메뉴 건너뛰기




Volumn 25, Issue 11, 2014, Pages 576-585

Role of metabolic lipases and lipolytic metabolites in the pathogenesis of NAFLD

Author keywords

[No Author keywords available]

Indexed keywords

CELL NUCLEUS RECEPTOR; FARNESOID X RECEPTOR; FATTY ACID; LIVER X RECEPTOR; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR; TRIACYLGLYCEROL LIPASE; CELL RECEPTOR; CHOLESTEROL ESTERASE; FARNESOID X-ACTIVATED RECEPTOR; PNPLA2 PROTEIN, HUMAN;

EID: 84927671391     PISSN: 10432760     EISSN: 18793061     Source Type: Journal    
DOI: 10.1016/j.tem.2014.08.001     Document Type: Review
Times cited : (68)

References (107)
  • 1
    • 79959517565 scopus 로고    scopus 로고
    • Human fatty liver disease: old questions and new insights
    • Cohen J.C., et al. Human fatty liver disease: old questions and new insights. Science 2011, 332:1519-1523.
    • (2011) Science , vol.332 , pp. 1519-1523
    • Cohen, J.C.1
  • 2
    • 76049103016 scopus 로고    scopus 로고
    • Fatty liver and lipotoxicity
    • Trauner M., et al. Fatty liver and lipotoxicity. Biochim. Biophys. Acta 2010, 1801:299-310.
    • (2010) Biochim. Biophys. Acta , vol.1801 , pp. 299-310
    • Trauner, M.1
  • 3
    • 79953795047 scopus 로고    scopus 로고
    • Dissociation between fatty liver and insulin resistance: the role of adipose triacylglycerol lipase
    • Stefan N., et al. Dissociation between fatty liver and insulin resistance: the role of adipose triacylglycerol lipase. Diabetologia 2011, 54:7-9.
    • (2011) Diabetologia , vol.54 , pp. 7-9
    • Stefan, N.1
  • 4
    • 33845490856 scopus 로고    scopus 로고
    • The role of insulin resistance in nonalcoholic fatty liver disease
    • Utzschneider K.M., Kahn S.E. The role of insulin resistance in nonalcoholic fatty liver disease. J. Clin. Endocrinol. Metab. 2006, 91:4753-4761.
    • (2006) J. Clin. Endocrinol. Metab. , vol.91 , pp. 4753-4761
    • Utzschneider, K.M.1    Kahn, S.E.2
  • 5
    • 48349147074 scopus 로고    scopus 로고
    • The role of adipokines in liver fibrosis
    • Bertolani C., Marra F. The role of adipokines in liver fibrosis. Pathophysiology 2008, 15:91-101.
    • (2008) Pathophysiology , vol.15 , pp. 91-101
    • Bertolani, C.1    Marra, F.2
  • 6
    • 54049150442 scopus 로고    scopus 로고
    • Molecular mechanisms and therapeutic targets in steatosis and steatohepatitis
    • Anderson N., Borlak J. Molecular mechanisms and therapeutic targets in steatosis and steatohepatitis. Pharmacol. Rev. 2008, 60:311-357.
    • (2008) Pharmacol. Rev. , vol.60 , pp. 311-357
    • Anderson, N.1    Borlak, J.2
  • 7
    • 40549135297 scopus 로고    scopus 로고
    • Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice
    • Postic C., Girard J. Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J. Clin. Invest. 2008, 118:829-838.
    • (2008) J. Clin. Invest. , vol.118 , pp. 829-838
    • Postic, C.1    Girard, J.2
  • 8
    • 78049522194 scopus 로고    scopus 로고
    • Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis
    • Tilg H., Moschen A.R. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 2010, 52:1836-1846.
    • (2010) Hepatology , vol.52 , pp. 1836-1846
    • Tilg, H.1    Moschen, A.R.2
  • 9
    • 77955690182 scopus 로고    scopus 로고
    • Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: the central role of nontriglyceride fatty acid metabolites
    • Neuschwander-Tetri B.A. Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: the central role of nontriglyceride fatty acid metabolites. Hepatology 2010, 52:774-788.
    • (2010) Hepatology , vol.52 , pp. 774-788
    • Neuschwander-Tetri, B.A.1
  • 10
    • 84897147399 scopus 로고    scopus 로고
    • Nuclear receptors, RXR, and the big bang
    • Evans R.M., Mangelsdorf D.J. Nuclear receptors, RXR, and the big bang. Cell 2014, 157:255-266.
    • (2014) Cell , vol.157 , pp. 255-266
    • Evans, R.M.1    Mangelsdorf, D.J.2
  • 11
    • 33747154772 scopus 로고    scopus 로고
    • Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network
    • Bookout A.L., et al. Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network. Cell 2006, 126:789-799.
    • (2006) Cell , vol.126 , pp. 789-799
    • Bookout, A.L.1
  • 12
    • 84887599824 scopus 로고    scopus 로고
    • Bile acid-mediated control of liver triglycerides
    • Fuchs C., et al. Bile acid-mediated control of liver triglycerides. Semin. Liver Dis. 2013, 33:330-432.
    • (2013) Semin. Liver Dis. , vol.33 , pp. 330-432
    • Fuchs, C.1
  • 13
    • 4043077961 scopus 로고    scopus 로고
    • Molecular mediators of hepatic steatosis and liver injury
    • Browning J.D., Horton J.D. Molecular mediators of hepatic steatosis and liver injury. J. Clin. Invest. 2004, 114:147-152.
    • (2004) J. Clin. Invest. , vol.114 , pp. 147-152
    • Browning, J.D.1    Horton, J.D.2
  • 14
    • 84862270029 scopus 로고    scopus 로고
    • Ectopic fat and insulin resistance: pathophysiology and effect of diet and lifestyle interventions
    • Snel M., et al. Ectopic fat and insulin resistance: pathophysiology and effect of diet and lifestyle interventions. Int. J. Endocrinol. 2012, 2012:983814.
    • (2012) Int. J. Endocrinol. , vol.2012 , pp. 983814
    • Snel, M.1
  • 15
    • 84857861919 scopus 로고    scopus 로고
    • Mechanisms for insulin resistance: common threads and missing links
    • Samuel V.T., Shulman G.I. Mechanisms for insulin resistance: common threads and missing links. Cell 2012, 148:852-871.
    • (2012) Cell , vol.148 , pp. 852-871
    • Samuel, V.T.1    Shulman, G.I.2
  • 16
    • 56749096610 scopus 로고    scopus 로고
    • Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease
    • Romeo S., et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 2008, 40:1461-1465.
    • (2008) Nat. Genet. , vol.40 , pp. 1461-1465
    • Romeo, S.1
  • 17
    • 79959442292 scopus 로고    scopus 로고
    • Genetic variation in PNPLA3 (adiponutrin) confers sensitivity to weight loss-induced decrease in liver fat in humans
    • Sevastianova K., et al. Genetic variation in PNPLA3 (adiponutrin) confers sensitivity to weight loss-induced decrease in liver fat in humans. Am. J. Clin. Nutr. 2011, 94:104-111.
    • (2011) Am. J. Clin. Nutr. , vol.94 , pp. 104-111
    • Sevastianova, K.1
  • 18
    • 84860246794 scopus 로고    scopus 로고
    • Genetic variation in PNPLA3 but not APOC3 influences liver fat in non-alcoholic fatty liver disease
    • Hyysalo J., et al. Genetic variation in PNPLA3 but not APOC3 influences liver fat in non-alcoholic fatty liver disease. J. Gastroenterol. Hepatol. 2012, 27:951-956.
    • (2012) J. Gastroenterol. Hepatol. , vol.27 , pp. 951-956
    • Hyysalo, J.1
  • 19
    • 79957462315 scopus 로고    scopus 로고
    • Meta-analysis of the influence of I148M variant of patatin-like phospholipase domain containing 3 gene (PNPLA3) on the susceptibility and histological severity of nonalcoholic fatty liver disease
    • Sookoian S., Pirola C.J. Meta-analysis of the influence of I148M variant of patatin-like phospholipase domain containing 3 gene (PNPLA3) on the susceptibility and histological severity of nonalcoholic fatty liver disease. Hepatology 2011, 53:1883-1894.
    • (2011) Hepatology , vol.53 , pp. 1883-1894
    • Sookoian, S.1    Pirola, C.J.2
  • 20
    • 70350550096 scopus 로고    scopus 로고
    • Dissociation between fatty liver and insulin resistance in humans carrying a variant of the patatin-like phospholipase 3 gene
    • Kantartzis K., et al. Dissociation between fatty liver and insulin resistance in humans carrying a variant of the patatin-like phospholipase 3 gene. Diabetes 2009, 58:2616-2623.
    • (2009) Diabetes , vol.58 , pp. 2616-2623
    • Kantartzis, K.1
  • 21
    • 67349174005 scopus 로고    scopus 로고
    • A common variant in PNPLA3, which encodes adiponutrin, is associated with liver fat content in humans
    • Kotronen A., et al. A common variant in PNPLA3, which encodes adiponutrin, is associated with liver fat content in humans. Diabetologia 2009, 52:1056-1060.
    • (2009) Diabetologia , vol.52 , pp. 1056-1060
    • Kotronen, A.1
  • 22
    • 77956630787 scopus 로고    scopus 로고
    • PNPLA3 variants specifically confer increased risk for histologic nonalcoholic fatty liver disease but not metabolic disease
    • Speliotes E.K., et al. PNPLA3 variants specifically confer increased risk for histologic nonalcoholic fatty liver disease but not metabolic disease. Hepatology 2010, 52:904-912.
    • (2010) Hepatology , vol.52 , pp. 904-912
    • Speliotes, E.K.1
  • 23
    • 77949895032 scopus 로고    scopus 로고
    • A sequence variation (I148M) in PNPLA3 associated with nonalcoholic fatty liver disease disrupts triglyceride hydrolysis
    • He S., et al. A sequence variation (I148M) in PNPLA3 associated with nonalcoholic fatty liver disease disrupts triglyceride hydrolysis. J. Biol. Chem. 2010, 285:6706-6715.
    • (2010) J. Biol. Chem. , vol.285 , pp. 6706-6715
    • He, S.1
  • 24
    • 79960729651 scopus 로고    scopus 로고
    • Mouse patatin-like phospholipase domain-containing 3 influences systemic lipid and glucose homeostasis
    • Qiao A., et al. Mouse patatin-like phospholipase domain-containing 3 influences systemic lipid and glucose homeostasis. Hepatology 2011, 54:509-5021.
    • (2011) Hepatology , vol.54 , pp. 509-5021
    • Qiao, A.1
  • 25
    • 78751489992 scopus 로고    scopus 로고
    • Pnpla3/Adiponutrin deficiency in mice does not contribute to fatty liver disease or metabolic syndrome
    • Basantani M.K., et al. Pnpla3/Adiponutrin deficiency in mice does not contribute to fatty liver disease or metabolic syndrome. J. Lipid Res. 2011, 52:318-329.
    • (2011) J. Lipid Res. , vol.52 , pp. 318-329
    • Basantani, M.K.1
  • 26
    • 77956625538 scopus 로고    scopus 로고
    • Patatin-like phospholipase domain-containing 3/adiponutrin deficiency in mice is not associated with fatty liver disease
    • Chen W., et al. Patatin-like phospholipase domain-containing 3/adiponutrin deficiency in mice is not associated with fatty liver disease. Hepatology 2010, 52:1134-1142.
    • (2010) Hepatology , vol.52 , pp. 1134-1142
    • Chen, W.1
  • 27
    • 77950607738 scopus 로고    scopus 로고
    • Homozygosity for the patatin-like phospholipase-3/adiponutrin I148M polymorphism influences liver fibrosis in patients with nonalcoholic fatty liver disease
    • Valenti L., et al. Homozygosity for the patatin-like phospholipase-3/adiponutrin I148M polymorphism influences liver fibrosis in patients with nonalcoholic fatty liver disease. Hepatology 2010, 51:1209-1217.
    • (2010) Hepatology , vol.51 , pp. 1209-1217
    • Valenti, L.1
  • 28
    • 84903996547 scopus 로고    scopus 로고
    • PNPLA3 has retinyl-palmitate lipase activity in human hepatic stellate cells
    • Pirazzi C., et al. PNPLA3 has retinyl-palmitate lipase activity in human hepatic stellate cells. Hum. Mol. Genet. 2014, 23:4077-4085.
    • (2014) Hum. Mol. Genet. , vol.23 , pp. 4077-4085
    • Pirazzi, C.1
  • 29
    • 73349111259 scopus 로고    scopus 로고
    • Variant in PNPLA3 is associated with alcoholic liver disease
    • Tian C., et al. Variant in PNPLA3 is associated with alcoholic liver disease. Nat. Genet. 2010, 42:21-23.
    • (2010) Nat. Genet. , vol.42 , pp. 21-23
    • Tian, C.1
  • 30
    • 81355133477 scopus 로고    scopus 로고
    • Modulation of the effect of PNPLA3 I148M mutation on steatosis and liver damage by alcohol intake in patients with chronic hepatitis C
    • Valenti L., et al. Modulation of the effect of PNPLA3 I148M mutation on steatosis and liver damage by alcohol intake in patients with chronic hepatitis C. J. Hepatol. 2011, 55:1470-1471.
    • (2011) J. Hepatol. , vol.55 , pp. 1470-1471
    • Valenti, L.1
  • 31
    • 84896695345 scopus 로고    scopus 로고
    • Role of adipose triglyceride lipase (PNPLA2) in protection from hepatic inflammation in mouse models of steatohepatitis and endotoxemia
    • Jha P., et al. Role of adipose triglyceride lipase (PNPLA2) in protection from hepatic inflammation in mouse models of steatohepatitis and endotoxemia. Hepatology 2014, 59:858-869.
    • (2014) Hepatology , vol.59 , pp. 858-869
    • Jha, P.1
  • 32
    • 68049092870 scopus 로고    scopus 로고
    • Neutral lipid storage disease: genetic disorders caused by mutations in adipose triglyceride lipase/PNPLA2 or CGI-58/ABHD5
    • Schweiger M., et al. Neutral lipid storage disease: genetic disorders caused by mutations in adipose triglyceride lipase/PNPLA2 or CGI-58/ABHD5. Am. J. Physiol. Endocrinol. Metab. 2009, 297:E289-E296.
    • (2009) Am. J. Physiol. Endocrinol. Metab. , vol.297 , pp. E289-E296
    • Schweiger, M.1
  • 33
    • 79959550724 scopus 로고    scopus 로고
    • Deficiency of liver adipose triglyceride lipase in mice causes progressive hepatic steatosis
    • Wu J.W., et al. Deficiency of liver adipose triglyceride lipase in mice causes progressive hepatic steatosis. Hepatology 2011, 54:122-132.
    • (2011) Hepatology , vol.54 , pp. 122-132
    • Wu, J.W.1
  • 34
    • 84871901684 scopus 로고    scopus 로고
    • Hepatic ATGL knockdown uncouples glucose intolerance from liver TAG accumulation
    • Ong K.T., et al. Hepatic ATGL knockdown uncouples glucose intolerance from liver TAG accumulation. FASEB J. 2013, 27:313-321.
    • (2013) FASEB J. , vol.27 , pp. 313-321
    • Ong, K.T.1
  • 35
    • 84863525916 scopus 로고    scopus 로고
    • Absence of adipose triglyceride lipase protects from hepatic endoplasmic reticulum stress in mice
    • Fuchs C.D., et al. Absence of adipose triglyceride lipase protects from hepatic endoplasmic reticulum stress in mice. Hepatology 2012, 56:270-280.
    • (2012) Hepatology , vol.56 , pp. 270-280
    • Fuchs, C.D.1
  • 36
    • 84881263523 scopus 로고    scopus 로고
    • Deficiency of liver comparative gene identification-58 causes steatohepatitis and fibrosis in mice
    • Guo F., et al. Deficiency of liver comparative gene identification-58 causes steatohepatitis and fibrosis in mice. J. Lipid Res. 2013, 54:2109-2120.
    • (2013) J. Lipid Res. , vol.54 , pp. 2109-2120
    • Guo, F.1
  • 37
    • 84874900503 scopus 로고    scopus 로고
    • Biochemistry and pathophysiology of intravascular and intracellular lipolysis
    • Young S.G., Zechner R. Biochemistry and pathophysiology of intravascular and intracellular lipolysis. Genes Dev. 2013, 27:459-484.
