메뉴 건너뛰기




Volumn , Issue , 2012, Pages 1-504

Analysis of multivariate and high-dimensional data

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84926106650     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1017/CBO9781139025805     Document Type: Book
Times cited : (77)

References (289)
  • 2
    • 0012018345 scopus 로고
    • Tech,. Rep. No. 92-02, Dept. of Computer Science and Dept. of Mathematics and Statistics, James Cook University of North Queensland. Data sets collected by Forina et al
    • Aeberhard, S., D. Coomans and O. de Vel (1992). Comparison of classifiers in high dimensional settings. Tech. Rep. No. 92-02, Dept. of Computer Science and Dept. of Mathematics and Statistics, James Cook University of North Queensland. Data sets collected by Forina et al. and available at:www.kernel-machines.com/.
    • (1992) Comparison of Classifiers in High Dimensional Settings
    • Aeberhard, S.1    Coomans, D.2    De Vel, O.3
  • 3
    • 0037435030 scopus 로고    scopus 로고
    • Mass spectrometry-based proteomics
    • Aebersold, R., and M. Mann (2003). Mass spectrometry-based proteomics. Nature 422, 198-207.
    • (2003) Nature , vol.422 , pp. 198-207
    • Aebersold, R.1    Mann, M.2
  • 4
    • 0025725905 scopus 로고
    • Instance-based learning algorithms
    • Aha, D., and D. Kibler (1991). Instance-based learning algorithms. Machine Learning 6, 37-66.
    • (1991) Machine Learning , vol.6 , pp. 37-66
    • Aha, D.1    Kibler, D.2
  • 5
    • 33750383209 scopus 로고    scopus 로고
    • K-svd: An algorithm for designing overcomplete dictionaries for sparse representation
    • Aharon, M., M. Elad and A. Bruckstein (2006). K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. on Signal Processing 54, 4311-4322.
    • (2006) IEEE Trans. On Signal Processing , vol.54 , pp. 4311-4322
    • Aharon, M.1    Elad, M.2    Bruckstein, A.3
  • 6
    • 77249090732 scopus 로고    scopus 로고
    • The maximal data piling direction for discrimination
    • Ahn, J., and J. S. Marron (2010). The maximal data piling direction for discrimination. Biometrika 97, 254-259.
    • (2010) Biometrika , vol.97 , pp. 254-259
    • Ahn, J.1    Marron, J.S.2
  • 7
    • 34548536094 scopus 로고    scopus 로고
    • The high-dimension low-sample-size geometric representation holds under mild conditions
    • Ahn, J., J. S. Marron, K. M. Mueller and Y.-Y. Chi (2007). The high-dimension low-sample-size geometric representation holds under mild conditions. Biometrika 94, 760-766.
    • (2007) Biometrika , vol.94 , pp. 760-766
    • Ahn, J.1    Marron, J.S.2    Mueller, K.M.3    Chi, Y.-Y.4
  • 8
    • 0036522857 scopus 로고    scopus 로고
    • Independent component analysis (Ica) and method of estimating functions
    • Amari, S.-I. (2002). Independent component analysis (ICA) and method of estimating functions. IEICE Trans. Fundamentals E 85A(3), 540-547.
    • (2002) IEICE Trans. Fundamentals E , vol.85 , Issue.3 , pp. 540-547
    • Amari, S.-I.1
  • 9
    • 0031271273 scopus 로고    scopus 로고
    • Blind source separation—semiparametric statistical approach
    • Amari, S.-I., and J.-F. Cardoso (1997). Blind source separation—Semiparametric statistical approach. IEEE Trans. on Signal Processing 45, 2692-2700.
    • (1997) IEEE Trans. On Signal Processing , vol.45 , pp. 2692-2700
    • Amari, S.-I.1    Cardoso, J.-F.2
  • 10
    • 0001406706 scopus 로고
    • Asymptotic chi-square tests for a large class of factor analysis models
    • Amemiya, Y., and T. W. Anderson (1990). Asymptotic chi-square tests for a large class of factor analysis models. Ann. Stat. 18, 1453-1463.
    • (1990) Ann. Stat , vol.18 , pp. 1453-1463
    • Amemiya, Y.1    Anderson, T.W.2
  • 11
    • 41649112685 scopus 로고
    • Structural equation modeling in practice: A review and recommended two-step approach
    • Anderson, J. C., and D. W. Gerbing (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychol. Bull. 103, 411-423.
    • (1988) Psychol. Bull , vol.103 , pp. 411-423
    • Anderson, J.C.1    Gerbing, D.W.2
  • 12
    • 0001699986 scopus 로고
    • Asymptotic theory for principal component analysis
    • Anderson, T. W. (1963). Asymptotic theory for principal component analysis. Ann. Math. Stat. 34, 122-148.
    • (1963) Ann. Math. Stat , vol.34 , pp. 122-148
    • Anderson, T.W.1
  • 14
    • 0000752804 scopus 로고
    • The asymptotic normal distribution of estimators in factor analysis under general conditions
    • Anderson, T. W., and Y. Amemiya (1988). The asymptotic normal distribution of estimators in factor analysis under general conditions. Ann. Stat. 16, 759-771.
    • (1988) Ann. Stat , vol.16 , pp. 759-771
    • Anderson, T.W.1    Amemiya, Y.2
  • 16
    • 0033561886 scopus 로고    scopus 로고
    • Independent factor analysis
    • Attias, H. (1999). Independent factor analysis. Neural Comp. 11, 803-851.
    • (1999) Neural Comp , vol.11 , pp. 803-851
    • Attias, H.1
  • 17
    • 0011812771 scopus 로고    scopus 로고
    • Kernel independent component analysis
    • Bach, F. R., and M. I. Jordan (2002). Kernel independent component analysis. J. Machine Learning Res. 3, 1-48.
    • (2002) J. Machine Learning Res , vol.3 , pp. 1-48
    • Bach, F.R.1    Jordan, M.I.2
  • 18
    • 33646507506 scopus 로고    scopus 로고
    • Eigenvalues of large sample covariance matrices of spiked population models
    • Baik, J., and J.W. Silverstein (2006). Eigenvalues of large sample covariance matrices of spiked population models. J. Multivar. Anal. 97, 1382-1408.
    • (2006) J. Multivar. Anal , vol.97 , pp. 1382-1408
    • Baik, J.1    Silverstein, J.W.2
  • 19
    • 33645527646 scopus 로고    scopus 로고
    • Prediction by supervised principal components
    • Bair, E., T. Hastie, D. Paul and R. Tibshirani (2006). Prediction by supervised principal components. J. Am. Stat. Assoc. 101(473), 119-137.
    • (2006) J. Am. Stat. Assoc , vol.101 , Issue.473 , pp. 119-137
    • Bair, E.1    Hastie, T.2    Paul, D.3    Tibshirani, R.4
  • 20
    • 63049091683 scopus 로고    scopus 로고
    • Independent component analysis by wavelets
    • Barbedor, P. (2009). Independent component analysis by wavelets. Test 18(1), 136-155.
    • (2009) Test , vol.18 , Issue.1 , pp. 136-155
    • Barbedor, P.1
  • 21
    • 84958734809 scopus 로고
    • Further aspects of the theory of multiple regression
    • Bartlett, M. S. (1938). Further aspects of the theory of multiple regression. Proc. Cambridge Philos. Soc. 34, 33-40.
    • (1938) Proc. Cambridge Philos. Soc , vol.34 , pp. 33-40
    • Bartlett, M.S.1
  • 22
    • 34547599842 scopus 로고
    • A note on tests of significance in multivariate analysis
    • Bartlett, M. S. (1939). A note on tests of significance in multivariate analysis. Proc. Cambridge Philos. Soc. 35, 180-185.
    • (1939) Proc. Cambridge Philos. Soc , vol.35 , pp. 180-185
    • Bartlett, M.S.1
  • 24
    • 0029411030 scopus 로고
    • An information-maximization approach to blind separation and blind deconvolution
    • Bell, A. J., and T. J. Sejnowski (1995). An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 7, 1129-1159.
    • (1995) Neural Comput , vol.7 , pp. 1129-1159
    • Bell, A.J.1    Sejnowski, T.J.2
  • 25
    • 79952708259 scopus 로고    scopus 로고
    • The eigenvalues and eignvectors of finite, low rank perturbations of large random matrices
    • Benaych-Georges, F., and R. Nadakuditi (2012). The eigenvalues and eignvectors of finite, low rank perturbations of large random matrices. Adv. Math. 227, 494-521.
    • (2012) Adv. Math , vol.227 , pp. 494-521
    • Benaych-Georges, F.1    Nadakuditi, R.2
  • 28
    • 33745156863 scopus 로고    scopus 로고
    • Some theory for fisher’s linear discriminant function, ‘näýve bayes’, and some alternatives when there are many more variables than observations
    • Bickel, P. J., and E. Levina (2004). Some theory for Fisher’s linear discriminant function, ‘näýve Bayes’, and some alternatives when there are many more variables than observations. Bernoulli 10, 989-1010.
    • (2004) Bernoulli , vol.10 , pp. 989-1010
    • Bickel, P.J.1    Levina, E.2
  • 33
    • 1242286406 scopus 로고    scopus 로고
    • Indpendent component analysis based on nonparametric density estimation
    • Boscolo, R., H. Pan and V. P. Roychowdhury (2004). Indpendent component analysis based on nonparametric density estimation. IEEE Trans. Neural Networks 15(1), 55-65.
    • (2004) IEEE Trans. Neural Networks , vol.15 , Issue.1 , pp. 55-65
    • Boscolo, R.1    Pan, H.2    Roychowdhury, V.P.3
  • 34
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. (1996). Bagging predictors. Machine Learning 26, 123-140.
    • (1996) Machine Learning , vol.26 , pp. 123-140
    • Breiman, L.1
  • 37
    • 0001247848 scopus 로고
    • Loadings and correlations in the interpretation of principle components
    • Cadima, J., and I. T. Jolliffe (1995). Loadings and correlations in the interpretation of principle components. J. App. Stat. 22, 203-214.
    • (1995) J. App. Stat , vol.22 , pp. 203-214
    • Cadima, J.1    Jolliffe, I.T.2
  • 38
    • 84972893020 scopus 로고
    • A dendrite method for cluster analysis
    • Calinski, R. B., and J. Harabasz (1974). A dendrite method for cluster analysis. Commun. Stat. 3, 1-27.
    • (1974) Commun. Stat , vol.3 , pp. 1-27
    • Calinski, R.B.1    Harabasz, J.2
  • 39
    • 31744440684 scopus 로고    scopus 로고
    • Robust undertainty principles: Exact signal reconstruction from highly imcomplete frequency information
    • Candés, E. J., J. Romberg and T. Tao (2006). Robust undertainty principles: Exact signal reconstruction from highly imcomplete frequency information. IEEE Trans. Inform. Theory 52, 489-509.
    • (2006) IEEE Trans. Inform. Theory , vol.52 , pp. 489-509
    • Candés, E.J.1    Romberg, J.2    Tao, T.3
  • 40
    • 0030107018 scopus 로고    scopus 로고
    • General approach to blind source separation
    • Cao, X.-R., and R.-W. Liu (1996). General approach to blind source separation. IEEE Trans. Signal Processing 44, 562-571.
    • (1996) IEEE Trans. Signal Processing , vol.44 , pp. 562-571
    • Cao, X.-R.1    Liu, R.-W.2
  • 41
    • 0032187518 scopus 로고    scopus 로고
    • Blind source separation: Statistical principles
    • Cardoso, J.-F. (1998). Blind source separation: Statistical principles. Proc. IEEE 86(10), 2009-2025.
    • (1998) Proc. IEEE , vol.86 , Issue.10 , pp. 2009-2025
    • Cardoso, J.-F.1
  • 42
    • 0032612381 scopus 로고    scopus 로고
    • High-order contrasts for independent component analysis
    • Cardoso, J.-F. (1999). High-order contrasts for independent component analysis. Neural Comput. 11(1), 157-192.
    • (1999) Neural Comput , vol.11 , Issue.1 , pp. 157-192
    • Cardoso, J.-F.1
  • 43
    • 8344285779 scopus 로고    scopus 로고
    • Dependence, correlation and gaussianity in independent component analysis
    • Cardoso, J.-F. (2003). Dependence, correlation and Gaussianity in independent component analysis. J. Machine Learning Res. 4, 1177-1203.
    • (2003) J. Machine Learning Res , vol.4 , pp. 1177-1203
    • Cardoso, J.-F.1
  • 44
    • 34250499792 scopus 로고
    • Analysis of individual differences in multidimensional scaling via a n-way generalization of’eckart-young’ decomposition
    • Carroll, J. D., and J. J. Chang (1970). Analysis of individual differences in multidimensional scaling via a n-way generalization of’Eckart-Young’ decomposition. Psychometrika 35, 283-319.
    • (1970) Psychometrika , vol.35 , pp. 283-319
    • Carroll, J.D.1    Chang, J.J.2
  • 45
    • 0003594381 scopus 로고    scopus 로고
    • Pacific Grove, CA: Wadsworth & Brooks/Cole Advanced Books and Software
    • Casella, G., and R. L. Berger (2001). Statistical Inference. Pacific Grove, CA: Wadsworth & Brooks/Cole Advanced Books and Software.
    • (2001) Statistical Inference
    • Casella, G.1    Berger, R.L.2
  • 46
    • 1542637559 scopus 로고    scopus 로고
    • Sizer for exploration of structures in curves
    • Chaudhuri, P., and J. S. Marron (1999). Sizer for exploration of structures in curves. J. Am. Stat. Assoc. 94, 807-823.
    • (1999) J. Am. Stat. Assoc , vol.94 , pp. 807-823
    • Chaudhuri, P.1    Marron, J.S.2
  • 47
    • 0034347388 scopus 로고    scopus 로고
    • Scale space view of curve estimation
    • Chaudhuri, P., and J. S. Marron (2000). Scale space view of curve estimation. Ann. Stat. 28, 408-428.
    • (2000) Ann. Stat , vol.28 , pp. 408-428
    • Chaudhuri, P.1    Marron, J.S.2
  • 48
    • 33847230522 scopus 로고    scopus 로고
    • Efficient independent component analysis
    • Chen, A., and P. J. Bickel (2006). Efficient independent component analysis. Ann. Stat. 34, 2825-2855.
    • (2006) Ann. Stat , vol.34 , pp. 2825-2855
    • Chen, A.1    Bickel, P.J.2
  • 50
    • 70350344696 scopus 로고    scopus 로고
    • Local multidimensional scaling for nonlinear dimension reduction, graph drawing and proximity analysis
    • Chen, L., and A. Buja (2009). Local multidimensional scaling for nonlinear dimension reduction, graph drawing and proximity analysis. J. Am. Stat. Assoc. 104, 209-219.
    • (2009) J. Am. Stat. Assoc , vol.104 , pp. 209-219
    • Chen, L.1    Buja, A.2
  • 51
    • 27744549951 scopus 로고    scopus 로고
    • Blind source separation and independent component analysis: A review
    • Choi, S., A. Cichocki, H.-M. Park and S.-Y. Lee (2005). Blind source separation and independent component analysis: A review. Neural Inform. Processing 6, 1-57.
    • (2005) Neural Inform. Processing , vol.6 , pp. 1-57
    • Choi, S.1    Cichocki, A.2    Park, H.-M.3    Lee, S.-Y.4
  • 52
    • 0028416938 scopus 로고
    • Independent component analysis, a new concept?
    • Comon, P. (1994). Independent component analysis, A new concept? Signal Processing 36, 287-314.
    • (1994) Signal Processing , vol.36 , pp. 287-314
    • Comon, P.1
  • 53
    • 84952261476 scopus 로고
    • Projection pursuit indices based on expansions with orthonormal functions
    • Cook, D., A. Buja and J. Cabrera (1993). Projection pursuit indices based on expansions with orthonormal functions. J. Comput. Graph. Stat. 2, 225-250.
    • (1993) J. Comput. Graph. Stat , vol.2 , pp. 225-250
    • Cook, D.1    Buja, A.2    Cabrera, J.3
  • 57
    • 0012657603 scopus 로고    scopus 로고
    • Dimension reduction and visualization in discriminant analysis (With discussion)
    • Cook, R. D., and X. Yin (2001). Dimension reduction and visualization in discriminant analysis (with discussion). Aust. NZ J. Stat. 43, 147-199.
    • (2001) Aust. NZ J. Stat , vol.43 , pp. 147-199
    • Cook, R.D.1    Yin, X.2
  • 58
    • 0000490505 scopus 로고
    • A review of classification (With discussion)
    • Cormack, R. M. (1971). A review of classification (with discussion). J. R. Stat. Soc. A 134, 321-367.
    • (1971) J. R. Stat. Soc. A , vol.134 , pp. 321-367
    • Cormack, R.M.1
  • 65
    • 0043263128 scopus 로고    scopus 로고
    • Numerically stable generation of correlation matrices and their factors
    • Davies, P. I., and N. J. Higham (2000). Numerically stable generation of correlation matrices and their factors. BIT 40, 640-651.
    • (2000) BIT , vol.40 , pp. 640-651
    • Davies, P.I.1    Higham, N.J.2
  • 70
    • 0001493668 scopus 로고
    • Asymptotics of graphical projection pursuit
    • Diaconis, P., and D. Freedman (1984). Asymptotics of graphical projection pursuit. Ann. Stat. 12, 793-815.
    • (1984) Ann. Stat , vol.12 , pp. 793-815
    • Diaconis, P.1    Freedman, D.2
  • 72
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple bayesian classifier under zero-one loss
    • Domingos, P., and M. Pazzani (1997). On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning 29, 103-130.
    • (1997) Machine Learning , vol.29 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 75
    • 0000563196 scopus 로고
    • Ideal denoising in an orthonormal basis chosen from a library of bases
    • Donoho, D. L., and I. M. Johnstone (1994). Ideal denoising in an orthonormal basis chosen from a library of bases. Comp. Rendus Acad. Sci. A 319, 1317-1322.
    • (1994) Comp. Rendus Acad. Sci. A , vol.319 , pp. 1317-1322
    • Donoho, D.L.1    Johnstone, I.M.2
  • 78
    • 0036489046 scopus 로고    scopus 로고
    • Comparisons of discrimination methods for the classification of tumors using gene expression data
    • Dudoit, S., J. Fridlyand and T. P. Speed (2002). Comparisons of discrimination methods for the classification of tumors using gene expression data. J. Am. Stat. Assoc. 97, 77-87.
    • (2002) J. Am. Stat. Assoc , vol.97 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.P.3
  • 79
    • 42749083860 scopus 로고    scopus 로고
    • Feature significance for multivariate kernel density estimation
    • Duong, T., A. Cowling, I. Koch and M. P. Wand (2008). Feature significance for multivariate kernel density estimation. Comput. Stat. Data Anal. 52, 4225-4242.
    • (2008) Comput. Stat. Data Anal , vol.52 , pp. 4225-4242
    • Duong, T.1    Cowling, A.2    Koch, I.3    Wand, M.P.4
  • 80
    • 24344494438 scopus 로고    scopus 로고
    • Cross-validation bandwidth matrices for multivariate kernel density estimation
    • Duong, T., and M. L. Hazelton (2005). Cross-validation bandwidth matrices for multivariate kernel density estimation. Scand. J. Stat. 32, 485-506.
    • (2005) Scand. J. Stat , vol.32 , pp. 485-506
    • Duong, T.1    Hazelton, M.L.2
  • 82
    • 0042322182 scopus 로고    scopus 로고
    • Characteristic-function based independent component analysis
    • Eriksson, J., and V. Koivunen (2003). Characteristic-function based independent component analysis. Signal Processing 83, 2195-2208.
    • (2003) Signal Processing , vol.83 , pp. 2195-2208
    • Eriksson, J.1    Koivunen, V.2
  • 83
    • 0012705038 scopus 로고
    • Some criteria for projection pursuit
    • Eslava, G., and F. H. C. Marriott (1994). Some criteria for projection pursuit. Stat. Comput. 4, 13-20.
    • (1994) Stat. Comput , vol.4 , pp. 13-20
    • Eslava, G.1    Marriott, F.H.2
  • 84
    • 53849089038 scopus 로고    scopus 로고
    • High-dimensional classification using features annealed independence rules
    • Fan, J., and Y. Fan (2008). High-dimensional classification using features annealed independence rules. Ann. Stat. 36, 2605-2637.
    • (2008) Ann. Stat , vol.36 , pp. 2605-2637
    • Fan, J.1    Fan, Y.2
  • 86
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Ann. Eugenics 7, 179-188.
    • (1936) Ann. Eugenics , vol.7 , pp. 179-188
    • Fisher, R.A.1
  • 90
    • 0035998835 scopus 로고    scopus 로고
    • Model-based clustering, discriminant ananlysis, and density estimation
    • Fraley, C., and A. Raftery (2002). Model-based clustering, discriminant ananlysis, and density estimation. J. Am. Stat. Assoc. 97, 611-631.
    • (2002) J. Am. Stat. Assoc , vol.97 , pp. 611-631
    • Fraley, C.1    Raftery, A.2
  • 91
    • 84950754164 scopus 로고
    • Exploratory projection pursuit
    • Friedman, J. H. (1987). Exploratory projection pursuit. J. Am. Stat. Assoc. 82, 249-266.
    • (1987) J. Am. Stat. Assoc , vol.82 , pp. 249-266
    • Friedman, J.H.1
  • 92
    • 84887916087 scopus 로고
    • Regularized discriminant analysis
    • Friedman, J. H. (1989). Regularized discriminant analysis. J. Am. Stat. Assoc. 84, 165-175.
    • (1989) J. Am. Stat. Assoc , vol.84 , pp. 165-175
    • Friedman, J.H.1
  • 93
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • Friedman, J. H. (1991). Multivariate adaptive regression splines. Ann. Stat. 19, 1-67.
    • (1991) Ann. Stat , vol.19 , pp. 1-67
    • Friedman, J.H.1
  • 94
  • 96
    • 0016102310 scopus 로고
    • A projection pursuit algorithm for exploratory data analysis
    • Friedman, J. H., and J.W. Tukey (1974). A projection pursuit algorithm for exploratory data analysis. IEEE Trans. Comput. C-23, 881-890.
    • (1974) IEEE Trans. Comput. C-23 , pp. 881-890
    • Friedman, J.H.1    Tukey, J.W.2
  • 99
    • 33748042637 scopus 로고    scopus 로고
    • Identification and quantification of change in australian illicit drug markets
    • Gilmour, S., I. Koch, L. Degenhardt and C. Day (2006). Identification and quantification of change in Australian illicit drug markets. BMC Public Health 6, 200-209.
    • (2006) BMC Public Health , vol.6 , pp. 200-209
    • Gilmour, S.1    Koch, I.2    Degenhardt, L.3    Day, C.4
  • 102
    • 0036735386 scopus 로고    scopus 로고
    • Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma
    • Gordon, G. J., R. V. Jensen, L. Hsiao, S. R. Gullans, J. E. Blumenstock, S. Ramaswamy, W. G. Richards, D. J. Sugarbaker and R. Bueno (2002). Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. Cancer Res. 62, 4963-4967.
    • (2002) Cancer Res , vol.62 , pp. 4963-4967
    • Gordon, G.J.1    Jensen, R.V.2    Hsiao, L.3    Gullans, S.R.4    Blumenstock, J.E.5    Ramaswamy, S.6    Richards, W.G.7    Sugarbaker, D.J.8    Bueno, R.9
  • 103
    • 0000071395 scopus 로고
    • Some distance properties of latent root and vector methods used in multivariate analysis
    • Gower, J. C. (1966). Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53, 325-338.
    • (1966) Biometrika , vol.53 , pp. 325-338
    • Gower, J.C.1
  • 104
    • 0000457927 scopus 로고
    • Adding a point to vector diagrams in multivariate analysis
    • Gower, J. C. (1968). Adding a point to vector diagrams in multivariate analysis. Biometrika 55, 582-585.
    • (1968) Biometrika , vol.55 , pp. 582-585
    • Gower, J.C.1
  • 105
    • 0002968611 scopus 로고
    • Statistical methods of comparing different multivariate analyses of the same data
    • F. R. Hodson, D. Kendall, and P. Tautu, Edinburgh University Press
    • Gower, J. C. (1971). Statistical methods of comparing different multivariate analyses of the same data. In F. R. Hodson, D. Kendall, and P. Tautu (eds.), Mathematics in the Archeological and Historical Sciences, pp. 138-149. Edinburgh University Press.
    • (1971) Mathematics in the Archeological and Historical Sciences , pp. 138-149
    • Gower, J.C.1
  • 106
    • 0033473005 scopus 로고    scopus 로고
    • Analysis of distance for structured multivariate data and extensions to multivariate analysis of variance
    • Gower, J. C., and W. J. Krzanowski (1999). Analysis of distance for structured multivariate data and extensions to multivariate analysis of variance. Appl. Stat. 48, 505-519.
    • (1999) Appl. Stat , vol.48 , pp. 505-519
    • Gower, J.C.1    Krzanowski, W.J.2
  • 107
    • 0001834412 scopus 로고
    • Using distance information in the design of large multidimensional scaling experiments
    • Graef, J., and I. Spence (1979). Using distance information in the design of large multidimensional scaling experiments. Psychol. Bull. 86, 60-66.
    • (1979) Psychol. Bull , vol.86 , pp. 60-66
    • Graef, J.1    Spence, I.2
  • 111
    • 79251606950 scopus 로고    scopus 로고
    • Maldi imaging mass spectrometry (Maldi-ims): Application of spatial proteomics for ovarian cancer classification and diagnosis
    • Gustafsson, J. O. R., M. K. Oehler, A. Ruszkiewicz, S. R. McColl and P. Hoffmann (2011). MALDI imaging mass spectrometry (MALDI-IMS): Application of spatial proteomics for ovarian cancer classification and diagnosis. Int. J. Mol. Sci. 12, 773-794.
    • (2011) Int. J. Mol. Sci , vol.12 , pp. 773-794
    • Gustafsson, J.1    Oehler, M.K.2    Ruszkiewicz, A.3    McColl, S.R.4    Hoffmann, P.5
  • 112
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon, I., and A. Elisseeff (2003). An introduction to variable and feature selection. J. Machine Learning Res. 3, 1157-1182.
    • (2003) J. Machine Learning Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 113
    • 0010875753 scopus 로고
    • Estimating the direction in which a data set is most interesting
    • Hall, P. (1988). Estimating the direction in which a data set is most interesting. Prob. Theory Relat. Fields 80, 51-77.
    • (1988) Prob. Theory Relat. Fields , vol.80 , pp. 51-77
    • Hall, P.1
  • 114
    • 0000875045 scopus 로고
    • On projection pursuit regression
    • Hall, P. (1989a). On projection pursuit regression. Ann. Stat. 17, 573-588.
    • (1989) Ann. Stat , vol.17 , pp. 573-588
    • Hall, P.1
  • 115
    • 0000552128 scopus 로고
    • Polynomial projection pursuit
    • Hall, P. (1989b). Polynomial projection pursuit. Ann. Stat. 17, 589-605.
    • (1989) Ann. Stat , vol.17 , pp. 589-605
    • Hall, P.1
  • 116
    • 0041753016 scopus 로고
    • On almost linearity of low dimensional projections from high dimensional data
    • Hall, P., and K.-C. Li (1993). On almost linearity of low dimensional projections from high dimensional data. Ann. Stat. 21, 867-889.
    • (1993) Ann. Stat , vol.21 , pp. 867-889
    • