2010, 52:1836-1846.
-
(2010)
Hepatology
, vol.52
, pp. 1836-1846
-
-
Tilg, H.1
Moschen, A.R.2
-
9
-
-
77955690182
-
Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: the central role of nontriglyceride fatty acid metabolites
-
Neuschwander-Tetri B.A. Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: the central role of nontriglyceride fatty acid metabolites. Hepatology 2010, 52:774-788.
-
(2010)
Hepatology
, vol.52
, pp. 774-788
-
-
Neuschwander-Tetri, B.A.1
-
10
-
-
84897147399
-
Nuclear receptors, RXR, and the big bang
-
Evans R.M., Mangelsdorf D.J. Nuclear receptors, RXR, and the big bang. Cell 2014, 157:255-266.
-
(2014)
Cell
, vol.157
, pp. 255-266
-
-
Evans, R.M.1
Mangelsdorf, D.J.2
-
11
-
-
33747154772
-
Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network
-
Bookout A.L., et al. Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network. Cell 2006, 126:789-799.
-
(2006)
Cell
, vol.126
, pp. 789-799
-
-
Bookout, A.L.1
-
12
-
-
84887599824
-
Bile acid-mediated control of liver triglycerides
-
Fuchs C., et al. Bile acid-mediated control of liver triglycerides. Semin. Liver Dis. 2013, 33:330-432.
-
(2013)
Semin. Liver Dis.
, vol.33
, pp. 330-432
-
-
Fuchs, C.1
-
13
-
-
4043077961
-
Molecular mediators of hepatic steatosis and liver injury
-
Browning J.D., Horton J.D. Molecular mediators of hepatic steatosis and liver injury. J. Clin. Invest. 2004, 114:147-152.
-
(2004)
J. Clin. Invest.
, vol.114
, pp. 147-152
-
-
Browning, J.D.1
Horton, J.D.2
-
14
-
-
84862270029
-
Ectopic fat and insulin resistance: pathophysiology and effect of diet and lifestyle interventions
-
Snel M., et al. Ectopic fat and insulin resistance: pathophysiology and effect of diet and lifestyle interventions. Int. J. Endocrinol. 2012, 2012:983814.
-
(2012)
Int. J. Endocrinol.
, vol.2012
, pp. 983814
-
-
Snel, M.1
-
15
-
-
84857861919
-
Mechanisms for insulin resistance: common threads and missing links
-
Samuel V.T., Shulman G.I. Mechanisms for insulin resistance: common threads and missing links. Cell 2012, 148:852-871.
-
(2012)
Cell
, vol.148
, pp. 852-871
-
-
Samuel, V.T.1
Shulman, G.I.2
-
16
-
-
56749096610
-
Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease
-
Romeo S., et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 2008, 40:1461-1465.
-
(2008)
Nat. Genet.
, vol.40
, pp. 1461-1465
-
-
Romeo, S.1
-
17
-
-
79959442292
-
Genetic variation in PNPLA3 (adiponutrin) confers sensitivity to weight loss-induced decrease in liver fat in humans
-
Sevastianova K., et al. Genetic variation in PNPLA3 (adiponutrin) confers sensitivity to weight loss-induced decrease in liver fat in humans. Am. J. Clin. Nutr. 2011, 94:104-111.
-
(2011)
Am. J. Clin. Nutr.
, vol.94
, pp. 104-111
-
-
Sevastianova, K.1
-
18
-
-
84860246794
-
Genetic variation in PNPLA3 but not APOC3 influences liver fat in non-alcoholic fatty liver disease
-
Hyysalo J., et al. Genetic variation in PNPLA3 but not APOC3 influences liver fat in non-alcoholic fatty liver disease. J. Gastroenterol. Hepatol. 2012, 27:951-956.
-
(2012)
J. Gastroenterol. Hepatol.
, vol.27
, pp. 951-956
-
-
Hyysalo, J.1
-
19
-
-
79957462315
-
Meta-analysis of the influence of I148M variant of patatin-like phospholipase domain containing 3 gene (PNPLA3) on the susceptibility and histological severity of nonalcoholic fatty liver disease
-
Sookoian S., Pirola C.J. Meta-analysis of the influence of I148M variant of patatin-like phospholipase domain containing 3 gene (PNPLA3) on the susceptibility and histological severity of nonalcoholic fatty liver disease. Hepatology 2011, 53:1883-1894.
-
(2011)
Hepatology
, vol.53
, pp. 1883-1894
-
-
Sookoian, S.1
Pirola, C.J.2
-
20
-
-
70350550096
-
Dissociation between fatty liver and insulin resistance in humans carrying a variant of the patatin-like phospholipase 3 gene
-
Kantartzis K., et al. Dissociation between fatty liver and insulin resistance in humans carrying a variant of the patatin-like phospholipase 3 gene. Diabetes 2009, 58:2616-2623.
-
(2009)
Diabetes
, vol.58
, pp. 2616-2623
-
-
Kantartzis, K.1
-
21
-
-
67349174005
-
A common variant in PNPLA3, which encodes adiponutrin, is associated with liver fat content in humans
-
Kotronen A., et al. A common variant in PNPLA3, which encodes adiponutrin, is associated with liver fat content in humans. Diabetologia 2009, 52:1056-1060.
-
(2009)
Diabetologia
, vol.52
, pp. 1056-1060
-
-
Kotronen, A.1
-
22
-
-
77956630787
-
PNPLA3 variants specifically confer increased risk for histologic nonalcoholic fatty liver disease but not metabolic disease
-
Speliotes E.K., et al. PNPLA3 variants specifically confer increased risk for histologic nonalcoholic fatty liver disease but not metabolic disease. Hepatology 2010, 52:904-912.
-
(2010)
Hepatology
, vol.52
, pp. 904-912
-
-
Speliotes, E.K.1
-
23
-
-
77949895032
-
A sequence variation (I148M) in PNPLA3 associated with nonalcoholic fatty liver disease disrupts triglyceride hydrolysis
-
He S., et al. A sequence variation (I148M) in PNPLA3 associated with nonalcoholic fatty liver disease disrupts triglyceride hydrolysis. J. Biol. Chem. 2010, 285:6706-6715.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 6706-6715
-
-
He, S.1
-
24
-
-
79960729651
-
Mouse patatin-like phospholipase domain-containing 3 influences systemic lipid and glucose homeostasis
-
Qiao A., et al. Mouse patatin-like phospholipase domain-containing 3 influences systemic lipid and glucose homeostasis. Hepatology 2011, 54:509-5021.
-
(2011)
Hepatology
, vol.54
, pp. 509-5021
-
-
Qiao, A.1
-
25
-
-
78751489992
-
Pnpla3/Adiponutrin deficiency in mice does not contribute to fatty liver disease or metabolic syndrome
-
Basantani M.K., et al. Pnpla3/Adiponutrin deficiency in mice does not contribute to fatty liver disease or metabolic syndrome. J. Lipid Res. 2011, 52:318-329.
-
(2011)
J. Lipid Res.
, vol.52
, pp. 318-329
-
-
Basantani, M.K.1
-
26
-
-
77956625538
-
Patatin-like phospholipase domain-containing 3/adiponutrin deficiency in mice is not associated with fatty liver disease
-
Chen W., et al. Patatin-like phospholipase domain-containing 3/adiponutrin deficiency in mice is not associated with fatty liver disease. Hepatology 2010, 52:1134-1142.
-
(2010)
Hepatology
, vol.52
, pp. 1134-1142
-
-
Chen, W.1
-
27
-
-
77950607738
-
Homozygosity for the patatin-like phospholipase-3/adiponutrin I148M polymorphism influences liver fibrosis in patients with nonalcoholic fatty liver disease
-
Valenti L., et al. Homozygosity for the patatin-like phospholipase-3/adiponutrin I148M polymorphism influences liver fibrosis in patients with nonalcoholic fatty liver disease. Hepatology 2010, 51:1209-1217.
-
(2010)
Hepatology
, vol.51
, pp. 1209-1217
-
-
Valenti, L.1
-
28
-
-
84903996547
-
PNPLA3 has retinyl-palmitate lipase activity in human hepatic stellate cells
-
Pirazzi C., et al. PNPLA3 has retinyl-palmitate lipase activity in human hepatic stellate cells. Hum. Mol. Genet. 2014, 23:4077-4085.
-
(2014)
Hum. Mol. Genet.
, vol.23
, pp. 4077-4085
-
-
Pirazzi, C.1
-
29
-
-
73349111259
-
Variant in PNPLA3 is associated with alcoholic liver disease
-
Tian C., et al. Variant in PNPLA3 is associated with alcoholic liver disease. Nat. Genet. 2010, 42:21-23.
-
(2010)
Nat. Genet.
, vol.42
, pp. 21-23
-
-
Tian, C.1
-
30
-
-
81355133477
-
Modulation of the effect of PNPLA3 I148M mutation on steatosis and liver damage by alcohol intake in patients with chronic hepatitis C
-
Valenti L., et al. Modulation of the effect of PNPLA3 I148M mutation on steatosis and liver damage by alcohol intake in patients with chronic hepatitis C. J. Hepatol. 2011, 55:1470-1471.
-
(2011)
J. Hepatol.
, vol.55
, pp. 1470-1471
-
-
Valenti, L.1
-
31
-
-
84896695345
-
Role of adipose triglyceride lipase (PNPLA2) in protection from hepatic inflammation in mouse models of steatohepatitis and endotoxemia
-
Jha P., et al. Role of adipose triglyceride lipase (PNPLA2) in protection from hepatic inflammation in mouse models of steatohepatitis and endotoxemia. Hepatology 2014, 59:858-869.
-
(2014)
Hepatology
, vol.59
, pp. 858-869
-
-
Jha, P.1
-
32
-
-
68049092870
-
Neutral lipid storage disease: genetic disorders caused by mutations in adipose triglyceride lipase/PNPLA2 or CGI-58/ABHD5
-
Schweiger M., et al. Neutral lipid storage disease: genetic disorders caused by mutations in adipose triglyceride lipase/PNPLA2 or CGI-58/ABHD5. Am. J. Physiol. Endocrinol. Metab. 2009, 297:E289-E296.
-
(2009)
Am. J. Physiol. Endocrinol. Metab.
, vol.297
, pp. E289-E296
-
-
Schweiger, M.1
-
33
-
-
79959550724
-
Deficiency of liver adipose triglyceride lipase in mice causes progressive hepatic steatosis
-
Wu J.W., et al. Deficiency of liver adipose triglyceride lipase in mice causes progressive hepatic steatosis. Hepatology 2011, 54:122-132.
-
(2011)
Hepatology
, vol.54
, pp. 122-132
-
-
Wu, J.W.1
-
34
-
-
84871901684
-
Hepatic ATGL knockdown uncouples glucose intolerance from liver TAG accumulation
-
Ong K.T., et al. Hepatic ATGL knockdown uncouples glucose intolerance from liver TAG accumulation. FASEB J. 2013, 27:313-321.
-
(2013)
FASEB J.
, vol.27
, pp. 313-321
-
-
Ong, K.T.1
-
35
-
-
84863525916
-
Absence of adipose triglyceride lipase protects from hepatic endoplasmic reticulum stress in mice
-
Fuchs C.D., et al. Absence of adipose triglyceride lipase protects from hepatic endoplasmic reticulum stress in mice. Hepatology 2012, 56:270-280.
-
(2012)
Hepatology
, vol.56
, pp. 270-280
-
-
Fuchs, C.D.1
-
36
-
-
84881263523
-
Deficiency of liver comparative gene identification-58 causes steatohepatitis and fibrosis in mice
-
Guo F., et al. Deficiency of liver comparative gene identification-58 causes steatohepatitis and fibrosis in mice. J. Lipid Res. 2013, 54:2109-2120.
-
(2013)
J. Lipid Res.
, vol.54
, pp. 2109-2120
-
-
Guo, F.1
-
37
-
-
84874900503
-
Biochemistry and pathophysiology of intravascular and intracellular lipolysis
-
Young S.G., Zechner R. Biochemistry and pathophysiology of intravascular and intracellular lipolysis. Genes Dev. 2013, 27:459-484.
-
(2013)
Genes Dev.
, vol.27
, pp. 459-484
-
-
Young, S.G.1
Zechner, R.2
-
38
-
-
84902159389
-
Null mutation in hormone-sensitive lipase gene and risk of type 2 diabetes
-
Albert J.S., et al. Null mutation in hormone-sensitive lipase gene and risk of type 2 diabetes. N. Engl. J. Med. 2014, 370:2307-2315.
-
(2014)
N. Engl. J. Med.
, vol.370
, pp. 2307-2315
-
-
Albert, J.S.1
-
39
-
-
0037085450
-
Hormone-sensitive lipase deficiency in mice causes diglyceride accumulation in adipose tissue, muscle, and testis
-
Haemmerle G., et al. Hormone-sensitive lipase deficiency in mice causes diglyceride accumulation in adipose tissue, muscle, and testis. J. Biol. Chem. 2002, 277:4806-4815.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 4806-4815
-
-
Haemmerle, G.1
-
40
-
-
0344667491
-
Decreased fatty acid esterification compensates for the reduced lipolytic activity in hormone-sensitive lipase-deficient white adipose tissue
-
Zimmermann R., et al. Decreased fatty acid esterification compensates for the reduced lipolytic activity in hormone-sensitive lipase-deficient white adipose tissue. J. Lipid Res. 2003, 44:2089-2099.
-
(2003)
J. Lipid Res.
, vol.44
, pp. 2089-2099
-
-
Zimmermann, R.1
-
41
-
-
78649787233
-
Hormone-sensitive lipase modulates adipose metabolism through PPARgamma
-
Shen W.J., et al. Hormone-sensitive lipase modulates adipose metabolism through PPARgamma. Biochim. Biophys. Acta 2011, 1811:9-16.
-
(2011)
Biochim. Biophys. Acta
, vol.1811
, pp. 9-16
-
-
Shen, W.J.1
-
42
-
-
27444437321
-
Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans
-
Cinti S., et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res. 2005, 46:2347-2355.
-
(2005)
J. Lipid Res.
, vol.46
, pp. 2347-2355
-
-
Cinti, S.1
-
43
-
-
45149123679
-
Hepatic overexpression of hormone-sensitive lipase and adipose triglyceride lipase promotes fatty acid oxidation, stimulates direct release of free fatty acids, and ameliorates steatosis
-
Reid B.N., et al. Hepatic overexpression of hormone-sensitive lipase and adipose triglyceride lipase promotes fatty acid oxidation, stimulates direct release of free fatty acids, and ameliorates steatosis. J. Biol. Chem. 2008, 283:13087-13099.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 13087-13099
-
-
Reid, B.N.1
-
45
-
-
79961206915
-
Mechanisms of lipotoxicity in NAFLD and clinical implications
-
Ibrahim S.H., et al. Mechanisms of lipotoxicity in NAFLD and clinical implications. J. Pediatr. Gastroenterol. Nutr. 2011, 53:131-140.
-
(2011)
J. Pediatr. Gastroenterol. Nutr.
, vol.53
, pp. 131-140
-
-
Ibrahim, S.H.1
-
46
-
-
0037453056
-
Triglyceride accumulation protects against fatty acid-induced lipotoxicity
-
Listenberger L.L., et al. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:3077-3082.
-
(2003)
Proc. Natl. Acad. Sci. U.S.A.
, vol.100
, pp. 3077-3082
-
-
Listenberger, L.L.1
-
47
-
-
84860441011
-
Inflammation and lipid signaling in the etiology of insulin resistance
-
Glass C.K., Olefsky J.M. Inflammation and lipid signaling in the etiology of insulin resistance. Cell Metab. 2012, 15:635-645.
-
(2012)
Cell Metab.
, vol.15
, pp. 635-645
-
-
Glass, C.K.1
Olefsky, J.M.2
-
48
-
-
77958532945
-
Atherogenic lipids and lipoproteins trigger CD36-TLR2-dependent apoptosis in macrophages undergoing endoplasmic reticulum stress
-
Seimon T.A., et al. Atherogenic lipids and lipoproteins trigger CD36-TLR2-dependent apoptosis in macrophages undergoing endoplasmic reticulum stress. Cell Metab. 2010, 12:467-482.
-
(2010)
Cell Metab.
, vol.12
, pp. 467-482
-
-
Seimon, T.A.1
-
49
-
-
75649087741
-
CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer
-
Stewart C.R., et al. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat. Immunol. 2010, 11:155-161.
-
(2010)
Nat. Immunol.
, vol.11
, pp. 155-161
-
-
Stewart, C.R.1
-
50
-
-
70350482557
-
Fatty acids modulate Toll-like receptor 4 activation through regulation of receptor dimerization and recruitment into lipid rafts in a reactive oxygen species-dependent manner
-
Wong S.W., et al. Fatty acids modulate Toll-like receptor 4 activation through regulation of receptor dimerization and recruitment into lipid rafts in a reactive oxygen species-dependent manner. J. Biol. Chem. 2009, 284:27384-27392.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 27384-27392
-
-
Wong, S.W.1
-
51
-
-
84864657351
-
Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance
-
Pal D., et al. Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance. Nat. Med. 2012, 18:1279-1285.
-
(2012)
Nat. Med.
, vol.18
, pp. 1279-1285
-
-
Pal, D.1
-
52
-
-
79955038882
-
Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling
-
Wen H., et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat. Immunol. 2011, 12:408-4015.
-
(2011)
Nat. Immunol.
, vol.12
, pp. 408-4015
-
-
Wen, H.1
-
53
-
-
84856957894
-
Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity
-
Henao-Mejia J., et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 2012, 482:179-185.
-
(2012)
Nature
, vol.482
, pp. 179-185
-
-
Henao-Mejia, J.1
-
54
-
-
84858020291
-
Fat signals - lipases and lipolysis in lipid metabolism and signaling
-
Zechner R., et al. Fat signals - lipases and lipolysis in lipid metabolism and signaling. Cell Metab. 2012, 15:279-291.
-
(2012)
Cell Metab.
, vol.15
, pp. 279-291
-
-
Zechner, R.1
-
55
-
-
33746828714
-
N-3 fatty acids and gene expression
-
Deckelbaum R.J., et al. n-3 fatty acids and gene expression. Am. J. Clin. Nutr. 2006, 83(Suppl.):1520S-1525S.
-
(2006)
Am. J. Clin. Nutr.
, vol.83
, pp. 1520S-1525S
-
-
Deckelbaum, R.J.1
-
56
-
-
77956165390
-
GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects
-
Oh D.Y., et al. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 2010, 142:687-698.