    • (2013) Genes Dev. , vol.27 , pp. 459-484
    • Young, S.G.1    Zechner, R.2
  • 38
    • 84902159389 scopus 로고    scopus 로고
    • Null mutation in hormone-sensitive lipase gene and risk of type 2 diabetes
    • Albert J.S., et al. Null mutation in hormone-sensitive lipase gene and risk of type 2 diabetes. N. Engl. J. Med. 2014, 370:2307-2315.
    • (2014) N. Engl. J. Med. , vol.370 , pp. 2307-2315
    • Albert, J.S.1
  • 39
    • 0037085450 scopus 로고    scopus 로고
    • Hormone-sensitive lipase deficiency in mice causes diglyceride accumulation in adipose tissue, muscle, and testis
    • Haemmerle G., et al. Hormone-sensitive lipase deficiency in mice causes diglyceride accumulation in adipose tissue, muscle, and testis. J. Biol. Chem. 2002, 277:4806-4815.
    • (2002) J. Biol. Chem. , vol.277 , pp. 4806-4815
    • Haemmerle, G.1
  • 40
    • 0344667491 scopus 로고    scopus 로고
    • Decreased fatty acid esterification compensates for the reduced lipolytic activity in hormone-sensitive lipase-deficient white adipose tissue
    • Zimmermann R., et al. Decreased fatty acid esterification compensates for the reduced lipolytic activity in hormone-sensitive lipase-deficient white adipose tissue. J. Lipid Res. 2003, 44:2089-2099.
    • (2003) J. Lipid Res. , vol.44 , pp. 2089-2099
    • Zimmermann, R.1
  • 41
    • 78649787233 scopus 로고    scopus 로고
    • Hormone-sensitive lipase modulates adipose metabolism through PPARgamma
    • Shen W.J., et al. Hormone-sensitive lipase modulates adipose metabolism through PPARgamma. Biochim. Biophys. Acta 2011, 1811:9-16.
    • (2011) Biochim. Biophys. Acta , vol.1811 , pp. 9-16
    • Shen, W.J.1
  • 42
    • 27444437321 scopus 로고    scopus 로고
    • Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans
    • Cinti S., et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res. 2005, 46:2347-2355.
    • (2005) J. Lipid Res. , vol.46 , pp. 2347-2355
    • Cinti, S.1
  • 43
    • 45149123679 scopus 로고    scopus 로고
    • Hepatic overexpression of hormone-sensitive lipase and adipose triglyceride lipase promotes fatty acid oxidation, stimulates direct release of free fatty acids, and ameliorates steatosis
    • Reid B.N., et al. Hepatic overexpression of hormone-sensitive lipase and adipose triglyceride lipase promotes fatty acid oxidation, stimulates direct release of free fatty acids, and ameliorates steatosis. J. Biol. Chem. 2008, 283:13087-13099.
    • (2008) J. Biol. Chem. , vol.283 , pp. 13087-13099
    • Reid, B.N.1
  • 45
    • 79961206915 scopus 로고    scopus 로고
    • Mechanisms of lipotoxicity in NAFLD and clinical implications
    • Ibrahim S.H., et al. Mechanisms of lipotoxicity in NAFLD and clinical implications. J. Pediatr. Gastroenterol. Nutr. 2011, 53:131-140.
    • (2011) J. Pediatr. Gastroenterol. Nutr. , vol.53 , pp. 131-140
    • Ibrahim, S.H.1
  • 46
    • 0037453056 scopus 로고    scopus 로고
    • Triglyceride accumulation protects against fatty acid-induced lipotoxicity
    • Listenberger L.L., et al. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:3077-3082.
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 3077-3082
    • Listenberger, L.L.1
  • 47
    • 84860441011 scopus 로고    scopus 로고
    • Inflammation and lipid signaling in the etiology of insulin resistance
    • Glass C.K., Olefsky J.M. Inflammation and lipid signaling in the etiology of insulin resistance. Cell Metab. 2012, 15:635-645.
    • (2012) Cell Metab. , vol.15 , pp. 635-645
    • Glass, C.K.1    Olefsky, J.M.2
  • 48
    • 77958532945 scopus 로고    scopus 로고
    • Atherogenic lipids and lipoproteins trigger CD36-TLR2-dependent apoptosis in macrophages undergoing endoplasmic reticulum stress
    • Seimon T.A., et al. Atherogenic lipids and lipoproteins trigger CD36-TLR2-dependent apoptosis in macrophages undergoing endoplasmic reticulum stress. Cell Metab. 2010, 12:467-482.
    • (2010) Cell Metab. , vol.12 , pp. 467-482
    • Seimon, T.A.1
  • 49
    • 75649087741 scopus 로고    scopus 로고
    • CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer
    • Stewart C.R., et al. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat. Immunol. 2010, 11:155-161.
    • (2010) Nat. Immunol. , vol.11 , pp. 155-161
    • Stewart, C.R.1
  • 50
    • 70350482557 scopus 로고    scopus 로고
    • Fatty acids modulate Toll-like receptor 4 activation through regulation of receptor dimerization and recruitment into lipid rafts in a reactive oxygen species-dependent manner
    • Wong S.W., et al. Fatty acids modulate Toll-like receptor 4 activation through regulation of receptor dimerization and recruitment into lipid rafts in a reactive oxygen species-dependent manner. J. Biol. Chem. 2009, 284:27384-27392.
    • (2009) J. Biol. Chem. , vol.284 , pp. 27384-27392
    • Wong, S.W.1
  • 51
    • 84864657351 scopus 로고    scopus 로고
    • Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance
    • Pal D., et al. Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance. Nat. Med. 2012, 18:1279-1285.
