-
3
-
-
0342819025
-
Helical microtubules of graphitic carbon
-
Iijima S. 1991. Helical microtubules of graphitic carbon. Nature 354:56-58
-
(1991)
Nature
, vol.354
, pp. 56-58
-
-
Iijima, S.1
-
5
-
-
0000795346
-
Carbon electrodes: Structural effects on electron transfer kinetics
-
ed. AJ Bard New York: Marcel Dekker
-
McCreeryRL. 1991. Carbon electrodes: structural effects on electron transfer kinetics. In Electroanalytical Chemistry, ed. AJ Bard, pp. 221-374. New York: Marcel Dekker
-
(1991)
Electroanalytical Chemistry
, pp. 221-374
-
-
McCreery, R.L.1
-
6
-
-
49049105745
-
Advanced carbon electrode materials for molecular electrochemistry
-
McCreery RL. 2008. Advanced carbon electrode materials for molecular electrochemistry. Chem. Rev. 108:2646-87
-
(2008)
Chem. Rev.
, vol.108
, pp. 2646-2687
-
-
McCreery, R.L.1
-
7
-
-
79956003493
-
Structural characterization of cup-stackedtype nanofibers with an entirely hollow core
-
Endo M, Kim YA, Hayashi T, Fukai Y, Oshida K, et al. 2002. Structural characterization of cup-stackedtype nanofibers with an entirely hollow core. Appl. Phys. Lett. 80:1267-69
-
(2002)
Appl. Phys. Lett.
, vol.80
, pp. 1267-1269
-
-
Endo, M.1
Kim, Y.A.2
Hayashi, T.3
Fukai, Y.4
Oshida, K.5
-
8
-
-
0001441266
-
Growth of freestanding multiwall carbon nanotube on each nanonickel dot
-
Ren ZF, Huang ZP, Wang DZ, Wen JG, Xu JW, et al. 1999. Growth of freestanding multiwall carbon nanotube on each nanonickel dot. Appl. Phys. Lett. 75:1086-88
-
(1999)
Appl. Phys. Lett.
, vol.75
, pp. 1086-1088
-
-
Ren, Z.F.1
Huang, Z.P.2
Wang, D.Z.3
Wen, J.G.4
Xu, J.W.5
-
9
-
-
0032491482
-
Synthesis of large arrays of wellaligned carbon nanotubes on glass
-
Ren ZF, Huang ZP, Xu JW, Wang JH, Bush P, et al. 1998. Synthesis of large arrays of wellaligned carbon nanotubes on glass. Science 282:1105-7
-
(1998)
Science
, vol.282
, pp. 1105-1107
-
-
Ren, Z.F.1
Huang, Z.P.2
Xu, J.W.3
Wang, J.H.4
Bush, P.5
-
10
-
-
13744260653
-
Vertically aligned carbon nanofibers and related structures: Controlled synthesis and directed assembly
-
Melechko AV, Merkulov VI, McKnight TE, Guillorn MA, Klein KL, et al. 2005. Vertically aligned carbon nanofibers and related structures: controlled synthesis and directed assembly. J. Appl. Phys. 97:041301
-
(2005)
J. Appl. Phys.
, vol.97
, pp. 041301
-
-
Melechko, A.V.1
Merkulov, V.I.2
McKnight, T.E.3
Guillorn, M.A.4
Klein, K.L.5
-
11
-
-
79960083759
-
Enhanced electron transfer rates by AC voltammetry for ferrocenes attached to the end of embedded carbon nanofiber nanoelectrode arrays
-
Syed LU, Liu J, Prior AM, Hua DH, Li J. 2011. Enhanced electron transfer rates by AC voltammetry for ferrocenes attached to the end of embedded carbon nanofiber nanoelectrode arrays. Electroanalysis 23:1709-17
-
(2011)
Electroanalysis
, vol.23
, pp. 1709-1717
-
-
Syed, L.U.1
Liu, J.2
Prior, A.M.3
Hua, D.H.4
Li, J.5
-
12
-
-
84893002747
-
Quantitative electrochemical detection of cathepsin B activity in complex tissue lysates using enhanced AC voltammetry at carbon nanofiber nanoelectrode arrays
-
Swisher LZ, Prior AM, Shishido S, Nguyen TA, Hua DH, Li J. 2014. Quantitative electrochemical detection of cathepsin B activity in complex tissue lysates using enhanced AC voltammetry at carbon nanofiber nanoelectrode arrays. Biosens. Bioelectron. 56:129-36
-
(2014)
Biosens. Bioelectron.
, vol.56
, pp. 129-136
-
-
Swisher, L.Z.1
Prior, A.M.2
Shishido, S.3
Nguyen, T.A.4
Hua, D.H.5
Li, J.6
-
13
-
-
84874601232
-
Electrochemical protease biosensor based on enhanced AC voltammetry using carbon nanofiber nanoelectrode arrays
-
Swisher LZ, Syed LU, Prior AM, Madiyar FR, Carlson KR, et al. 2013. Electrochemical protease biosensor based on enhanced AC voltammetry using carbon nanofiber nanoelectrode arrays. J. Phys. Chem. C 117:4268-77
-
(2013)
J. Phys. Chem. C
, vol.117
, pp. 4268-4277
-
-
Swisher, L.Z.1
Syed, L.U.2
Prior, A.M.3
Madiyar, F.R.4
Carlson, K.R.5
-
14
-
-
36349003661
-
Structural and electrical characterization of carbon nanofibers for interconnect via applications
-
Ngo Q, Yamada T, Suzuki M, Ominami Y, Cassell AM, et al. 2007. Structural and electrical characterization of carbon nanofibers for interconnect via applications. IEEE Trans. Nanotechnol. 6:688-95
-
(2007)
IEEE Trans. Nanotechnol.
, vol.6
, pp. 688-695
-
-
Ngo, Q.1
Yamada, T.2
Suzuki, M.3
Ominami, Y.4
Cassell, A.M.5
-
15
-
-
56049120311
-
Covalent grafting of ferrocene to vertically aligned carbon nanofibers: Electron-transfer processes at nanostructured electrodes
-
Landis EC, Hamers RJ. 2008. Covalent grafting of ferrocene to vertically aligned carbon nanofibers: electron-transfer processes at nanostructured electrodes. J. Phys. Chem. C 112:16910-18
-
(2008)
J. Phys. Chem. C
, vol.112
, pp. 16910-16918
-
-
Landis, E.C.1
Hamers, R.J.2
-
16
-
-
84876558973
-
A high-performance lithium-ion battery anode based on the core-shell heterostructure of silicon-coated vertically aligned carbon nanofibers
-
Klankowski SA, Rojeski RA, Cruden BA, Liu J, Wu J, Li J. 2013. A high-performance lithium-ion battery anode based on the core-shell heterostructure of silicon-coated vertically aligned carbon nanofibers. J. Mater. Chem. A 1:1055-64
-
(2013)
J. Mater. Chem. A
, vol.1
, pp. 1055-1064
-
-
Klankowski, S.A.1
Rojeski, R.A.2
Cruden, B.A.3
Liu, J.4
Wu, J.5
Li, J.6
-
17
-
-
0037191004
-
Pore structure of raw and purified HiPco single-walled carbon nanotubes
-
Cinke M, Li J, Chen B, Cassell A, Delzeit L, et al. 2002. Pore structure of raw and purified HiPco single-walled carbon nanotubes. Chem. Phys. Lett. 365:69-74
-
(2002)
Chem. Phys. Lett.
, vol.365
, pp. 69-74
-
-
Cinke, M.1
Li, J.2
Chen, B.3
Cassell, A.4
Delzeit, L.5
-
18
-
-
77956404158
-
Hybrid supercapacitor based on coaxially coated manganese oxide on vertically aligned carbon nanofiber arrays
-
Liu J, Essner J, Li J. 2010. Hybrid supercapacitor based on coaxially coated manganese oxide on vertically aligned carbon nanofiber arrays. Chem. Mater. 22:5022-30
-
(2010)
Chem. Mater.
, vol.22
, pp. 5022-5030
-
-
Liu, J.1
Essner, J.2
Li, J.3
-
19
-
-
84862833370
-
Novel dye-sensitized solar cell architecture using TiO2-coated vertically aligned carbon nanofiber arrays
-
Liu J, Kuo Y-T, Klabunde KJ, Rochford C, Wu J, Li J. 2009. Novel dye-sensitized solar cell architecture using TiO2-coated vertically aligned carbon nanofiber arrays. ACS Appl. Mater. Interfaces 1:1645-49
-
(2009)
ACS Appl. Mater. Interfaces
, vol.1
, pp. 1645-1649
-
-
Liu, J.1
Kuo, Y.-T.2
Klabunde, K.J.3
Rochford, C.4
Wu, J.5
Li, J.6
-
20
-
-
56549094341
-
Structure and photoluminescence study of TiO2 nanoneedle texture along vertically aligned carbon nanofiber arrays
-
Liu J, Li J, Sedhain A, Lin J, JiangH. 2008. Structure and photoluminescence study of TiO2 nanoneedle texture along vertically aligned carbon nanofiber arrays. J. Phys. Chem. C 112:17127-32
-
(2008)
J. Phys. Chem. C
, vol.112
, pp. 17127-17132
-
-
Liu, J.1
Li, J.2
Sedhain, A.3
Lin, J.4
Jiang, H.5
-
22
-
-
33644541114
-
Physics of carbon nanotube electronic devices
-
Anantram M, Leonard F. 2006. Physics of carbon nanotube electronic devices. Rep. Prog. Phys. 69:507-61
-
(2006)
Rep. Prog. Phys.
, vol.69
, pp. 507-561
-
-
Anantram, M.1
Leonard, F.2
-
23
-
-
84888303950
-
Structures and properties of carbon nanotubes
-
ed. M Meyyappan Boca Raton, FL: CRC
-
Han J. 2005. Structures and properties of carbon nanotubes. In Carbon Nanotubes: Science and Applications, ed. M Meyyappan, pp. 1-24. Boca Raton, FL: CRC.