-
(2010)
Cell
, vol.142
, pp. 687-698
-
-
Oh, D.Y.1
-
57
-
-
80053627289
-
Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease
-
Kumashiro N., et al. Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:16381-16385.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 16381-16385
-
-
Kumashiro, N.1
-
58
-
-
77953868236
-
Lipid-induced insulin resistance: unravelling the mechanism
-
Samuel V.T., et al. Lipid-induced insulin resistance: unravelling the mechanism. Lancet 2010, 375:2267-2277.
-
(2010)
Lancet
, vol.375
, pp. 2267-2277
-
-
Samuel, V.T.1
-
59
-
-
84860497397
-
Diacylglycerol activation of protein kinase Cepsilon and hepatic insulin resistance
-
Jornayvaz F.R., Shulman G.I. Diacylglycerol activation of protein kinase Cepsilon and hepatic insulin resistance. Cell Metab. 2012, 15:574-584.
-
(2012)
Cell Metab.
, vol.15
, pp. 574-584
-
-
Jornayvaz, F.R.1
Shulman, G.I.2
-
60
-
-
84861809881
-
The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans
-
Benhamed F., et al. The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans. J. Clin. Invest. 2012, 122:2176-2194.
-
(2012)
J. Clin. Invest.
, vol.122
, pp. 2176-2194
-
-
Benhamed, F.1
-
61
-
-
84873178604
-
CGI-58 knockdown sequesters diacylglycerols in lipid droplets/ER-preventing diacylglycerol-mediated hepatic insulin resistance
-
Cantley J.L., et al. CGI-58 knockdown sequesters diacylglycerols in lipid droplets/ER-preventing diacylglycerol-mediated hepatic insulin resistance. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:1869-1874.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 1869-1874
-
-
Cantley, J.L.1
-
62
-
-
0344114246
-
Specificity and mechanism of protein kinase C activation by sn-1,2-diacylglycerols
-
Ganong B.R., et al. Specificity and mechanism of protein kinase C activation by sn-1,2-diacylglycerols. Proc. Natl. Acad. Sci. U.S.A. 1986, 83:1184-2118.
-
(1986)
Proc. Natl. Acad. Sci. U.S.A.
, vol.83
, pp. 1184-2118
-
-
Ganong, B.R.1
-
63
-
-
0021961774
-
Diacylglycerols mimic phorbol diester induction of leukemic cell differentiation
-
Ebeling J.G., et al. Diacylglycerols mimic phorbol diester induction of leukemic cell differentiation. Proc. Natl. Acad. Sci. U.S.A. 1985, 82:815-819.
-
(1985)
Proc. Natl. Acad. Sci. U.S.A.
, vol.82
, pp. 815-819
-
-
Ebeling, J.G.1
-
64
-
-
78649632998
-
Cholesterol synthesis is increased and absorption decreased in non-alcoholic fatty liver disease independent of obesity
-
Simonen P., et al. Cholesterol synthesis is increased and absorption decreased in non-alcoholic fatty liver disease independent of obesity. J. Hepatol. 2011, 54:153-159.
-
(2011)
J. Hepatol.
, vol.54
, pp. 153-159
-
-
Simonen, P.1
-
65
-
-
84870774318
-
Nutrition and nonalcoholic fatty liver disease: the significance of cholesterol
-
Enjoji M., et al. Nutrition and nonalcoholic fatty liver disease: the significance of cholesterol. Int. J. Hepatol. 2012, 00:925807.
-
(2012)
Int. J. Hepatol.
, vol.0
, pp. 925807
-
-
Enjoji, M.1
-
66
-
-
80051826073
-
Dietary cholesterol exacerbates hepatic steatosis and inflammation in obese LDL receptor-deficient mice
-
Subramanian S., et al. Dietary cholesterol exacerbates hepatic steatosis and inflammation in obese LDL receptor-deficient mice. J. Lipid Res. 2011, 52:1626-1635.
-
(2011)
J. Lipid Res.
, vol.52
, pp. 1626-1635
-
-
Subramanian, S.1
-
67
-
-
83755219463
-
Lipids in liver disease: looking beyond steatosis
-
Schwabe R.F., Maher J.J. Lipids in liver disease: looking beyond steatosis. Gastroenterology 2012, 142:8-11.
-
(2012)
Gastroenterology
, vol.142
, pp. 8-11
-
-
Schwabe, R.F.1
Maher, J.J.2
-
68
-
-
84866271175
-
Mechanisms of gene regulation by fatty acids
-
Georgiadi A., Kersten S. Mechanisms of gene regulation by fatty acids. Adv. Nutr. Res. 2012, 3:127-134.
-
(2012)
Adv. Nutr. Res.
, vol.3
, pp. 127-134
-
-
Georgiadi, A.1
Kersten, S.2
-
69
-
-
0034801882
-
Rat PPARs: quantitative analysis in adult rat tissues and regulation in fasting and refeeding
-
Escher P., et al. Rat PPARs: quantitative analysis in adult rat tissues and regulation in fasting and refeeding. Endocrinology 2001, 142:4195-4202.
-
(2001)
Endocrinology
, vol.142
, pp. 4195-4202
-
-
Escher, P.1
-
70
-
-
84892144705
-
Regulation of energy metabolism by long-chain fatty acids
-
Nakamura M.T., et al. Regulation of energy metabolism by long-chain fatty acids. Prog. Lipid Res. 2014, 53:124-144.
-
(2014)
Prog. Lipid Res.
, vol.53
, pp. 124-144
-
-
Nakamura, M.T.1
-
71
-
-
80052454265
-
ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-alpha and PGC-1
-
Haemmerle G., et al. ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-alpha and PGC-1. Nat. Med. 2011, 17:1076-1085.
-
(2011)
Nat. Med.
, vol.17
, pp. 1076-1085
-
-
Haemmerle, G.1
-
72
-
-
65949087032
-
Lipotoxicity: why do saturated fatty acids cause and monounsaturates protect against it?
-
Nolan C.J., Larter C.Z. Lipotoxicity: why do saturated fatty acids cause and monounsaturates protect against it?. J. Gastroenterol. Hepatol. 2009, 24:703-706.
-
(2009)
J. Gastroenterol. Hepatol.
, vol.24
, pp. 703-706
-
-
Nolan, C.J.1
Larter, C.Z.2
-
73
-
-
68149098866
-
Identification of a physiologically relevant endogenous ligand for PPARalpha in liver
-
Chakravarthy M.V., et al. Identification of a physiologically relevant endogenous ligand for PPARalpha in liver. Cell 2009, 138:476-488.
-
(2009)
Cell
, vol.138
, pp. 476-488
-
-
Chakravarthy, M.V.1
-
74
-
-
84861019724
-
Targeting peroxisome proliferator-activated receptors (PPARs): development of modulators
-
Pirat C., et al. Targeting peroxisome proliferator-activated receptors (PPARs): development of modulators. J. Med. Chem. 2012, 55:4027-4061.
-
(2012)
J. Med. Chem.
, vol.55
, pp. 4027-4061
-
-
Pirat, C.1
-
75
-
-
3943108870
-
Polyunsaturated fatty acids are FXR ligands and differentially regulate expression of FXR targets
-
Zhao A., et al. Polyunsaturated fatty acids are FXR ligands and differentially regulate expression of FXR targets. DNA Cell Biol. 2004, 23:519-526.
-
(2004)
DNA Cell Biol.
, vol.23
, pp. 519-526
-
-
Zhao, A.1
-
76
-
-
48749113401
-
Targeting bile-acid signalling for metabolic diseases
-
Thomas C., et al. Targeting bile-acid signalling for metabolic diseases. Nat. Rev. Drug Discov. 2008, 7:678-693.
-
(2008)
Nat. Rev. Drug Discov.
, vol.7
, pp. 678-693
-
-
Thomas, C.1
-
77
-
-
85047694456
-
Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c
-
Watanabe M., et al. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J. Clin. Invest. 2004, 113:1408-1418.
-
(2004)
J. Clin. Invest.
, vol.113
, pp. 1408-1418
-
-
Watanabe, M.1
-
78
-
-
34547411540
-
Molecular characterization of the role of orphan receptor small heterodimer partner in development of fatty liver
-
Huang J., et al. Molecular characterization of the role of orphan receptor small heterodimer partner in development of fatty liver. Hepatology 2007, 46:147-157.
-
(2007)
Hepatology
, vol.46
, pp. 147-157
-
-
Huang, J.1
-
79
-
-
84898058711
-
Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease
-
Kozlitina J., et al. Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 2014, 46:352-356.
-
(2014)
Nat. Genet.
, vol.46
, pp. 352-356
-
-
Kozlitina, J.1
-
80
-
-
84878972563
-
Farnesoid X receptor inhibits the transcriptional activity of carbohydrate response element binding protein in human hepatocytes
-
Caron S., et al. Farnesoid X receptor inhibits the transcriptional activity of carbohydrate response element binding protein in human hepatocytes. Mol. Cell. Biol. 2013, 33:2202-2211.
-
(2013)
Mol. Cell. Biol.
, vol.33
, pp. 2202-2211
-
-
Caron, S.1
-
81
-
-
0037315190
-
Bile acids induce the expression of the human peroxisome proliferator-activated receptor alpha gene via activation of the farnesoid X receptor
-
Pineda Torra I., et al. Bile acids induce the expression of the human peroxisome proliferator-activated receptor alpha gene via activation of the farnesoid X receptor. Mol. Endocrinol. 2003, 17:259-272.
-
(2003)
Mol. Endocrinol.
, vol.17
, pp. 259-272
-
-
Pineda Torra, I.1
-
82
-
-
84901937811
-
Liver X receptors in lipid metabolism: opportunities for drug discovery
-
Hong C., Tontonoz P. Liver X receptors in lipid metabolism: opportunities for drug discovery. Nat. Rev. Drug Discov. 2014, 13:433-444.
-
(2014)
Nat. Rev. Drug Discov.
, vol.13
, pp. 433-444
-
-
Hong, C.1
Tontonoz, P.2
-
83
-
-
67649682526
-
Phenolic acids suppress adipocyte lipolysis via activation of the nicotinic acid receptor GPR109A (HM74a/PUMA-G)
-
Ren N., et al. Phenolic acids suppress adipocyte lipolysis via activation of the nicotinic acid receptor GPR109A (HM74a/PUMA-G). J. Lipid Res. 2009, 50:908-914.
-
(2009)
J. Lipid Res.
, vol.50
, pp. 908-914
-
-
Ren, N.1
-
84
-
-
84855171302
-
Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy
-
Boden W.E., et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N. Engl. J. Med. 2011, 365:2255-2267.
-
(2011)
N. Engl. J. Med.
, vol.365
, pp. 2255-2267
-
-
Boden, W.E.1
-
85
-
-
79959466159
-
Current therapeutic strategies in non-alcoholic fatty liver disease
-
Dowman J.K., et al. Current therapeutic strategies in non-alcoholic fatty liver disease. Diabetes Obes. Metab. 2011, 13:692-702.
-
(2011)
Diabetes Obes. Metab.
, vol.13
, pp. 692-702
-
-
Dowman, J.K.1
-
86
-
-
33646483917
-
A double-blind randomized placebo-controlled trial of orlistat for the treatment of nonalcoholic fatty liver disease
-
Zelber-Sagi S., et al. A double-blind randomized placebo-controlled trial of orlistat for the treatment of nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. 2006, 4:639-644.
-
(2006)
Clin. Gastroenterol. Hepatol.
, vol.4
, pp. 639-644
-
-
Zelber-Sagi, S.1
-
87
-
-
34548477649
-
Orlistat reverse fatty infiltration and improves hepatic fibrosis in obese patients with nonalcoholic steatohepatitis (NASH)
-
Hussein O., et al. Orlistat reverse fatty infiltration and improves hepatic fibrosis in obese patients with nonalcoholic steatohepatitis (NASH). Dig. Dis. Sci. 2007, 52:2512-2519.
-
(2007)
Dig. Dis. Sci.
, vol.52
, pp. 2512-2519
-
-
Hussein, O.1
-
88
-
-
84859157277
-
Roles of PPARs in NAFLD: potential therapeutic targets
-
Tailleux A., et al. Roles of PPARs in NAFLD: potential therapeutic targets. Biochim. Biophys. Acta 2012, 1821:809-818.
-
(2012)
Biochim. Biophys. Acta
, vol.1821
, pp. 809-818
-
-
Tailleux, A.1
-
89
-
-
84857641358
-
The role of peroxisome proliferator-activated receptors in carcinogenesis and chemoprevention
-
Peters J.M., et al. The role of peroxisome proliferator-activated receptors in carcinogenesis and chemoprevention. Nat. Rev. Cancer 2012, 12:181-195.
-
(2012)
Nat. Rev. Cancer
, vol.12
, pp. 181-195
-
-
Peters, J.M.1
-
90
-
-
34447114640
-
Effects of peroxisome proliferator-activated receptor (PPAR)-alpha and PPAR-gamma agonists on glucose and lipid metabolism in patients with type 2 diabetes mellitus
-
Bajaj M., et al. Effects of peroxisome proliferator-activated receptor (PPAR)-alpha and PPAR-gamma agonists on glucose and lipid metabolism in patients with type 2 diabetes mellitus. Diabetologia 2007, 50:1723-1731.
-
(2007)
Diabetologia
, vol.50
, pp. 1723-1731
-
-
Bajaj, M.1
-
91
-
-
84888285959
-
Hepatoprotective effects of the dual peroxisome proliferator-activated receptor alpha/delta agonist, GFT505, in rodent models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis
-
Staels B., et al. Hepatoprotective effects of the dual peroxisome proliferator-activated receptor alpha/delta agonist, GFT505, in rodent models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Hepatology 2013, 58:1941-1952.
-
(2013)
Hepatology
, vol.58
, pp. 1941-1952
-
-
Staels, B.1
-
92
-
-
84885405205
-
Dual peroxisome proliferator-activated receptor alpha/delta agonist GFT505 improves hepatic and peripheral insulin sensitivity in abdominally obese subjects
-
Cariou B., et al. Dual peroxisome proliferator-activated receptor alpha/delta agonist GFT505 improves hepatic and peripheral insulin sensitivity in abdominally obese subjects. Diabetes Care 2013, 36:2923-2930.
-
(2013)
Diabetes Care
, vol.36
, pp. 2923-2930
-
-
Cariou, B.1
-
94
-
-
33751545838
-
A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis
-
Belfort R., et al. A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N. Engl. J. Med. 2006, 355:2297-2307.
-
(2006)
N. Engl. J. Med.
, vol.355
, pp. 2297-2307
-
-
Belfort, R.1
-
95
-
-
77951874018
-
Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis
-
Sanyal A.J., et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N. Engl. J. Med. 2010, 362:1675-1785.
-
(2010)
N. Engl. J. Med.
, vol.362
, pp. 1675-1785
-
-
Sanyal, A.J.1
-
96
-
-
34548306770
-
The effects of discontinuing pioglitazone in patients with nonalcoholic steatohepatitis
-
Lutchman G., et al. The effects of discontinuing pioglitazone in patients with nonalcoholic steatohepatitis. Hepatology 2007, 46:424-429.
-
(2007)
Hepatology
, vol.46
, pp. 424-429
-
-
Lutchman, G.1
-
97
-
-
34548200442
-
Pioglitazone treatment increases whole body fat but not total body water in patients with non-alcoholic steatohepatitis
-
Balas B., et al. Pioglitazone treatment increases whole body fat but not total body water in patients with non-alcoholic steatohepatitis. J. Hepatol. 2007, 47:565-570.
-
(2007)
J. Hepatol.
, vol.47
, pp. 565-570
-
-
Balas, B.1
-
98
-
-
17544396164
-
Activators of peroxisome proliferator-activated receptor gamma have depot-specific effects on human preadipocyte differentiation
-
Adams M., et al. Activators of peroxisome proliferator-activated receptor gamma have depot-specific effects on human preadipocyte differentiation. J. Clin. Invest. 1997, 100:3149-3153.
-
(1997)
J. Clin. Invest.
, vol.100
, pp. 3149-3153
-
-
Adams, M.1
-
99
-
-
84880664792
-
Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease
-
Mudaliar S., et al. Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease. Gastroenterology 2013, 145:574-582.
-
(2013)
Gastroenterology
, vol.145
, pp. 574-582
-
-
Mudaliar, S.1
-
100
-
-
33846029180
-
Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism
-
Schweiger M., et al. Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism. J. Biol. Chem. 2006, 281:40236-40241.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 40236-40241
-
-
Schweiger, M.1
-
101
-
-
84875243228
-
Monoacylglycerol lipase controls endocannabinoid and eicosanoid signaling and hepatic injury in mice
-
Cao Z., et al. Monoacylglycerol lipase controls endocannabinoid and eicosanoid signaling and hepatic injury in mice. Gastroenterology 2013, 144:808-817.
-
(2013)
Gastroenterology
, vol.144
, pp. 808-817
-
-
Cao, Z.1
-
102
-
-
79551506567
-
Brain insulin controls adipose tissue lipolysis and lipogenesis
-
Scherer T., et al. Brain insulin controls adipose tissue lipolysis and lipogenesis. Cell Metab. 2011, 13:183-194.
-
(2011)
Cell Metab.
, vol.13
, pp. 183-194
-
-
Scherer, T.1
-
103
-
-
10344262633
-
Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities
-
Jenkins C.M., et al. Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities. J. Biol. Chem. 2004, 279:48968-48975.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 48968-48975
-
-
Jenkins, C.M.1
-
104
-
-
84860465005
-
Adiponutrin functions as a nutritionally regulated lysophosphatidic acid acyltransferase
-
Kumari M., et al. Adiponutrin functions as a nutritionally regulated lysophosphatidic acid acyltransferase. Cell Metab. 2012, 15:691-702.
-
(2012)
Cell Metab.
, vol.15
, pp. 691-702
-
-
Kumari, M.1
-
105
-
-
34247384681
-
Regulation of adiponutrin expression by feeding conditions in rats is altered in the obese state
-
Caimari A., et al. Regulation of adiponutrin expression by feeding conditions in rats is altered in the obese state. Obesity 2007, 15:591-599.
-
(2007)
Obesity
, vol.15
, pp. 591-599
-
-
Caimari, A.1
-
106
-
-
33644764922
-
Adipose triglyceride lipase: function, regulation by insulin, and comparison with adiponutrin
-
Kershaw E.E., et al. Adipose triglyceride lipase: function, regulation by insulin, and comparison with adiponutrin. Diabetes 2006, 55:148-157.
-
(2006)
Diabetes
, vol.55
, pp. 148-157
-
-
Kershaw, E.E.1
-
107
-
-
77952409634
-
A feed-forward loop amplifies nutritional regulation of PNPLA3
-
Huang Y., et al. A feed-forward loop amplifies nutritional regulation of PNPLA3. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:7892-78987.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 7892-78987
-
-
Huang, Y.1
|