    • (2012) Nat. Med. , vol.18 , pp. 1279-1285
    • Pal, D.1
  • 52
    • 79955038882 scopus 로고    scopus 로고
    • Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling
    • Wen H., et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat. Immunol. 2011, 12:408-4015.
    • (2011) Nat. Immunol. , vol.12 , pp. 408-4015
    • Wen, H.1
  • 53
    • 84856957894 scopus 로고    scopus 로고
    • Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity
    • Henao-Mejia J., et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 2012, 482:179-185.
    • (2012) Nature , vol.482 , pp. 179-185
    • Henao-Mejia, J.1
  • 54
    • 84858020291 scopus 로고    scopus 로고
    • Fat signals - lipases and lipolysis in lipid metabolism and signaling
    • Zechner R., et al. Fat signals - lipases and lipolysis in lipid metabolism and signaling. Cell Metab. 2012, 15:279-291.
    • (2012) Cell Metab. , vol.15 , pp. 279-291
    • Zechner, R.1
  • 55
    • 33746828714 scopus 로고    scopus 로고
    • N-3 fatty acids and gene expression
    • Deckelbaum R.J., et al. n-3 fatty acids and gene expression. Am. J. Clin. Nutr. 2006, 83(Suppl.):1520S-1525S.
    • (2006) Am. J. Clin. Nutr. , vol.83 , pp. 1520S-1525S
    • Deckelbaum, R.J.1
  • 56
    • 77956165390 scopus 로고    scopus 로고
    • GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects
    • Oh D.Y., et al. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 2010, 142:687-698.
    • (2010) Cell , vol.142 , pp. 687-698
    • Oh, D.Y.1
  • 57
    • 80053627289 scopus 로고    scopus 로고
    • Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease
    • Kumashiro N., et al. Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:16381-16385.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 16381-16385
    • Kumashiro, N.1
  • 58
    • 77953868236 scopus 로고    scopus 로고
    • Lipid-induced insulin resistance: unravelling the mechanism
    • Samuel V.T., et al. Lipid-induced insulin resistance: unravelling the mechanism. Lancet 2010, 375:2267-2277.
    • (2010) Lancet , vol.375 , pp. 2267-2277
    • Samuel, V.T.1
  • 59
    • 84860497397 scopus 로고    scopus 로고
    • Diacylglycerol activation of protein kinase Cepsilon and hepatic insulin resistance
    • Jornayvaz F.R., Shulman G.I. Diacylglycerol activation of protein kinase Cepsilon and hepatic insulin resistance. Cell Metab. 2012, 15:574-584.
    • (2012) Cell Metab. , vol.15 , pp. 574-584
    • Jornayvaz, F.R.1    Shulman, G.I.2
  • 60
    • 84861809881 scopus 로고    scopus 로고
    • The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans
    • Benhamed F., et al. The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans. J. Clin. Invest. 2012, 122:2176-2194.
    • (2012) J. Clin. Invest. , vol.122 , pp. 2176-2194
    • Benhamed, F.1
  • 61
    • 84873178604 scopus 로고    scopus 로고
    • CGI-58 knockdown sequesters diacylglycerols in lipid droplets/ER-preventing diacylglycerol-mediated hepatic insulin resistance
    • Cantley J.L., et al. CGI-58 knockdown sequesters diacylglycerols in lipid droplets/ER-preventing diacylglycerol-mediated hepatic insulin resistance. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:1869-1874.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 1869-1874
    • Cantley, J.L.1
  • 62
    • 0344114246 scopus 로고
    • Specificity and mechanism of protein kinase C activation by sn-1,2-diacylglycerols
    • Ganong B.R., et al. Specificity and mechanism of protein kinase C activation by sn-1,2-diacylglycerols. Proc. Natl. Acad. Sci. U.S.A. 1986, 83:1184-2118.
    • (1986) Proc. Natl. Acad. Sci. U.S.A. , vol.83 , pp. 1184-2118
    • Ganong, B.R.1
  • 63
    • 0021961774 scopus 로고
    • Diacylglycerols mimic phorbol diester induction of leukemic cell differentiation
    • Ebeling J.G., et al. Diacylglycerols mimic phorbol diester induction of leukemic cell differentiation. Proc. Natl. Acad. Sci. U.S.A. 1985, 82:815-819.
    • (1985) Proc. Natl. Acad. Sci. U.S.A. , vol.82 , pp. 815-819
    • Ebeling, J.G.1
  • 64
    • 78649632998 scopus 로고    scopus 로고
    • Cholesterol synthesis is increased and absorption decreased in non-alcoholic fatty liver disease independent of obesity
    • Simonen P., et al. Cholesterol synthesis is increased and absorption decreased in non-alcoholic fatty liver disease independent of obesity. J. Hepatol. 2011, 54:153-159.
    • (2011) J. Hepatol. , vol.54 , pp. 153-159
    • Simonen, P.1
  • 65
    • 84870774318 scopus 로고    scopus 로고
    • Nutrition and nonalcoholic fatty liver disease: the significance of cholesterol
    • Enjoji M., et al. Nutrition and nonalcoholic fatty liver disease: the significance of cholesterol. Int. J. Hepatol. 2012, 00:925807.
    • (2012) Int. J. Hepatol. , vol.0 , pp. 925807
    • Enjoji, M.1
  • 66
    • 80051826073 scopus 로고    scopus 로고
    • Dietary cholesterol exacerbates hepatic steatosis and inflammation in obese LDL receptor-deficient mice
    • Subramanian S., et al. Dietary cholesterol exacerbates hepatic steatosis and inflammation in obese LDL receptor-deficient mice. J. Lipid Res. 2011, 52:1626-1635.