-
(2005)
In Carbon Nanotubes: Science and Applications
, pp. 1-24
-
-
Han, J.1
-
24
-
-
0035957717
-
Engineering carbon nanotubes and nanotube circuits using electrical breakdown
-
Collins PC, Arnold MS, Avouris P. 2001. Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292:706-9
-
(2001)
Science
, vol.292
, pp. 706-709
-
-
Collins, P.C.1
Arnold, M.S.2
Avouris, P.3
-
25
-
-
0036679715
-
Mechanical properties of carbon nanotubes: A fiber digest for beginners
-
Salvetat-Delmotte J-P, Rubio A. 2002. Mechanical properties of carbon nanotubes: a fiber digest for beginners. Carbon 40:1729-34
-
(2002)
Carbon
, vol.40
, pp. 1729-1734
-
-
Salvetat-Delmotte, J.-P.1
Rubio, A.2
-
26
-
-
0346343355
-
Mechanical properties of carbon nanotubes: Theoretical predictions and experimental measurements
-
Ruoff RS, Qian D, Liu WK. 2003. Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements. C. R. Phys. 4:993-1008
-
(2003)
C. R. Phys.
, vol.4
, pp. 993-1008
-
-
Ruoff, R.S.1
Qian, D.2
Liu, W.K.3
-
27
-
-
85056033659
-
Computational nanotechnology of carbon nanotubes
-
ed. M Meyyappan Boca Raton, FL: CRC
-
Srivastava D. 2005. Computational nanotechnology of carbon nanotubes. In Carbon Nanotubes: Science and Applications, ed. M Meyyappan, pp. 25-63. Boca Raton, FL: CRC.
-
(2005)
Carbon Nanotubes: Science and Applications
, pp. 25-63
-
-
Srivastava, D.1
-
28
-
-
13044283435
-
Nanoplasticity of single-wall carbon nanotubes underuniaxial compression
-
Srivastava D, Menon M, Cho KJ. 1999. Nanoplasticity of single-wall carbon nanotubes underuniaxial compression. Phys. Rev. Lett. 83:2973-76
-
(1999)
Phys. Rev. Lett.
, vol.83
, pp. 2973-2976
-
-
Srivastava, D.1
Menon, M.2
Cho, K.J.3
-
29
-
-
7044260595
-
Nanomechanics of carbon nanofibers: Structural and elastic properties
-
Wei C, Srivastava D. 2004. Nanomechanics of carbon nanofibers: structural and elastic properties. Appl. Phys. Lett. 85:2208-10
-
(2004)
Appl. Phys. Lett.
, vol.85
, pp. 2208-2210
-
-
Wei, C.1
Srivastava, D.2
-
30
-
-
33746283331
-
Vertically oriented carbon nanofiber based nanoelectromechanical switch
-
Cruden BA, Cassell AM. 2006. Vertically oriented carbon nanofiber based nanoelectromechanical switch. IEEE Trans. Nanotechnol. 5:350-55
-
(2006)
IEEE Trans. Nanotechnol.
, vol.5
, pp. 350-355
-
-
Cruden, B.A.1
Cassell, A.M.2
-
31
-
-
0344981298
-
Determination of mechanical properties of carbon nanotubes and vertically aligned carbon nanotube forests using nanoindentation
-
Qi HJ, Teo KBK, Lau KKS, Boyce MC, Milne WI, et al. 2003. Determination of mechanical properties of carbon nanotubes and vertically aligned carbon nanotube forests using nanoindentation. J. Mech. Phys. Solids 51:2213-37
-
(2003)
J. Mech. Phys. Solids
, vol.51
, pp. 2213-2237
-
-
Qi, H.J.1
Teo, K.B.K.2
Lau, K.K.S.3
Boyce, M.C.4
Milne, W.I.5
-
32
-
-
31544438604
-
Thermal conductance of an individual single-wall carbon nanotube above room temperature
-
Pop E, Mann D, Wang Q, Goodson K, Dai H. 2005. Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 6:96-100
-
(2005)
Nano Lett.
, vol.6
, pp. 96-100
-
-
Pop, E.1
Mann, D.2
Wang, Q.3
Goodson, K.4
Dai, H.5
-
33
-
-
0035914983
-
Thermal transport measurements of individual multiwalled nanotubes
-
Kim P, Shi L, Majumdar A, McEuen PL. 2001. Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 87:215502
-
(2001)
Phys. Rev. Lett.
, vol.87
, pp. 215502
-
-
Kim, P.1
Shi, L.2
Majumdar, A.3
McEuen, P.L.4
-
34
-
-
0033138023
-
Thermal conductivity of single-walled carbon nanotubes
-
Hone J, Whitney M, Zettl A. 1999. Thermal conductivity of single-walled carbon nanotubes. Synth. Met. 103:2498-99
-
(1999)
Synth. Met.
, vol.103
, pp. 2498-2499
-
-
Hone, J.1
Whitney, M.2
Zettl, A.3
-
35
-
-
0000636881
-
Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films
-
Hone J, Llaguno MC, NemesNM, Johnson AT, Fischer JE, et al. 2000. Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films. Appl. Phys. Lett. 77:666-68
-
(2000)
Appl. Phys. Lett.
, vol.77
, pp. 666-668
-
-
Hone, J.1
Llaguno, M.C.2
Nemes, N.M.3
Johnson, A.T.4
Fischer, J.E.5
-
36
-
-
33645769762
-
Thermal contact resistance and thermal conductivity of a carbon nanofiber
-
Yu CH, Saha S, Zhou JH, Shi L, Cassell AM, et al. 2006. Thermal contact resistance and thermal conductivity of a carbon nanofiber. J. Heat Transf. 128:234-39
-
(2006)
J. Heat Transf.
, vol.128
, pp. 234-239
-
-
Yu, C.H.1
Saha, S.2
Zhou, J.H.3
Shi, L.4
Cassell, A.M.5
-
37
-
-
70349664284
-
Preferential growth of single-walled carbon nanotubes with metallic conductivity
-
Harutyunyan AR, Chen G, Paronyan TM, Pigos EM, Kuznetsov OA, et al. 2009. Preferential growth of single-walled carbon nanotubes with metallic conductivity. Science 326:116-20
-
(2009)
Science
, vol.326
, pp. 116-120
-
-
Harutyunyan, A.R.1
Chen, G.2
Paronyan, T.M.3
Pigos, E.M.4
Kuznetsov, O.A.5
-
38
-
-
65249095291
-
Selective growth of well-aligned semiconducting single-walled carbon nanotubes
-
Ding L, Tselev A, Wang J, Yuan D, Chu H, et al. 2009. Selective growth of well-aligned semiconducting single-walled carbon nanotubes. Nano Lett. 9:800-5
-
(2009)
Nano Lett.
, vol.9
, pp. 800-805
-
-
Ding, L.1
Tselev, A.2
Wang, J.3
Yuan, D.4
Chu, H.5
-
39
-
-
54949114068
-
Preferential syntheses of semiconducting vertically aligned single-walled carbon nanotubes for direct use in FETs
-
Qu L, Du F, Dai L. 2008. Preferential syntheses of semiconducting vertically aligned single-walled carbon nanotubes for direct use in FETs. Nano Lett. 8:2682-87
-
(2008)
Nano Lett.
, vol.8
, pp. 2682-2687
-
-
Qu, L.1
Du, F.2
Dai, L.3
-
40
-
-
18144424425
-
Enrichment of single-walled carbon nanotubes by diameter in density gradients
-
Arnold MS, Stupp SI, Hersam MC. 2005. Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Lett. 5:713-18
-
(2005)
Nano Lett.
, vol.5
, pp. 713-718
-
-
Arnold, M.S.1
Stupp, S.I.2
Hersam, M.C.3
-
41
-
-
33846116009
-
Sorting carbon nanotubes by electronic structure using density differentiation
-
Arnold MS, Green AA, Hulvat JF, Stupp SI, Hersam MC. 2006. Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 1:60-65
-
(2006)
Nat. Nanotechnol.
, vol.1
, pp. 60-65
-
-
Arnold, M.S.1
Green, A.A.2
Hulvat, J.F.3
Stupp, S.I.4
Hersam, M.C.5
-
42
-
-
84905025909
-
Highyield, single-step separation of metallic and semiconducting SWCNTs using block copolymers at low temperatures
-
Homenick CM, Rousina-Webb A, Cheng F, Jakubinek MB, Malenfant PRL, Simard B. 2014. Highyield, single-step separation of metallic and semiconducting SWCNTs using block copolymers at low temperatures. J. Phys. Chem. C 118:16156-64
-
(2014)
J. Phys. Chem. C
, vol.118
, pp. 16156-16164
-
-
Homenick, C.M.1
Rousina-Webb, A.2
Cheng, F.3
Jakubinek, M.B.4
Malenfant, P.R.L.5
Simard, B.6
-
43
-
-
0038521137
-
DNA-assisted dispersion and separation of carbon nanotubes
-
Zheng M, Jagota A, Semke ED, Diner BA, McLean RS, et al. 2003. DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater. 2:338-42
-
(2003)
Nat. Mater.
