-
3
-
-
23044528952
-
-
Aquaporins, S. Hohmann, S. Nielsen, P. Agre, Eds., Academic Press, San Diego, CA
-
P. Agre et al., in Aquaporins, S. Hohmann, S. Nielsen, P. Agre, Eds., vol. 51 of Current Topics in Membranes (Academic Press, San Diego, CA, 2001), pp. 1-38.
-
(2001)
Current Topics in Membranes
, vol.51
, pp. 1-38
-
-
Agre, P.1
-
6
-
-
0038097761
-
-
A. I. Skoutidas, D. M. Ackerman, J. K. Johnson, D. S. Sholl, Phys. Rev. Lett, 89, 185901 (2002).
-
(2002)
Phys. Rev. Lett
, vol.89
, pp. 185901
-
-
Skoutidas, A.I.1
Ackerman, D.M.2
Johnson, J.K.3
Sholl, D.S.4
-
7
-
-
0037453494
-
-
Z. Lai et al., Science 300, 456 (2003).
-
(2003)
Science
, vol.300
, pp. 456
-
-
Lai, Z.1
-
8
-
-
0347988239
-
-
published online 26 November 2003 (10.1126/science.109204B)
-
B. J. Hinds et al., Science 303, 62 (2004); published online 26 November 2003 (10.1126/science.109204B).
-
(2004)
Science
, vol.303
, pp. 62
-
-
Hinds, B.J.1
-
9
-
-
9644258960
-
-
J. K. Holt A. Noy, T. Huser, D. Eaglesham, O. Bakajin, Nano Lett. 4, 2245 (2004).
-
(2004)
Nano Lett.
, vol.4
, pp. 2245
-
-
Holt, J.K.1
Noy, A.2
Huser, T.3
Eaglesham, D.4
Bakajin, O.5
-
10
-
-
0032606420
-
-
J. Li, C. Papadopoulos, J. M. Xu, M. Moskovits, Appl. Phys. Lett. 75, 367 (1999).
-
(1999)
Appl. Phys. Lett.
, vol.75
, pp. 367
-
-
Li, J.1
Papadopoulos, C.2
Xu, J.M.3
Moskovits, M.4
-
11
-
-
27744446445
-
-
M. Majumder, N. Chopra, R. Andrews, B. J. Hinds, Nature 438, 44 (2005).
-
(2005)
Nature
, vol.438
, pp. 44
-
-
Majumder, M.1
Chopra, N.2
Andrews, R.3
Hinds, B.J.4
-
12
-
-
22944436157
-
-
Y. Y. Wang, S. Gupta, R. J. Nemanich, Z. J. Liu, L. C. Qin, J. Appl. Phys. 98, 014312 (2005).
-
(2005)
J. Appl. Phys.
, vol.98
, pp. 014312
-
-
Wang, Y.Y.1
Gupta, S.2
Nemanich, R.J.3
Liu, Z.J.4
Qin, L.C.5
-
14
-
-
13444280007
-
-
S. Maruyama, E. Einarsson, Y. Murakami, T. Edamura, Chem. Phys. Lett. 403, 320 (2005).
-
(2005)
Chem. Phys. Lett.
, vol.403
, pp. 320
-
-
Maruyama, S.1
Einarsson, E.2
Murakami, Y.3
Edamura, T.4
-
15
-
-
8844263043
-
-
K. Hata et al., Science 306, 1362 (2004).
-
(2004)
Science
, vol.306
, pp. 1362
-
-
Hata, K.1
-
16
-
-
33646747511
-
-
note
-
See supporting material on Science Online.
-
-
-
-
17
-
-
0004185393
-
-
Prentice-Hall, Upper Saddle River, NJ
-
A. F. Mills, Mass Transfer (Prentice-Hall, Upper Saddle River, NJ, 2001), pp. 68-69.
-
(2001)
Mass Transfer
, pp. 68-69
-
-
Mills, A.F.1
-
18
-
-
33646750001
-
-
note
-
2 is the total area of the membrane.
-
-
-
-
19
-
-
33646730791
-
-
note
-
-2), also determined by TEM. This areal density is comparable to the measured areal density of SWNTs/DWNTs produced using a catalyst recipe similar to the one we used (12). The estimate from the TEM images still represents the upper bound for the density because it assumes that every DWNT that spans the section imaged in the TEM (thickness 50 nm) also spans the entire membrane thickness.
-
-
-
-
21
-
-
0347666606
-
-
D. M. Ackerman, A. I. Skoulidas, D. S. Sholl, J. K. Johnson, Mol. Sim. 29, 677 (2003).
-
(2003)
Mol. Sim.
, vol.29
, pp. 677
-
-
Ackerman, D.M.1
Skoulidas, A.I.2
Sholl, D.S.3
Johnson, J.K.4
-
26
-
-
33646741310
-
-
note
-
HP is the volumetric flow rate, Δp is the pressure drop, d is the pore diameter, μ is the water viscosity, and L is the membrane thickness.
-
-
-
-
27
-
-
0035928917
-
-
J. Baudry, E. Charlaix, A. Tonck, D. Mazuyer, Langmuir 17, 5232 (2001).
-
(2001)
Langmuir
, vol.17
, pp. 5232
-
-
Baudry, J.1
Charlaix, E.2
Tonck, A.3
Mazuyer, D.4
-
29
-
-
33646748988
-
-
note
-
wall is the axial velocity at the wall, and dU/dr is the radial velocity gradient at the wall (or shear rate).
-
-
-
-
32
-
-
33646741863
-
-
note
-
The Simulation considered water transport across the carbon nanotubes driven by an osmotic pressure of about 100 atm. Our experiments used pressure drops of 1 atm. We have also observed linear dependence between the applied pressure drop and the flow rate across the membranes. As an approximation, we therefore used a linear extrapolation to compare our measured flows to the simulation results. We note two key differences between our experiments and the simulations: (i) The simulations used nanotubes 0.8 nm in diameter, whereas our samples mere 1.6 nm in diameter on average; and (ii) the pressure drops were -100 atm in the simulations versus 1 atm in our experiments, and it is unclear whether our linear extrapolation in flow rate versus pressure drop is valid over this range.
-
-
-
-
33
-
-
0035939951
-
-
K. Koga, G. T. Gao, H. Tanaka, X. C. Zeng, Nature 412, 802 (2001).
-
(2001)
Nature
, vol.412
, pp. 802
-
-
Koga, K.1
Gao, G.T.2
Tanaka, H.3
Zeng, X.C.4
-
34
-
-
33646751361
-
-
note
-
Permeability is defined as the volumetric flux, normalized by the pressure drop.
-
-
-
-
35
-
-
33646748585
-
-
note
-
We thank J. Muyco for help with Raman spectroscopy, R. Friddle for assistance with atomic force microscopy measurements, W. J. Moberlychan for his assistance on FIB and TEM experiments, and D. Eaglesham for early contributions to the project and lively discussions. This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract W-7405-Eng-48 with funding from the Laboratory Directed Research and Development Program. H.G.P. and A.B.A. were supported by a Student Employee Graduate Research Fellowship.
-
-
-
|