    • (2011) J. Lipid Res. , vol.52 , pp. 1626-1635
    • Subramanian, S.1
  • 67
    • 83755219463 scopus 로고    scopus 로고
    • Lipids in liver disease: looking beyond steatosis
    • Schwabe R.F., Maher J.J. Lipids in liver disease: looking beyond steatosis. Gastroenterology 2012, 142:8-11.
    • (2012) Gastroenterology , vol.142 , pp. 8-11
    • Schwabe, R.F.1    Maher, J.J.2
  • 68
    • 84866271175 scopus 로고    scopus 로고
    • Mechanisms of gene regulation by fatty acids
    • Georgiadi A., Kersten S. Mechanisms of gene regulation by fatty acids. Adv. Nutr. Res. 2012, 3:127-134.
    • (2012) Adv. Nutr. Res. , vol.3 , pp. 127-134
    • Georgiadi, A.1    Kersten, S.2
  • 69
    • 0034801882 scopus 로고    scopus 로고
    • Rat PPARs: quantitative analysis in adult rat tissues and regulation in fasting and refeeding
    • Escher P., et al. Rat PPARs: quantitative analysis in adult rat tissues and regulation in fasting and refeeding. Endocrinology 2001, 142:4195-4202.
    • (2001) Endocrinology , vol.142 , pp. 4195-4202
    • Escher, P.1
  • 70
    • 84892144705 scopus 로고    scopus 로고
    • Regulation of energy metabolism by long-chain fatty acids
    • Nakamura M.T., et al. Regulation of energy metabolism by long-chain fatty acids. Prog. Lipid Res. 2014, 53:124-144.
    • (2014) Prog. Lipid Res. , vol.53 , pp. 124-144
    • Nakamura, M.T.1
  • 71
    • 80052454265 scopus 로고    scopus 로고
    • ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-alpha and PGC-1
    • Haemmerle G., et al. ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-alpha and PGC-1. Nat. Med. 2011, 17:1076-1085.
    • (2011) Nat. Med. , vol.17 , pp. 1076-1085
    • Haemmerle, G.1
  • 72
    • 65949087032 scopus 로고    scopus 로고
    • Lipotoxicity: why do saturated fatty acids cause and monounsaturates protect against it?
    • Nolan C.J., Larter C.Z. Lipotoxicity: why do saturated fatty acids cause and monounsaturates protect against it?. J. Gastroenterol. Hepatol. 2009, 24:703-706.
    • (2009) J. Gastroenterol. Hepatol. , vol.24 , pp. 703-706
    • Nolan, C.J.1    Larter, C.Z.2
  • 73
    • 68149098866 scopus 로고    scopus 로고
    • Identification of a physiologically relevant endogenous ligand for PPARalpha in liver
    • Chakravarthy M.V., et al. Identification of a physiologically relevant endogenous ligand for PPARalpha in liver. Cell 2009, 138:476-488.
    • (2009) Cell , vol.138 , pp. 476-488
    • Chakravarthy, M.V.1
  • 74
    • 84861019724 scopus 로고    scopus 로고
    • Targeting peroxisome proliferator-activated receptors (PPARs): development of modulators
    • Pirat C., et al. Targeting peroxisome proliferator-activated receptors (PPARs): development of modulators. J. Med. Chem. 2012, 55:4027-4061.
    • (2012) J. Med. Chem. , vol.55 , pp. 4027-4061
    • Pirat, C.1
  • 75
    • 3943108870 scopus 로고    scopus 로고
    • Polyunsaturated fatty acids are FXR ligands and differentially regulate expression of FXR targets
    • Zhao A., et al. Polyunsaturated fatty acids are FXR ligands and differentially regulate expression of FXR targets. DNA Cell Biol. 2004, 23:519-526.
    • (2004) DNA Cell Biol. , vol.23 , pp. 519-526
    • Zhao, A.1
  • 76
    • 48749113401 scopus 로고    scopus 로고
    • Targeting bile-acid signalling for metabolic diseases
    • Thomas C., et al. Targeting bile-acid signalling for metabolic diseases. Nat. Rev. Drug Discov. 2008, 7:678-693.
    • (2008) Nat. Rev. Drug Discov. , vol.7 , pp. 678-693
    • Thomas, C.1
  • 77
    • 85047694456 scopus 로고    scopus 로고
    • Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c
    • Watanabe M., et al. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J. Clin. Invest. 2004, 113:1408-1418.
    • (2004) J. Clin. Invest. , vol.113 , pp. 1408-1418
    • Watanabe, M.1
  • 78
    • 34547411540 scopus 로고    scopus 로고
    • Molecular characterization of the role of orphan receptor small heterodimer partner in development of fatty liver
    • Huang J., et al. Molecular characterization of the role of orphan receptor small heterodimer partner in development of fatty liver. Hepatology 2007, 46:147-157.
    • (2007) Hepatology , vol.46 , pp. 147-157
    • Huang, J.1
  • 79
    • 84898058711 scopus 로고    scopus 로고
    • Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease
    • Kozlitina J., et al. Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 2014, 46:352-356.
    • (2014) Nat. Genet. , vol.46 , pp. 352-356
    • Kozlitina, J.1
  • 80
    • 84878972563 scopus 로고    scopus 로고
    • Farnesoid X receptor inhibits the transcriptional activity of carbohydrate response element binding protein in human hepatocytes
    • Caron S., et al. Farnesoid X receptor inhibits the transcriptional activity of carbohydrate response element binding protein in human hepatocytes. Mol. Cell. Biol. 2013, 33:2202-2211.