, vol.2
, pp. 338-342
-
-
Zheng, M.1
Jagota, A.2
Semke, E.D.3
Diner, B.A.4
McLean, R.S.5
-
44
-
-
80455178500
-
Discovery of surfactants for metal/semiconductor separation of single-wall carbon nanotubes via high-throughput screening
-
Tanaka T, Urabe Y, Nishide D, Kataura H. 2011. Discovery of surfactants for metal/semiconductor separation of single-wall carbon nanotubes via high-throughput screening. J. Am. Chem. Soc. 133:17610-13
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 17610-17613
-
-
Tanaka, T.1
Urabe, Y.2
Nishide, D.3
Kataura, H.4
-
45
-
-
37549058843
-
Selective synthesis combined with chemical separation of single-walled carbon nanotubes for chirality selection
-
Li X, Tu X, Zaric S, Welsher K, Seo WS, et al. 2007. Selective synthesis combined with chemical separation of single-walled carbon nanotubes for chirality selection. J. Am. Chem. Soc. 129:15770-71
-
(2007)
J. Am. Chem. Soc.
, vol.129
, pp. 15770-15771
-
-
Li, X.1
Tu, X.2
Zaric, S.3
Welsher, K.4
Seo, W.S.5
-
46
-
-
0038299557
-
Separation of metallic from semiconducting single-walled carbon nanotubes
-
Krupke R, Hennrich F, Lohneysen HV, Kappes MM. 2003. Separation of metallic from semiconducting single-walled carbon nanotubes. Science 301:344-47
-
(2003)
Science
, vol.301
, pp. 344-347
-
-
Krupke, R.1
Hennrich, F.2
Lohneysen, H.V.3
Kappes, M.M.4
-
47
-
-
46849085358
-
Self-sorted, aligned nanotube networks for thin-film transistors
-
LeMieux MC, Roberts M, Barman S, Jin YW, Kim JM, Bao Z. 2008. Self-sorted, aligned nanotube networks for thin-film transistors. Science 321:101-4
-
(2008)
Science
, vol.321
, pp. 101-104
-
-
Lemieux, M.C.1
Roberts, M.2
Barman, S.3
Jin, Y.W.4
Kim, J.M.5
Bao, Z.6
-
48
-
-
33751000466
-
Selective etching of metallic carbon nanotubes by gas-phase reaction
-
Zhang G, Qi P, Wang X, Lu Y, Li X, et al. 2006. Selective etching of metallic carbon nanotubes by gas-phase reaction. Science 314:974-77
-
(2006)
Science
, vol.314
, pp. 974-977
-
-
Zhang, G.1
Qi, P.2
Wang, X.3
Lu, Y.4
Li, X.5
-
49
-
-
84906260200
-
Chemical vapor deposition growth of single-walled carbon nanotubes with controlled structures for nanodevice applications
-
Chen Y, Zhang J. 2014. Chemical vapor deposition growth of single-walled carbon nanotubes with controlled structures for nanodevice applications. Acc. Chem. Res. 47:2273-81
-
(2014)
Acc. Chem. Res.
, vol.47
, pp. 2273-2281
-
-
Chen, Y.1
Zhang, J.2
-
50
-
-
58449135833
-
Ultrathin films of single-walled carbon nanotubes for electronics and sensors: A review of fundamental and applied aspects
-
Cao Q, Rogers JA. 2009. Ultrathin films of single-walled carbon nanotubes for electronics and sensors: a review of fundamental and applied aspects. Adv. Mater. 21:29-53
-
(2009)
Adv. Mater.
, vol.21
, pp. 29-53
-
-
Cao, Q.1
Rogers, J.A.2
-
51
-
-
33745117624
-
Thin films of metallic carbon nanotubes prepared by dielectrophoresis
-
Krupke R, Linden S, Rapp M, Hennrich F. 2006. Thin films of metallic carbon nanotubes prepared by dielectrophoresis. Adv. Mater. 18:1468-70
-
(2006)
Adv. Mater.
, vol.18
, pp. 1468-1470
-
-
Krupke, R.1
Linden, S.2
Rapp, M.3
Hennrich, F.4
-
52
-
-
34247500327
-
Langmuir-Blodgett assembly of densely aligned single-walled carbon nanotubes from bulk materials
-
Li XL, Zhang L, Wang XR, Shimoyama I, Sun XM, et al. 2007. Langmuir-Blodgett assembly of densely aligned single-walled carbon nanotubes from bulk materials. J. Am. Chem. Soc. 129:4890-91
-
(2007)
J. Am. Chem. Soc.
, vol.129
, pp. 4890-4891
-
-
Li, X.L.1
Zhang, L.2
Wang, X.R.3
Shimoyama, I.4
Sun, X.M.5
-
53
-
-
37249005287
-
Improved synthesis of aligned arrays of single-walled carbon nanotubes and their implementation in thin film type transistors
-
Kocabas C, Kang SJ, Ozel T, Shim M, Rogers JA. 2007. Improved synthesis of aligned arrays of single-walled carbon nanotubes and their implementation in thin film type transistors. J. Phys. Chem. C 111:17879-86
-
(2007)
J. Phys. Chem. C
, vol.111
, pp. 17879-17886
-
-
Kocabas, C.1
Kang, S.J.2
Ozel, T.3
Shim, M.4
Rogers, J.A.5
-
54
-
-
80051530303
-
Synthesis of high-density, large-diameter, and aligned singlewalled carbon nanotubes by multiple-cycle growth methods
-
Zhou W, Ding L, Yang S, Liu J. 2011. Synthesis of high-density, large-diameter, and aligned singlewalled carbon nanotubes by multiple-cycle growth methods. ACS Nano 5:3849-57
-
(2011)
ACS Nano
, vol.5
, pp. 3849-3857
-
-
Zhou, W.1
Ding, L.2
Yang, S.3
Liu, J.4
-
55
-
-
84893449907
-
Growth of high-density-aligned and semiconductingenriched single-walled carbon nanotubes: Decoupling the conflict between density and selectivity
-
Li J, Liu K, Liang S, ZhouW, Pierce M, et al. 2013. Growth of high-density-aligned and semiconductingenriched single-walled carbon nanotubes: decoupling the conflict between density and selectivity. ACS Nano 8:554-62
-
(2013)
ACS Nano
, vol.8
, pp. 554-562
-
-
Li, J.1
Liu, K.2
Liang, S.3
Zhouw Pierce, M.4
-
56
-
-
36749038299
-
Printed multilayer superstructures of aligned single-walled carbon nanotubes for electronic applications
-
Kang SJ, Kocabas C, Kim H-S, Cao Q, Meitl MA, et al. 2007. Printed multilayer superstructures of aligned single-walled carbon nanotubes for electronic applications. Nano Lett. 7:3343-48
-
(2007)
Nano Lett.
, vol.7
, pp. 3343-3348
-
-
Kang, S.J.1
Kocabas, C.2
Kim, H.-S.3
Cao, Q.4
Meitl, M.A.5
-
57
-
-
31544438605
-
Novel nanotube-on-insulator (NOI) approach toward single-walled carbon nanotube devices
-
Liu X, Han S, Zhou C. 2005. Novel nanotube-on-insulator (NOI) approach toward single-walled carbon nanotube devices. Nano Lett. 6:34-39
-
(2005)
Nano Lett.
, vol.6
, pp. 34-39
-
-
Liu, X.1
Han, S.2
Zhou, C.3
-
58
-
-
84885589677
-
Carbon nanotube computer
-
Shulaker MM, Hills G, Patil N, Wei H, Chen H-Y, et al. 2013. Carbon nanotube computer. Nature 501:526-30
-
(2013)
Nature
, vol.501
, pp. 526-530
-
-
Shulaker, M.M.1
Hills, G.2
Patil, N.3
Wei, H.4
Chen, H.-Y.5
-
59
-
-
84899429472
-
Carbon nanotube circuit integration up to sub-20 nm channel lengths
-
Shulaker MM, Van Rethy J, Wu TF, Liyanage LS, Wei H, et al. 2014. Carbon nanotube circuit integration up to sub-20 nm channel lengths. ACS Nano 8:3434-43
-
(2014)
ACS Nano
, vol.8
, pp. 3434-3443
-
-
Shulaker, M.M.1
Van Rethy, J.2
Wu, T.F.3
Liyanage, L.S.4
Wei, H.5
-
60
-
-
8844263043
-
Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes
-
Hata K, Futaba DN, Mizuno K, Namai T, Yumura M, Iijima S. 2004. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306:1362-64
-
(2004)
Science
, vol.306
, pp. 1362-1364
-
-
Hata, K.1
Futaba, D.N.2
Mizuno, K.3
Namai, T.4
Yumura, M.5
Iijima, S.6
-
61
-
-
79954593161
-
Vertically aligned silicon/carbon nanotube (VASCNT) arrays: Hierarchical anodes for lithium-ion battery
-
Wang W, Epur R, Kumta PN. 2011. Vertically aligned silicon/carbon nanotube (VASCNT) arrays: hierarchical anodes for lithium-ion battery. Electrochem. Commun. 13:429-32
-
(2011)
Electrochem. Commun.
, vol.13
, pp. 429-432
-
-
Wang, W.1
Epur, R.2
Kumta, P.N.3
-
62
-
-
78049391244
-
Vertically aligned carbon nanotube electrodes for lithium-ion batteries
-
Welna DT, Qu LT, Taylor BE, Dai LM, Durstock MF. 2011. Vertically aligned carbon nanotube electrodes for lithium-ion batteries. J. Power Sources 196:1455-60
-
(2011)
J. Power Sources
, vol.196
, pp. 1455-1460
-
-
Welna, D.T.1
Qu, L.T.2
Taylor, B.E.3
Dai, L.M.4
Durstock, M.F.5
-
64
-
-
17044438678
-
Control of carbon capping for regrowth of aligned carbon nanotubes
-
AuBuchon JF, Chen L-H, Jin S. 2005. Control of carbon capping for regrowth of aligned carbon nanotubes. J. Phys. Chem. B 109:6044-48
-
(2005)
J. Phys. Chem. B
, vol.109
, pp. 6044-6048
-
-
Aubuchon, J.F.1
Chen, L.-H.2
Jin, S.3
-
65
-
-
0034566959
-
Nanotubes for electronics
-
Collins PG, Avouris P. 2000. Nanotubes for electronics. Sci. Am. 283:62-69
-
(2000)
Sci. Am.
, vol.283
, pp. 62-69
-
-
Collins, P.G.1
Avouris, P.2
-
66
-
-
0032492884
-
Room-temperature transistor based on a single carbon nanotube
-
Tans SJ, Verschueren ARM, Dekker C. 1998. Room-temperature transistor based on a single carbon nanotube. Nature 393:49-52
-
(1998)
Nature
, vol.393
, pp. 49-52
-
-
Tans, S.J.1
Verschueren, A.R.M.2
Dekker, C.3
-
67
-
-
0042991275
-
Ballistic carbon nanotube field-effect transistors
-
Javey A, Guo J, Wang Q, Lundstrom M, Dai H. 2003. Ballistic carbon nanotube field-effect transistors. Nature 424:654-57
-
(2003)
Nature
, vol.424
, pp. 654-657
-
-
Javey, A.1
Guo, J.2
Wang, Q.3
Lundstrom, M.4
Dai, H.5
-
68
-
-
78649988835
-
Length scaling of carbon nanotube transistors
-
Franklin AD, Chen Z. 2010. Length scaling of carbon nanotube transistors. Nat. Nanotechnol. 5:858-62
-
(2010)
Nat. Nanotechnol.