    • (2013) Mol. Cell. Biol. , vol.33 , pp. 2202-2211
    • Caron, S.1
  • 81
    • 0037315190 scopus 로고    scopus 로고
    • Bile acids induce the expression of the human peroxisome proliferator-activated receptor alpha gene via activation of the farnesoid X receptor
    • Pineda Torra I., et al. Bile acids induce the expression of the human peroxisome proliferator-activated receptor alpha gene via activation of the farnesoid X receptor. Mol. Endocrinol. 2003, 17:259-272.
    • (2003) Mol. Endocrinol. , vol.17 , pp. 259-272
    • Pineda Torra, I.1
  • 82
    • 84901937811 scopus 로고    scopus 로고
    • Liver X receptors in lipid metabolism: opportunities for drug discovery
    • Hong C., Tontonoz P. Liver X receptors in lipid metabolism: opportunities for drug discovery. Nat. Rev. Drug Discov. 2014, 13:433-444.
    • (2014) Nat. Rev. Drug Discov. , vol.13 , pp. 433-444
    • Hong, C.1    Tontonoz, P.2
  • 83
    • 67649682526 scopus 로고    scopus 로고
    • Phenolic acids suppress adipocyte lipolysis via activation of the nicotinic acid receptor GPR109A (HM74a/PUMA-G)
    • Ren N., et al. Phenolic acids suppress adipocyte lipolysis via activation of the nicotinic acid receptor GPR109A (HM74a/PUMA-G). J. Lipid Res. 2009, 50:908-914.
    • (2009) J. Lipid Res. , vol.50 , pp. 908-914
    • Ren, N.1
  • 84
    • 84855171302 scopus 로고    scopus 로고
    • Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy
    • Boden W.E., et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N. Engl. J. Med. 2011, 365:2255-2267.
    • (2011) N. Engl. J. Med. , vol.365 , pp. 2255-2267
    • Boden, W.E.1
  • 85
    • 79959466159 scopus 로고    scopus 로고
    • Current therapeutic strategies in non-alcoholic fatty liver disease
    • Dowman J.K., et al. Current therapeutic strategies in non-alcoholic fatty liver disease. Diabetes Obes. Metab. 2011, 13:692-702.
    • (2011) Diabetes Obes. Metab. , vol.13 , pp. 692-702
    • Dowman, J.K.1
  • 86
    • 33646483917 scopus 로고    scopus 로고
    • A double-blind randomized placebo-controlled trial of orlistat for the treatment of nonalcoholic fatty liver disease
    • Zelber-Sagi S., et al. A double-blind randomized placebo-controlled trial of orlistat for the treatment of nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. 2006, 4:639-644.
    • (2006) Clin. Gastroenterol. Hepatol. , vol.4 , pp. 639-644
    • Zelber-Sagi, S.1
  • 87
    • 34548477649 scopus 로고    scopus 로고
    • Orlistat reverse fatty infiltration and improves hepatic fibrosis in obese patients with nonalcoholic steatohepatitis (NASH)
    • Hussein O., et al. Orlistat reverse fatty infiltration and improves hepatic fibrosis in obese patients with nonalcoholic steatohepatitis (NASH). Dig. Dis. Sci. 2007, 52:2512-2519.
    • (2007) Dig. Dis. Sci. , vol.52 , pp. 2512-2519
    • Hussein, O.1
  • 88
    • 84859157277 scopus 로고    scopus 로고
    • Roles of PPARs in NAFLD: potential therapeutic targets
    • Tailleux A., et al. Roles of PPARs in NAFLD: potential therapeutic targets. Biochim. Biophys. Acta 2012, 1821:809-818.
    • (2012) Biochim. Biophys. Acta , vol.1821 , pp. 809-818
    • Tailleux, A.1
  • 89
    • 84857641358 scopus 로고    scopus 로고
    • The role of peroxisome proliferator-activated receptors in carcinogenesis and chemoprevention
    • Peters J.M., et al. The role of peroxisome proliferator-activated receptors in carcinogenesis and chemoprevention. Nat. Rev. Cancer 2012, 12:181-195.
    • (2012) Nat. Rev. Cancer , vol.12 , pp. 181-195
    • Peters, J.M.1
  • 90
    • 34447114640 scopus 로고    scopus 로고
    • Effects of peroxisome proliferator-activated receptor (PPAR)-alpha and PPAR-gamma agonists on glucose and lipid metabolism in patients with type 2 diabetes mellitus
    • Bajaj M., et al. Effects of peroxisome proliferator-activated receptor (PPAR)-alpha and PPAR-gamma agonists on glucose and lipid metabolism in patients with type 2 diabetes mellitus. Diabetologia 2007, 50:1723-1731.
    • (2007) Diabetologia , vol.50 , pp. 1723-1731
    • Bajaj, M.1
  • 91
    • 84888285959 scopus 로고    scopus 로고
    • Hepatoprotective effects of the dual peroxisome proliferator-activated receptor alpha/delta agonist, GFT505, in rodent models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis
    • Staels B., et al. Hepatoprotective effects of the dual peroxisome proliferator-activated receptor alpha/delta agonist, GFT505, in rodent models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Hepatology 2013, 58:1941-1952.
    • (2013) Hepatology , vol.58 , pp. 1941-1952
    • Staels, B.1
  • 92
    • 84885405205 scopus 로고    scopus 로고
    • Dual peroxisome proliferator-activated receptor alpha/delta agonist GFT505 improves hepatic and peripheral insulin sensitivity in abdominally obese subjects
    • Cariou B., et al. Dual peroxisome proliferator-activated receptor alpha/delta agonist GFT505 improves hepatic and peripheral insulin sensitivity in abdominally obese subjects. Diabetes Care 2013, 36:2923-2930.
    • (2013) Diabetes Care , vol.36 , pp. 2923-2930
    • Cariou, B.1
  • 94
    • 33751545838 scopus 로고    scopus 로고
    • A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis
    • Belfort R., et al. A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N. Engl. J. Med. 2006, 355:2297-2307.
    • (2006) N. Engl. J. Med. , vol.355 , pp. 2297-2307
    • Belfort, R.1
  • 95
    • 77951874018 scopus 로고    scopus 로고
    • Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis
    • Sanyal A.J., et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N. Engl. J. Med. 2010, 362:1675-1785.
    • (2010) N. Engl. J. Med. , vol.362 , pp. 1675-1785
    • Sanyal, A.J.1
  • 96
    • 34548306770 scopus 로고    scopus 로고
    • The effects of discontinuing pioglitazone in patients with nonalcoholic steatohepatitis
    • Lutchman G., et al. The effects of discontinuing pioglitazone in patients with nonalcoholic steatohepatitis. Hepatology 2007, 46:424-429.
    • (2007) Hepatology , vol.46 , pp. 424-429
    • Lutchman, G.1
  • 97
    • 34548200442 scopus 로고    scopus 로고
    • Pioglitazone treatment increases whole body fat but not total body water in patients with non-alcoholic steatohepatitis
    • Balas B., et al. Pioglitazone treatment increases whole body fat but not total body water in patients with non-alcoholic steatohepatitis. J. Hepatol. 2007, 47:565-570.
    • (2007) J. Hepatol. , vol.47 , pp. 565-570
    • Balas, B.1
  • 98
    • 17544396164 scopus 로고    scopus 로고
    • Activators of peroxisome proliferator-activated receptor gamma have depot-specific effects on human preadipocyte differentiation
    • Adams M., et al. Activators of peroxisome proliferator-activated receptor gamma have depot-specific effects on human preadipocyte differentiation. J. Clin. Invest. 1997, 100:3149-3153.
    • (1997) J. Clin. Invest. , vol.100 , pp. 3149-3153
    • Adams, M.1
  • 99
    • 84880664792 scopus 로고    scopus 로고
    • Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease
    • Mudaliar S., et al. Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease. Gastroenterology 2013, 145:574-582.
    • (2013) Gastroenterology , vol.145 , pp. 574-582
    • Mudaliar, S.1
  • 100
    • 33846029180 scopus 로고    scopus 로고
    • Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism
    • Schweiger M., et al. Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism. J. Biol. Chem. 2006, 281:40236-40241.
    • (2006) J. Biol. Chem. , vol.281 , pp. 40236-40241
    • Schweiger, M.1
  • 101
    • 84875243228 scopus 로고    scopus 로고
    • Monoacylglycerol lipase controls endocannabinoid and eicosanoid signaling and hepatic injury in mice
    • Cao Z., et al. Monoacylglycerol lipase controls endocannabinoid and eicosanoid signaling and hepatic injury in mice. Gastroenterology 2013, 144:808-817.
    • (2013) Gastroenterology , vol.144 , pp. 808-817
    • Cao, Z.1
  • 102
    • 79551506567 scopus 로고    scopus 로고
    • Brain insulin controls adipose tissue lipolysis and lipogenesis
    • Scherer T., et al. Brain insulin controls adipose tissue lipolysis and lipogenesis. Cell Metab. 2011, 13:183-194.
    • (2011) Cell Metab. , vol.13 , pp. 183-194
    • Scherer, T.1
  • 103
    • 10344262633 scopus 로고    scopus 로고
    • Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities
    • Jenkins C.M., et al. Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities. J. Biol. Chem. 2004, 279:48968-48975.
    • (2004) J. Biol. Chem. , vol.279 , pp. 48968-48975
    • Jenkins, C.M.1
  • 104
    • 84860465005 scopus 로고    scopus 로고
    • Adiponutrin functions as a nutritionally regulated lysophosphatidic acid acyltransferase
    • Kumari M., et al. Adiponutrin functions as a nutritionally regulated lysophosphatidic acid acyltransferase. Cell Metab. 2012, 15:691-702.
    • (2012) Cell Metab. , vol.15 , pp. 691-702
    • Kumari, M.1
  • 105
    • 34247384681 scopus 로고    scopus 로고
    • Regulation of adiponutrin expression by feeding conditions in rats is altered in the obese state
    • Caimari A., et al. Regulation of adiponutrin expression by feeding conditions in rats is altered in the obese state. Obesity 2007, 15:591-599.
    • (2007) Obesity , vol.15 , pp. 591-599
    • Caimari, A.1
  • 106
    • 33644764922 scopus 로고    scopus 로고
    • Adipose triglyceride lipase: function, regulation by insulin, and comparison with adiponutrin
    • Kershaw E.E., et al. Adipose triglyceride lipase: function, regulation by insulin, and comparison with adiponutrin. Diabetes 2006, 55:148-157.
    • (2006) Diabetes , vol.55 , pp. 148-157
    • Kershaw, E.E.1
  • 107
    • 77952409634 scopus 로고    scopus 로고
    • A feed-forward loop amplifies nutritional regulation of PNPLA3
    • Huang Y., et al. A feed-forward loop amplifies nutritional regulation of PNPLA3. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:7892-78987.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 7892-78987
    • Huang, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.