, vol.5
, pp. 858-862
-
-
Franklin, A.D.1
Chen, Z.2
-
69
-
-
28844440496
-
Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors
-
Zhou XJ, Park JY, Huang SM, Liu J, McEuen PL. 2005. Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. Phys. Rev. Lett. 95:146805
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 146805
-
-
Zhou, X.J.1
Park, J.Y.2
Huang, S.M.3
Liu, J.4
McEuen, P.L.5
-
70
-
-
84856969577
-
Sub-10 nm carbon nanotube transistor
-
Franklin AD, Luisier M, Han S-J, Tulevski G, Breslin CM, et al. 2012. Sub-10 nm carbon nanotube transistor. Nano Lett. 12:758-62
-
(2012)
Nano Lett.
, vol.12
, pp. 758-762
-
-
Franklin, A.D.1
Luisier, M.2
Han, S.-J.3
Tulevski, G.4
Breslin, C.M.5
-
71
-
-
84863230306
-
Variability in carbon nanotube transistors: Improving device-to-device consistency
-
Franklin AD, Tulevski GS, Han S-J, Shahrjerdi D, Cao Q, et al. 2012. Variability in carbon nanotube transistors: improving device-to-device consistency. ACS Nano 6:1109-15
-
(2012)
ACS Nano
, vol.6
, pp. 1109-1115
-
-
Franklin, A.D.1
Tulevski, G.S.2
Han, S.-J.3
Shahrjerdi, D.4
Cao, Q.5
-
72
-
-
47949116903
-
Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates
-
Cao Q, Kim H-S, Pimparkar N, Kulkarni JP, Wang C, et al. 2008. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 454:495-500
-
(2008)
Nature
, vol.454
, pp. 495-500
-
-
Cao, Q.1
Kim, H.-S.2
Pimparkar, N.3
Kulkarni, J.P.4
Wang, C.5
-
73
-
-
79952442912
-
Flexible highperformance carbon nanotube integrated circuits
-
Sun D-M, Timmermans MY, Tian Y, Nasibulin AG, Kauppinen EI, et al. 2011. Flexible highperformance carbon nanotube integrated circuits. Nat. Nanotechnol. 6:156-61
-
(2011)
Nat. Nanotechnol.
, vol.6
, pp. 156-161
-
-
Sun, D.-M.1
Timmermans, M.Y.2
Tian, Y.3
Nasibulin, A.G.4
Kauppinen, E.I.5
-
74
-
-
84884587418
-
User-interactive electronic skin for instantaneous pressure visualization
-
Wang C, Hwang D, Yu Z, Takei K, Park J, et al. 2013. User-interactive electronic skin for instantaneous pressure visualization. Nat. Mater. 12:899-904
-
(2013)
Nat. Mater.
, vol.12
, pp. 899-904
-
-
Wang, C.1
Hwang, D.2
Yu, Z.3
Takei, K.4
Park, J.5
-
75
-
-
84881578056
-
Fully printed, high performance carbon nanotube thin-film transistors on flexible substrates
-
Lau PH, Takei K, Wang C, Ju Y, Kim J, et al. 2013. Fully printed, high performance carbon nanotube thin-film transistors on flexible substrates. Nano Lett. 13:3864-69
-
(2013)
Nano Lett.
, vol.13
, pp. 3864-3869
-
-
Lau, P.H.1
Takei, K.2
Wang, C.3
Ju, Y.4
Kim, J.5
-
76
-
-
0347988239
-
Aligned multiwalled carbon nanotube membranes
-
Hinds BJ, Chopran, Rantell T, Andrews R, Gavalas V, Bachas LG. 2004. Aligned multiwalled carbon nanotube membranes. Science 303:62-65
-
(2004)
Science
, vol.303
, pp. 62-65
-
-
Hinds, B.J.1
Chopran, R.T.2
Andrews, R.3
Gavalas, V.4
Bachas, L.G.5
-
77
-
-
22944489846
-
Reversible biochemical switching of ionic transport through aligned carbon nanotube membranes
-
Nednoor P, Chopran, Gavalas V, Bachas LG, Hinds BJ. 2005. Reversible biochemical switching of ionic transport through aligned carbon nanotube membranes. Chem. Mater. 17:3595-99
-
(2005)
Chem. Mater.
, vol.17
, pp. 3595-3599
-
-
Nednoor, P.1
Chopran, G.V.2
Bachas, L.G.3
Hinds, B.J.4
-
78
-
-
33646753161
-
Fast mass transport through sub-2-nanometer carbon nanotubes
-
Holt JK, Park HG, Wang Y, Stadermann M, Artyukhin AB, et al. 2006. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312:1034-37
-
(2006)
Science
, vol.312
, pp. 1034-1037
-
-
Holt, J.K.1
Park, H.G.2
Wang, Y.3
Stadermann, M.4
Artyukhin, A.B.5
-
80
-
-
77956511031
-
Coherence resonance in a single-walled carbon nanotube ion channel
-
Lee CY, Choi W, Han J-H, Strano MS. 2010. Coherence resonance in a single-walled carbon nanotube ion channel. Science 329:1320-24
-
(2010)
Science
, vol.329
, pp. 1320-1324
-
-
Lee, C.Y.1
Choi, W.2
Han, J.-H.3
Strano, M.S.4
-
81
-
-
84862796315
-
Electrophoretically induced aqueous flow through single-walled carbon nanotube membranes
-
Wu J, Gerstandt K, Zhang H, Liu J, Hinds BJ. 2012. Electrophoretically induced aqueous flow through single-walled carbon nanotube membranes. Nat. Nanotechnol. 7:133-39
-
(2012)
Nat. Nanotechnol.
, vol.7
, pp. 133-139
-
-
Wu, J.1
Gerstandt, K.2
Zhang, H.3
Liu, J.4
Hinds, B.J.5
-
82
-
-
84870550159
-
Reactive depth and performance of an electrochemical carbon nanotube network as a function of mass transport
-
Gao G, Vecitis CD. 2012. Reactive depth and performance of an electrochemical carbon nanotube network as a function of mass transport. ACS Appl. Mater. Interfaces 4:6096-103
-
(2012)
ACS Appl. Mater. Interfaces
, vol.4
, pp. 6096-6103
-
-
Gao, G.1
Vecitis, C.D.2
-
83
-
-
79954487842
-
Electrochemical multiwalled carbon nanotube filter for viral and bacterial removal and inactivation
-
Vecitis CD, SchnoorMH, Rahaman MS, Schiffman JD, Elimelech M. 2011. Electrochemical multiwalled carbon nanotube filter for viral and bacterial removal and inactivation. Environ. Sci. Technol. 45:3672-79
-
(2011)
Environ. Sci. Technol.
, vol.45
, pp. 3672-3679
-
-
Vecitis, C.D.1
Schnoormh Rahaman, M.S.2
Schiffman, J.D.3
Elimelech, M.4
-
84
-
-
0030700615
-
Nanotubule-based molecular-filtration membranes
-
Jirage KB, Hulteen JC, Martin CR. 1997. Nanotubule-based molecular-filtration membranes. Science 278:655-58
-
(1997)
Science
, vol.278
, pp. 655-658
-
-
Jirage, K.B.1
Hulteen, J.C.2
Martin, C.R.3
-
85
-
-
79959809734
-
Mass transport through carbon nanotube membranes in three different regimes: Ionic diffusion and gas and liquid flow
-
Majumder M, ChopraN, Hinds BJ. 2011. Mass transport through carbon nanotube membranes in three different regimes: ionic diffusion and gas and liquid flow. ACS Nano 5:3867-77
-
(2011)
ACS Nano
, vol.5
, pp. 3867-3877
-
-
Majumder, M.1
Chopran Hinds, B.J.2
-
86
-
-
80051577382
-
Highly efficient electroosmotic flow through functionalized carbon nanotube membranes
-
WuJ, Gerstandt K, Majumder M, Zhan X, Hinds BJ. 2011. Highly efficient electroosmotic flow through functionalized carbon nanotube membranes. Nanoscale 3:3321-28
-
(2011)
Nanoscale
, vol.3
, pp. 3321-3328
-
-
Wu, J.1
Gerstandt, K.2
Majumder, M.3
Zhan, X.4
Hinds, B.J.5
-
87
-
-
84873948506
-
Quantitative examination of aqueous ferrocyanide oxidation in a carbon nanotube electrochemical filter: Effects of flow rate, ionic strength, and cathode material
-
Schnoor MH, Vecitis CD. 2013. Quantitative examination of aqueous ferrocyanide oxidation in a carbon nanotube electrochemical filter: effects of flow rate, ionic strength, and cathode material. J. Phys. Chem. C 117:2855-67
-
(2013)
J. Phys. Chem. C
, vol.117
, pp. 2855-2867
-
-
Schnoor, M.H.1
Vecitis, C.D.2
-
88
-
-
84895746145
-
Conductive CNT-PVDF membrane for capacitive organic fouling reduction
-
Zhang Q, Vecitis CD. 2014. Conductive CNT-PVDF membrane for capacitive organic fouling reduction. J. Membr. Sci. 459:143-56
-
(2014)
J. Membr. Sci.
, vol.459
, pp. 143-156
-
-
Zhang, Q.1
Vecitis, C.D.2
-
89
-
-
84875958530
-
Electrocatalysis aqueous phenol with carbon nanotubes networks as anodes: Electrodes passivation and regeneration and prevention
-
Gao G, Vecitis CD. 2013. Electrocatalysis aqueous phenol with carbon nanotubes networks as anodes: electrodes passivation and regeneration and prevention. Electrochim. Acta 98:131-38
-
(2013)
Electrochim. Acta
, vol.98
, pp. 131-138
-
-
Gao, G.1
Vecitis, C.D.2
-
90
-
-
84858786245
-
Renewable cathode materials from biopolymer/conjugated polymer interpenetrating networks
-
Milczarek G, Inganas O. 2012. Renewable cathode materials from biopolymer/conjugated polymer interpenetrating networks. Science 335:1468-71
-
(2012)
Science
, vol.335
, pp. 1468-1471
-
-
Milczarek, G.1
Inganas, O.2
-
91
-
-
0034251416
-
Criteria for choosing transparent conductors
-
Gordon RG. 2000. Criteria for choosing transparent conductors. MRS Bull. 25:52-57
-
(2000)
MRS Bull.
, vol.25
, pp. 52-57
-
-
Gordon, R.G.1
-
92
-
-
33846164819
-
Organic light-emitting diodes having carbon nanotube anodes
-
Li J, Hu L, Wang L, Zhou Y, Gruner G, Marks TJ. 2006. Organic light-emitting diodes having carbon nanotube anodes. Nano Lett. 6:2472-77
-
(2006)
Nano Lett.
, vol.6
, pp. 2472-2477
-
-
Li, J.1
Hu, L.2
Wang, L.3
Zhou, Y.4
Gruner, G.5
Marks, T.J.6
-
93
-
-
72149099132
-
Carbon-nanotube film on plastic as transparent electrode for resistive touch screens
-
Hecht DS, Thomas D, Hu L, Ladous C, Lam T, et al. 2009. Carbon-nanotube film on plastic as transparent electrode for resistive touch screens. J. Soc. Inform. Display 17:941-46
-
(2009)
J. Soc. Inform. Display
, vol.17
, pp. 941-946
-
-
Hecht, D.S.1
Thomas, D.2
Hu, L.3
Ladous, C.4
Lam, T.5
-
94
-
-
77958058692
-
Contact resistance of flexible, transparent carbon nanotube films with metals
-
Xu H, Chen L, Hu L, Zhitenev N. 2010. Contact resistance of flexible, transparent carbon nanotube films with metals. Appl. Phys. Lett. 97:143116
-
(2010)
Appl. Phys. Lett.
, vol.97
, pp. 143116
-
-
Xu, H.1
Chen, L.2
Hu, L.3
Zhitenev, N.4
-
95
-
-
77949885151
-
Flexible organic light-emitting diodes with transparent carbon nanotube electrodes: Problems and solutions
-
Hu L, Li J, Liu J, Gruner G, Marks T. 2010. Flexible organic light-emitting diodes with transparent carbon nanotube electrodes: problems and solutions. Nanotechnology 21:155202
-
(2010)
Nanotechnology
, vol.21
, pp. 155202
-
-
Hu, L.1
Li, J.2
Liu, J.3
Gruner, G.4
Marks, T.5
-
96
-
-
79953234742
-
Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures
-
Hecht DS, Hu L, Irvin G. 2011. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 23:1482-513
-
(2011)
Adv. Mater.
, vol.23
, pp. 1482-1513
-
-
Hecht, D.S.1
Hu, L.2
Irvin, G.3
-
97
-
-
78449285746
-
Aerosolsynthesized SWCNT networks with tunable conductivity and transparency by a dry transfer technique
-
Kaskela A, Nasibulin AG, Timmermans MY, Aitchison B, Papadimitratos A, et al. 2010. Aerosolsynthesized SWCNT networks with tunable conductivity and transparency by a dry transfer technique. Nano Lett. 10:4349-55
-
(2010)
Nano Lett.
, vol.10
, pp. 4349-4355
-
-
Kaskela, A.1
Nasibulin, A.G.2
Timmermans, M.Y.3
Aitchison, B.4
Papadimitratos, A.5
-
98
-
-
84897917039
-
25th anniversary article: Carbon nanotube-and graphene-based transparent conductive films for optoelectronic devices
-
Du J, Pei S, Ma L, Cheng HM. 2014. 25th anniversary article: carbon nanotube-and graphene-based transparent conductive films for optoelectronic devices. Adv. Mater. 26:1958-91
-
(2014)
Adv. Mater.
, vol.26
, pp. 1958-1991
-
-
Du, J.1
Pei, S.2
Ma, L.3
Cheng, H.M.4
-
99
-
-
33749345766
-
Conductivity scaling with bundle length and diameter in single walled carbon nanotube networks
-
Hecht D, Hu L, Gruner G. 2006. Conductivity scaling with bundle length and diameter in single walled carbon nanotube networks. Appl. Phys. Lett. 89:133112-13
-
(2006)
Appl. Phys. Lett.
, vol.89
, pp. 133112-133113
-
-
Hecht, D.1
Hu, L.2
Gruner, G.3
-
100
-
-
33645508931
-
A method of printing carbon nanotube thin films
-
Zhou Y, Hu L, Gruner G. 2006. A method of printing carbon nanotube thin films. Appl. Phys. Lett. 88:123109
-
(2006)
Appl. Phys. Lett.
, vol.88
, pp. 123109
-
-
Zhou, Y.1
Hu, L.2
Gruner, G.3
-
101
-
-
65449184153
-
Highly stretchable, conductive, and transparent nanotube thin films
-
Hu L, Yuan W, Brochu P, Gruner G, Pei Q. 2009. Highly stretchable, conductive, and transparent nanotube thin films. Appl. Phys. Lett. 94:161108
-
(2009)
Appl. Phys. Lett.
, vol.94
, pp. 161108
-
-
Hu, L.1
Yuan, W.2
Brochu, P.3
Gruner, G.4
Pei, Q.5
-
102
-
-
72849152058
-
Electrical connectivity in single-walled carbon nanotube networks
-
Nirmalraj PN, Lyons PE, De S, Coleman JN, Boland JJ. 2009. Electrical connectivity in single-walled carbon nanotube networks. Nano Lett. 9:3890-95
-
(2009)
Nano Lett.
, vol.9
, pp. 3890-3895
-
-
Nirmalraj, P.N.1
Lyons, P.E.2
De S3
Coleman, J.N.4
Boland, J.J.5
-
103
-
-
77955545600
-
Transparent conductors from layer-by-layer assembled SWNT films: Importance of mechanical properties and a new figure of merit
-
Shim BS, Zhu J, Jan E, Critchley K, Kotov NA. 2010. Transparent conductors from layer-by-layer assembled SWNT films: importance of mechanical properties and a new figure of merit. ACS Nano 4:3725-34
-
(2010)
ACS Nano
, vol.4
, pp. 3725-3734
-
-
Shim, B.S.1
Zhu, J.2
Jan, E.3
Critchley, K.4
Kotov, N.A.5
-
104
-
-
79251571463
-
High conductivity transparent carbon nanotube films deposited from superacid
-
Hecht DS, Heintz AM, Lee R, Hu L, Moore B, et al. 2011. High conductivity transparent carbon nanotube films deposited from superacid. Nanotechnology 22:075201
-
(2011)
Nanotechnology
, vol.22
, pp. 075201
-
-
Hecht, D.S.1
Heintz, A.M.2
Lee, R.3
Hu, L.4
Moore, B.5
-
105
-
-
52449095318
-
Stability of doped transparent carbon nanotube electrodes
-
Jackson R, Domercq B, Jain R, Kippelen B, Graham S. 2008. Stability of doped transparent carbon nanotube electrodes. Adv. Funct. Mater. 18:2548-54
-
(2008)
Adv. Funct. Mater.
, vol.18
, pp. 2548-2554
-
-
Jackson, R.1
Domercq, B.2
Jain, R.3
Kippelen, B.4
Graham, S.5
-
107
-
-
59849084114
-
Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction
-
Gong K, Du F, Xia Z, Durstock M, Dai L. 2009. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323:760-64
-
(2009)
Science
, vol.323
, pp. 760-764
-
-
Gong, K.1
Du, F.2
Xia, Z.3
Durstock, M.4
Dai, L.5
-
108
-
-
7544234502
-
What are batteries, fuel cells, and supercapacitors
-
Winter M, Brodd RJ. 2004. What are batteries, fuel cells, and supercapacitors Chem. Rev. 104:4245-70
-
(2004)
Chem Rev.
, vol.104
, pp. 4245-4270
-
-
Winter, M.1
Brodd, R.J.2
-
109
-
-
77950153433
-
Carbon nanotubes decorated with Pt nanoparticles via electrostatic self-assembly: A highly active oxygen reduction electrocatalyst
-
Zhang S, Shao Y, Yin G, Lin Y. 2010. Carbon nanotubes decorated with Pt nanoparticles via electrostatic self-assembly: a highly active oxygen reduction electrocatalyst. J. Mater. Chem. 20:2826-30
-
(2010)
J. Mater. Chem.
, vol.20
, pp. 2826-2830
-
-
Zhang, S.1
Shao, Y.2
Yin, G.3
Lin, Y.4
-
110
-
-
33644977554
-
Single-wall carbon nanotubes supported platinum nanoparticles with improved electrocatalytic activity for oxygen reduction reaction
-
Kongkanand A, Kuwabata S, Girishkumar G, Kamat P. 2006. Single-wall carbon nanotubes supported platinum nanoparticles with improved electrocatalytic activity for oxygen reduction reaction. Langmuir 22:2392-96
-
(2006)
Langmuir
, vol.22
, pp. 2392-2396
-
-
Kongkanand, A.1
Kuwabata, S.2
Girishkumar, G.3
Kamat, P.4
-
111
-
-
54949127144
-
Carbon nanotubes decorated with Pt nanocubes by a noncovalent functionalization method and their role in oxygen reduction
-
Yang W, Wang X, Yang F, Yang C, Yang X. 2008. Carbon nanotubes decorated with Pt nanocubes by a noncovalent functionalization method and their role in oxygen reduction. Adv. Mater. 20:2579-87
-
(2008)
Adv. Mater.
, vol.20
, pp. 2579-2587
-
-
Yang, W.1
Wang, X.2
Yang, F.3
Yang, C.4
Yang, X.5
-
112
-
-
79951604336
-
Nitrogen-doped carbon nanotubes as platinum catalyst supports for oxygen reduction reaction in proton exchange membrane fuel cells
-
Higgins DC, Meza D, Chen Z. 2010. Nitrogen-doped carbon nanotubes as platinum catalyst supports for oxygen reduction reaction in proton exchange membrane fuel cells. J. Phys. Chem. C 114:21982-88
-
(2010)
J. Phys. Chem. C
, vol.114
, pp. 21982-21988
-
-
Higgins, D.C.1
Meza, D.2
Chen, Z.3
-
113
-
-
33745432252
-
Platinum/multiwalled carbon nanotubesplatinum/carbon composites as electrocatalysts for oxygen reduction reaction in proton exchange membrane fuel cell
-
Shaijumon MM, Ramaprabhu S, Rajalakshmi N. 2006. Platinum/multiwalled carbon nanotubesplatinum/carbon composites as electrocatalysts for oxygen reduction reaction in proton exchange membrane fuel cell. Appl. Phys. Lett. 88:253105
-
(2006)
Appl. Phys. Lett.
, vol.88
, pp. 253105
-
-
Shaijumon, M.M.1
Ramaprabhu, S.2
Rajalakshmi, N.3
-
114
-
-
68749100076
-
Electrocatalytic activity and stability of nitrogen-containing carbon nanotubes in the oxygen reduction reaction
-
Kundu S, Nagaiah TC, XiaW, WangY, Dommele SV, et al. 2009. Electrocatalytic activity and stability of nitrogen-containing carbon nanotubes in the oxygen reduction reaction. J. Phys. Chem. C 113:14302-10
-
(2009)
J. Phys. Chem. C
, vol.113
, pp. 14302-14310
-
-
Kundu, S.1
Nagaiah, T.C.2
Xia, W.3
Wang, Y.4
Dommele, S.V.5
-
115
-
-
77956868477
-
Nitrogen doped carbon nanotubes and their impact on the oxygen reduction reaction in fuel cells
-
Chen Z, Higgins D, Chen Z. 2010. Nitrogen doped carbon nanotubes and their impact on the oxygen reduction reaction in fuel cells. Carbon 48:3057-65
-
(2010)
Carbon
, vol.48
, pp. 3057-3065
-
-
Chen, Z.1
Higgins, D.2
Chen, Z.3
-
116
-
-
76449102345
-
Nitrogen-doped carbon nanotubes as a cathode catalyst for the oxygen reduction reaction in alkaline medium
-
Nagaiah TC, Kundu S, Bron M, Muhler M, Schuhmann W. 2010. Nitrogen-doped carbon nanotubes as a cathode catalyst for the oxygen reduction reaction in alkaline medium. Electrochem. Commun. 12:338-41
-
(2010)
Electrochem. Commun.
, vol.12
, pp. 338-341
-
-
Nagaiah, T.C.1
Kundu, S.2
Bron, M.3
Muhler, M.4
Schuhmann, W.5
-
117
-
-
84891716012
-
The effect of edge carbon of carbon nanotubes on the electrocatalytic performance of oxygen reduction reaction
-
Zhong G, Wang H, Yu H, Peng F. 2014. The effect of edge carbon of carbon nanotubes on the electrocatalytic performance of oxygen reduction reaction. Electrochem. Commun. 40:5-8
-
(2014)
Electrochem. Commun.
, vol.40
, pp. 5-8
-
-
Zhong, G.1
Wang, H.2
Yu, H.3
Peng, F.4
-
118
-
-
77950140364
-
Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells
-
Qu L, Liu Y, Baek J-B, Dai L. 2010. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4:1321-26
-
(2010)
ACS Nano
, vol.4
, pp. 1321-1326
-
-
Qu, L.1
Liu, Y.2
Baek, J.-B.3
Dai, L.4
-
119
-
-
78449252889
-
3-D carbon nanotube structures used as high performance catalyst for oxygen reduction reaction
-
Xiong W, Du F, Liu Y, Perez A Jr, Supp M, et al. 2010. 3-D carbon nanotube structures used as high performance catalyst for oxygen reduction reaction. J. Am. Chem. Soc. 132:15839-41
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 15839-15841
-
-
Xiong, W.1
Du, F.2
Liu, Y.3
Perez, A.4
Supp, M.5
-
120
-
-
33750348151
-
Simultaneous doping of boron and nitrogen into a carbon to enhance its oxygen reduction activity in proton exchange membrane fuel cells
-
Ozaki J-I, Anahara T, Kimuran, Oya A. 2006. Simultaneous doping of boron and nitrogen into a carbon to enhance its oxygen reduction activity in proton exchange membrane fuel cells. Carbon 44:3358-61
-
(2006)
Carbon
, vol.44
, pp. 3358-3361
-
-
Ozaki, J.-I.1
Anahara, T.2
Kimuran, O.A.3
-
121
-
-
84867148156
-
Vertically aligned carbon nanotube arrays co-doped with phosphorus and nitrogen as efficient metal-free electrocatalysts for oxygen reduction
-
Yu D, Xue Y, Dai L. 2012. Vertically aligned carbon nanotube arrays co-doped with phosphorus and nitrogen as efficient metal-free electrocatalysts for oxygen reduction. J. Phys. Chem. Lett. 3:2863-70
-
(2012)
J. Phys. Chem. Lett.
, vol.3
, pp. 2863-2870
-
-
Yu, D.1
Xue, Y.2
Dai, L.3
-
122
-
-
78049400297
-
Highly efficient metal-free growth of nitrogen-doped single-walled carbon nanotubes on plasma-etched substrates for oxygen reduction
-
Yu D, ZhangQ, Dai L. 2010. Highly efficient metal-free growth of nitrogen-doped single-walled carbon nanotubes on plasma-etched substrates for oxygen reduction. J. Am. Chem. Soc. 132:15127-29
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 15127-15129
-
-
Yu, D.1
Zhang, Q.2
Dai, L.3
-
123
-
-
82455193271
-
Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction
-
Yang L, Jiang S, Zhao Y, Zhu L, Chen S, et al. 2011. Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. Engl. 123:7270-73
-
(2011)
Angew. Chem. Int. Ed. Engl.
, vol.123
, pp. 7270-7273
-
-
Yang, L.1
Jiang, S.2
Zhao, Y.3
Zhu, L.4
Chen, S.5
-
124
-
-
85001819662
-
Pyrolytically grown arrays of highly aligned BxCyNz nanotubes
-
Han W-Q, Cumings J, Zettl A. 2001. Pyrolytically grown arrays of highly aligned BxCyNz nanotubes. Appl. Phys. Lett. 78:2769-71
-
(2001)
Appl. Phys. Lett.
, vol.78
, pp. 2769-2771
-
-
Han, W.-Q.1
Cumings, J.2
Zettl, A.3
-
125
-
-
11744334526
-
New one-dimensional conductors: Graphitic microtubules
-
Hamada N, Sawada S-I, Oshiyama A. 1992. New one-dimensional conductors: graphitic microtubules. Phys. Rev. Lett. 68:1579-81
-
(1992)
Phys. Rev. Lett.
, vol.68
, pp. 1579-1581
-
-
Hamada, N.1
Sawada, S.-I.2
Oshiyama, A.3
-
126
-
-
82455192742
-
Vertically aligned BCN nanotubes as efficient metal-free electrocatalysts for the oxygen reduction reaction: A synergetic effect by co-doping with boron and nitrogen
-
Wang S, Iyyamperumal E, Roy A, Xue Y, Yu D, Dai L. 2011. Vertically aligned BCN nanotubes as efficient metal-free electrocatalysts for the oxygen reduction reaction: a synergetic effect by co-doping with boron and nitrogen. Angew. Chem. Int. Ed. Engl. 50:11756-60
-
(2011)
Angew. Chem. Int. Ed. Engl.
, vol.50
, pp. 11756-11760
-
-
Wang, S.1
Iyyamperumal, E.2
Roy, A.3
Xue, Y.4
Yu, D.5
Dai, L.6
-
127
-
-
84863720819
-
An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes
-
Li Y, Zhou W, Wang H, Xie L, Liang Y, et al. 2012. An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes. Nat. Nanotechnol. 7:394-400
-
(2012)
Nat. Nanotechnol.
, vol.7
, pp. 394-400
-
-
Li, Y.1
Zhou, W.2
Wang, H.3
Xie, L.4
Liang, Y.5
-
128
-
-
0036680190
-
Electrochemical storage of energy in carbon nanotubes and nanostructured carbons
-
Frackowiak E, Beguin F. 2002. Electrochemical storage of energy in carbon nanotubes and nanostructured carbons. Carbon 40:1775-87
-
(2002)
Carbon
, vol.40
, pp. 1775-1787
-
-
Frackowiak, E.1
Beguin, F.2
-
129
-
-
6044256332
-
High power electrochemical capacitors based on carbon nanotube electrodes
-
Niu C, Sichel EK, Hoch R, Moy D, Tennent H. 1997. High power electrochemical capacitors based on carbon nanotube electrodes. Appl. Phys. Lett. 70:1480-82
-
(1997)
Appl. Phys. Lett.
, vol.70
, pp. 1480-1482
-
-
Niu, C.1
Sichel, E.K.2
Hoch, R.3
Moy, D.4
Tennent, H.5
-
131
-
-
42149090541
-
Frequency response characteristic of single-walled carbon nanotubes as supercapacitor electrode material
-
Liu CG, Liu M, Li F, Cheng HM. 2008. Frequency response characteristic of single-walled carbon nanotubes as supercapacitor electrode material. Appl. Phys. Lett. 92:143108
-
(2008)
Appl. Phys. Lett.
, vol.92
, pp. 143108
-
-
Liu, C.G.1
Liu, M.2
Li, F.3
Cheng, H.M.4
-
132
-
-
0036687388
-
High-capacitance supercapacitor using a nanocomposite electrode of single-walled carbon nanotube and polypyrrole
-
An K, Jeon K, Heo J, Lim S, Bae D, Lee Y. 2002. High-capacitance supercapacitor using a nanocomposite electrode of single-walled carbon nanotube and polypyrrole. J. Electrochem. Soc. 149:A1058-62
-
(2002)
J. Electrochem. Soc.
, vol.149
, pp. A1058-A1062
-
-
An, K.1
Jeon, K.2
Heo, J.3
Lim, S.4
Bae, D.5
Lee, Y.6
-
133
-
-
77956965252
-
Extracting the full potential of single-walled carbon nanotubes as durable supercapacitor electrodes operable at 4 v with high power and energy density
-
Izadi-Najafabadi A, Yasuda S, Kobashi K, Yamada T, Futaba DN, et al. 2010. Extracting the full potential of single-walled carbon nanotubes as durable supercapacitor electrodes operable at 4 V with high power and energy density. Adv. Mater. 22:E235-41
-
(2010)
Adv. Mater.
, vol.22
, pp. E235-E241
-
-
Izadi-Najafabadi, A.1
Yasuda, S.2
Kobashi, K.3
Yamada, T.4
Futaba, D.N.5
-
134
-
-
0037167135
-
Enhanced capacitance of carbon nanotubes through chemical activation
-
Frackowiak E, Delpeux S, Jurewicz K, Szostak K, Cazorla-Amoros D, Beguin F. 2002. Enhanced capacitance of carbon nanotubes through chemical activation. Chem. Phys. Lett. 361:35-41
-
(2002)
Chem. Phys. Lett.
, vol.361
, pp. 35-41
-
-
Frackowiak, E.1
Delpeux, S.2
Jurewicz, K.3
Szostak, K.4
Cazorla-Amoros, D.5
Beguin, F.6
-
135
-
-
77950845832
-
Nanostructured carbons: Double-layer capacitance and more
-
Simon P, Burke AF. 2008. Nanostructured carbons: double-layer capacitance and more. Electrochem. Soc. Interface 17:38-43
-
(2008)
Electrochem. Soc. Interface
, vol.17
, pp. 38-43
-
-
Simon, P.1
Burke, A.F.2
-
136
-
-
33751561938
-
Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes
-
Futaba DN, Hata K, Yamada T, Hiraoka T, Hayamizu Y, et al. 2006. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat. Mater. 5:987-94
-
(2006)
Nat. Mater.
, vol.5
, pp. 987-994
-
-
Futaba, D.N.1
Hata, K.2
Yamada, T.3
Hiraoka, T.4
Hayamizu, Y.5
-
137
-
-
62649166350
-
High performance electrochemical capacitors from aligned carbon nanotube electrodes and ionic liquid electrolytes
-
Lu W, Qu L, Henry K, Dai L. 2009. High performance electrochemical capacitors from aligned carbon nanotube electrodes and ionic liquid electrolytes. J. Power Sources 189:1270-77
-
(2009)
J. Power Sources
, vol.189
, pp. 1270-1277
-
-
Lu, W.1
Qu, L.2
Henry, K.3
Dai, L.4
-
138
-
-
84859175911
-
High-performance supercapacitors based on vertically aligned carbon nanotubes and nonaqueous electrolytes
-
Kim B, Chung H, Kim W. 2012. High-performance supercapacitors based on vertically aligned carbon nanotubes and nonaqueous electrolytes. Nanotechnology 23:155401
-
(2012)
Nanotechnology
, vol.23
, pp. 155401
-
-
Kim, B.1
Chung, H.2
Kim, W.3
-
139
-
-
33947593103
-
Direct growth of aligned carbon nanotubes on bulk metals
-
Talapatra S, Kar S, Pal SK, Vajtai R, Ci L, et al. 2006. Direct growth of aligned carbon nanotubes on bulk metals. Nat. Nanotechnol. 1:112-16
-
(2006)
Nat. Nanotechnol.
, vol.1
, pp. 112-116
-
-
Talapatra, S.1
Kar, S.2
Pal, S.K.3
Vajtai, R.4
Ci, L.5
-
140
-
-
34748822489
-
Flexible energy storage devices based on nanocomposite paper
-
Pushparaj VL, Shaijumon MM, Kumar A, Murugesan S, Ci L, et al. 2007. Flexible energy storage devices based on nanocomposite paper. Proc. Natl. Acad. Sci. USA 104:13574-77
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 13574-13577
-
-
Pushparaj, V.L.1
Shaijumon, M.M.2
Kumar, A.3
Murugesan, S.4
Ci, L.5
-
141
-
-
29144460941
-
Highly dispersed ruthenium oxide nanoparticles on carboxylated carbon nanotubes for supercapacitor electrode materials
-
Kim Y-T, Tadai K, Mitani T. 2005. Highly dispersed ruthenium oxide nanoparticles on carboxylated carbon nanotubes for supercapacitor electrode materials. J. Mater. Chem. 15:4914-21
-
(2005)
J. Mater. Chem.
, vol.15
, pp. 4914-4921
-
-
Kim, Y.-T.1
Tadai, K.2
Mitani, T.3
-
142
-
-
33748046819
-
Electrochemical capacitance of nanocomposite films formed by loading carbon nanotubes with ruthenium oxide
-
Lee J-K, Pathan HM, Jung K-D, Joo O-S. 2006. Electrochemical capacitance of nanocomposite films formed by loading carbon nanotubes with ruthenium oxide. J. Power Sources 159:1527-31
-
(2006)
J. Power Sources
, vol.159
, pp. 1527-1531
-
-
Lee, J.-K.1
Pathan, H.M.2
Jung, K.-D.3
Joo, O.-S.4
-
143
-
-
30344465299
-
Microstructural and electrochemical characterization of RuO2/CNT composites synthesized in supercritical diethyl amine
-
Sun Z, Liu Z, Han B, Miao S, Du J, Miao Z. 2006. Microstructural and electrochemical characterization of RuO2/CNT composites synthesized in supercritical diethyl amine. Carbon 44:888-93
-
(2006)
Carbon
, vol.44
, pp. 888-893
-
-
Sun, Z.1
Liu, Z.2
Han, B.3
Miao, S.4
Du, J.5
Miao, Z.6
-
144
-
-
0035252784
-
Studies on activated carbon capacitor materials loaded with different amounts of ruthenium oxide
-
Ramani M, Haran BS, White RE, Popov BN, Arsov L. 2001. Studies on activated carbon capacitor materials loaded with different amounts of ruthenium oxide. J. Power Sources 93:209-14
-
(2001)
J. Power Sources
, vol.93
, pp. 209-214
-
-
Ramani, M.1
Haran, B.S.2
White, R.E.3
Popov, B.N.4
Arsov, L.5
-
145
-
-
0141998500
-
The properties of carbonsupported hydrous ruthenium oxide obtained from RuOxHy sol
-
Panic V, Vidakovic T, Gojkovic S, Dekanski A, Milonjic S, Nikolic B. 2003. The properties of carbonsupported hydrous ruthenium oxide obtained from RuOxHy sol. Electrochim. Acta 48:3805-13
-
(2003)
Electrochim. Acta
, vol.48
, pp. 3805-3813
-
-
Panic, V.1
Vidakovic, T.2
Gojkovic, S.3
Dekanski, A.4
Milonjic, S.5
Nikolic, B.6
-
146
-
-
69449083438
-
Carbon nanotube/MnO2 composites synthesized by microwave-assisted method for supercapacitors with high power and energy densities
-
Yan J, Fan Z, Wei T, Cheng J, Shao B, et al. 2009. Carbon nanotube/MnO2 composites synthesized by microwave-assisted method for supercapacitors with high power and energy densities. J. Power Sources 194:1202-7
-
(2009)
J. Power Sources
, vol.194
, pp. 1202-1207
-
-
Yan, J.1
Fan, Z.2
Wei, T.3
Cheng, J.4
Shao, B.5
-
147
-
-
77955430412
-
Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes
-
Yan J, Fan Z, Wei T, Qian W, Zhang M, Wei F. 2010. Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes. Carbon 48:3825-33
-
(2010)
Carbon
, vol.48
, pp. 3825-3833
-
-
Yan, J.1
Fan, Z.2
Wei, T.3
Qian, W.4
Zhang, M.5
Wei, F.6
-
148
-
-
33646387436
-
Synthesis and electrochemical characterization of vanadium oxide on carbon nanotube film substrate for pseudocapacitor applications
-
Kim I-H, Kim J-H, Cho B-W, Lee Y-H, Kim K-B. 2006. Synthesis and electrochemical characterization of vanadium oxide on carbon nanotube film substrate for pseudocapacitor applications. J. Electrochem. Soc. 153:A989-96
-
(2006)
J. Electrochem. Soc.
, vol.153
, pp. A989-A996
-
-
Kim, I.-H.1
Kim, J.-H.2
Cho, B.-W.3
Lee, Y.-H.4
Kim, K.-B.5
-
149
-
-
61549113114
-
Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage
-
Zhang H, Cao GP, Wang ZY, Yang YS, Shi ZJ, Gu ZN. 2008. Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. Nano Lett. 8:2664-68
-
(2008)
Nano Lett.
, vol.8
, pp. 2664-2668
-
-
Zhang, H.1
Cao, G.P.2
Wang, Z.Y.3
Yang, Y.S.4
Shi, Z.J.5
Gu, Z.N.6
-
150
-
-
78649701511
-
A promising way to enhance the electrochemical behavior of flexible singlewalled carbon nanotube/polyaniline composite films
-
Liu J, Sun J, Gao L. 2010. A promising way to enhance the electrochemical behavior of flexible singlewalled carbon nanotube/polyaniline composite films. J. Phys. Chem. C 114:19614-20
-
(2010)
J. Phys. Chem. C
, vol.114
, pp. 19614-19620
-
-
Liu, J.1
Sun, J.2
Gao, L.3
-
151
-
-
70349166457
-
Self-supported supercapacitor membranes: Polypyrrole-coated multi-walled carbon nanotube networks enabled by pulsed electrodeposition
-
Fang Y, Liu J, Yu DJ, Wicksted JP, Kalkan K, et al. 2010. Self-supported supercapacitor membranes: polypyrrole-coated multi-walled carbon nanotube networks enabled by pulsed electrodeposition. J. Power Sources 195:674-79
-
(2010)
J. Power Sources
, vol.195
, pp. 674-679
-
-
Fang, Y.1
Liu, J.2
Yu, D.J.3
Wicksted, J.P.4
Kalkan, K.5
-
152
-
-
0037033342
-
Lithium intercalation into opened single-wall carbon nanotubes: Storage capacity and electronic properties
-
Shimoda H, Gao B, Tang XP, Kleinhammes A, Fleming L, et al. 2002. Lithium intercalation into opened single-wall carbon nanotubes: storage capacity and electronic properties. Phys. Rev. Lett. 88:015502
-
(2002)
Phys. Rev. Lett.
, vol.88
, pp. 015502
-
-
Shimoda, H.1
Gao, B.2
Tang, X.P.3
Kleinhammes, A.4
Fleming, L.5
-
153
-
-
84881450968
-
Silicon nanowires for Li-based battery anodes: A review
-
Zamfir MR, Nguyen HT, Moyen E, Lee YH, Pribat D. 2013. Silicon nanowires for Li-based battery anodes: a review. J. Mater. Chem. A 1:9566-86
-
(2013)
J. Mater. Chem. A
, vol.1
, pp. 9566-9586
-
-
Zamfir, M.R.1
Nguyen, H.T.2
Moyen, E.3
Lee, Y.H.4
Pribat, D.5
-
154
-
-
17644387736
-
Nanostructured materials for advanced energy conversion and storage devices
-
Arico AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W. 2005. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4:366-77
-
(2005)
Nat. Mater.
, vol.4
, pp. 366-377
-
-
Arico, A.S.1
Bruce, P.2
Scrosati, B.3
Tarascon, J.M.4
Van Schalkwijk, W.5
-
155
-
-
78650828671
-
Nanostructured silicon for high capacity lithium battery anodes
-
Szczech JR, Jin S. 2011. Nanostructured silicon for high capacity lithium battery anodes. Energy Environ. Sci. 4:56-72
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 56-72
-
-
Szczech, J.R.1
Jin, S.2
-
156
-
-
70349961704
-
Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries
-
Cui LF, Yang Y, Hsu CM, Cui Y. 2009. Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries. Nano Lett. 9:3370-74
-
(2009)
Nano Lett.
, vol.9
, pp. 3370-3374
-
-
Cui, L.F.1
Yang, Y.2
Hsu, C.M.3
Cui, Y.4
-
157
-
-
84861036964
-
High-rate capability silicon decorated vertically aligned carbon nanotubes for Li-ion batteries
-
Gohier A, Lak B, Kim K-H, Maurice J-L, Pereira-Ramos J-P, et al. 2012. High-rate capability silicon decorated vertically aligned carbon nanotubes for Li-ion batteries. Adv. Mater. 24:2592-97
-
(2012)
Adv. Mater.
, vol.24
, pp. 2592-2597
-
-
Gohier, A.1
Lak, B.2
Kim, K.-H.3
Maurice, J.-L.4
Pereira-Ramos, J.-P.5
-
158
-
-
84877713661
-
High performance lithium ion battery anodes based on carbon nanotube-silicon core-shell nanowires with controlled morphology
-
Fan Y, Zhang Q, Xiao QZ, Wang XH, Huang K. 2013. High performance lithium ion battery anodes based on carbon nanotube-silicon core-shell nanowires with controlled morphology. Carbon 59:264-69
-
(2013)
Carbon
, vol.59
, pp. 264-269
-
-
Fan, Y.1
Zhang, Q.2
Xiao, Q.Z.3
Wang, X.H.4
Huang, K.5
-
159
-
-
84919484978
-
High-rate lithium-ion battery anodes based on silicon-coated vertically aligned carbon nanofibers
-
New York: IEEE
-
Klankowski SA, Pandey GP, Cruden BA, Liu J, Wu J, et al. 2014. High-rate lithium-ion battery anodes based on silicon-coated vertically aligned carbon nanofibers. In 2014 IEEE International Conference on Nanotechnology, pp. 22-23. New York: IEEE.
-
(2014)
In 2014 IEEE International Conference on Nanotechnology
, pp. 22-23
-
-
Klankowski, S.A.1
Pandey, G.P.2
Cruden, B.A.3
Liu, J.4
Wu, J.5
-
161
-
-
84867079777
-
Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage
-
Jiang J, Li Y, Liu J, Huang X, Yuan C, Lou XW. 2012. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 24:5166-80
-
(2012)
Adv. Mater.
, vol.24
, pp. 5166-5180
-
-
Jiang, J.1
Li, Y.2
Liu, J.3
Huang, X.4
Yuan, C.5
Lou, X.W.6
-
162
-
-
79955983730
-
Single-wall carbon nanotube/conjugated polymer photovoltaic devices
-
Kymakis E, Amaratunga GAJ. 2002. Single-wall carbon nanotube/conjugated polymer photovoltaic devices. Appl. Phys. Lett. 80:112-14
-
(2002)
Appl. Phys. Lett.
, vol.80
, pp. 112-114
-
-
Kymakis, E.1
Amaratunga, G.A.J.2
-
163
-
-
80053490927
-
Nanostructured electrodes for organic bulk heterojunction solar cells: Model study using carbon nanotube dispersed polythiophene-fullerene blend devices
-
Nam C-Y, Wu Q, Su D, Chiu C-Y, Tremblay NJ, et al. 2011. Nanostructured electrodes for organic bulk heterojunction solar cells: model study using carbon nanotube dispersed polythiophene-fullerene blend devices. J. Appl. Phys. 110:064307
-
(2011)
J. Appl. Phys.
, vol.110
, pp. 064307
-
-
Nam, C.-Y.1
Wu, Q.2
Su, D.3
Chiu, C.-Y.4
Tremblay, N.J.5
-
165
-
-
33845960992
-
Influence of single-walled carbon nanotubes induced crystallinity enhancement and morphology change on polymer photovoltaic devices
-
Geng J, Zeng T. 2006. Influence of single-walled carbon nanotubes induced crystallinity enhancement and morphology change on polymer photovoltaic devices. J. Am. Chem. Soc. 128:16827-33
-
(2006)
J. Am. Chem. Soc.
, vol.128
, pp. 16827-16833
-
-
Geng, J.1
Zeng, T.2
-
166
-
-
82555193248
-
Selective dispersion of high purity semiconducting single-walled carbon nanotubes with regioregular poly(3-alkylthiophene)s
-
LeeHW, Yoon Y, Park S, Oh JH, Hong S, et al. 2011. Selective dispersion of high purity semiconducting single-walled carbon nanotubes with regioregular poly(3-alkylthiophene)s. Nat. Commun. 2:541
-
(2011)
Nat. Commun.
, vol.2
, pp. 541
-
-
Lee, H.W.1
Yoon, Y.2
Park, S.3
Oh, J.H.4
Hong, S.5
-
167
-
-
79951547205
-
Unexpected hole transfer leads to high efficiency single-walled carbon nanotube hybrid photovoltaic
-
Dissanayake NM, Zhong Z. 2010. Unexpected hole transfer leads to high efficiency single-walled carbon nanotube hybrid photovoltaic. Nano Lett. 11:286-90
-
(2010)
Nano Lett.
, vol.11
, pp. 286-290
-
-
Dissanayake, N.M.1
Zhong, Z.2
-
168
-
-
34047126563
-
Single wall carbon nanotube scaffolds for photoelectrochemical solar cells: Capture and transport of photogenerated electrons
-
Kongkanand A, Dominguez RM, Kamat PV. 2007. Single wall carbon nanotube scaffolds for photoelectrochemical solar cells: capture and transport of photogenerated electrons. Nano Lett. 7:676-80
-
(2007)
Nano Lett.
, vol.7
, pp. 676-680
-
-
Kongkanand, A.1
Dominguez, R.M.2
Kamat, P.V.3
-
169
-
-
80455158299
-
Synthesis of TiO2 nanoparticles on plasmatreated carbon nanotubes and its application in photoanodes of dye-sensitized solar cells
-
Zhang S, Niu H, Lan Y, Cheng C, Xu J, Wang X. 2011. Synthesis of TiO2 nanoparticles on plasmatreated carbon nanotubes and its application in photoanodes of dye-sensitized solar cells. J. Phys. Chem. C 115:22025-34
-
(2011)
J. Phys. Chem. C
, vol.115
, pp. 22025-22034
-
-
Zhang, S.1
Niu, H.2
Lan, Y.3
Cheng, C.4
Xu, J.5
Wang, X.6
-
170
-
-
8344264638
-
Incorporation of functionalized single-wall carbon nanotubes in dye-sensitized TiO2 solar cells
-
Jang S-R, Vittal R, Kim K-J. 2004. Incorporation of functionalized single-wall carbon nanotubes in dye-sensitized TiO2 solar cells. Langmuir 20:9807-10
-
(2004)
Langmuir
, vol.20
, pp. 9807-9810
-
-
Jang, S.-R.1
Vittal, R.2
Kim, K.-J.3
-
171
-
-
84880540901
-
Hybrid carbon nanotubes-TiO2 photoanodes for high efficiency dye-sensitized solar cells
-
Dembele KT, Selopal GS, Soldano C, Nechache R, Rimada JC, et al. 2013. Hybrid carbon nanotubes-TiO2 photoanodes for high efficiency dye-sensitized solar cells. J. Phys. Chem. C 117:14510-17
-
(2013)
J. Phys. Chem. C
, vol.117
, pp. 14510-14517
-
-
Dembele, K.T.1
Selopal, G.S.2
Soldano, C.3
Nechache, R.4
Rimada, J.C.5
-
172
-
-
79960117044
-
Virus-templated self-assembled single-walled carbon nanotubes for highly efficient electron collection in photovoltaic devices
-
Dang XN, Yi HJ, Ham MH, Qi JF, Yun DS, et al. 2011. Virus-templated self-assembled single-walled carbon nanotubes for highly efficient electron collection in photovoltaic devices. Nat. Nanotechnol. 6:377-84
-
(2011)
Nat. Nanotechnol.
, vol.6
, pp. 377-384
-
-
Dang, X.N.1
Yi, H.J.2
Ham, M.H.3
Qi, J.F.4
Yun, D.S.5
-
173
-
-
77649083598
-
Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells
-
Yang N, Zhai J, Wang D, Chen Y, Jiang L. 2010. Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells. ACS Nano 4:887-94
-
(2010)
ACS Nano
, vol.4
, pp. 887-894
-
-
Yang, N.1
Zhai, J.2
Wang, D.3
Chen, Y.4
Jiang, L.5
-
174
-
-
84902449285
-
Safe clinical use of carbon nanotubes as innovative biomaterials
-
SaitoN, Haniu H, Usui Y, Aoki K, Hara K, et al. 2014. Safe clinical use of carbon nanotubes as innovative biomaterials. Chem. Rev. 114:6040-79
-
(2014)
Chem. Rev.
, vol.114
, pp. 6040-6079
-
-
Saito, N.1
Haniu, H.2
Usui, Y.3
Aoki, K.4
Hara, K.5
-
175
-
-
65249178345
-
Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery
-
Liu Z, Tabakman S, Welsher K, Dai H. 2009. Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res. 2:85-120
-
(2009)
Nano Res.
, vol.2
, pp. 85-120
-
-
Liu, Z.1
Tabakman, S.2
Welsher, K.3
Dai, H.4
|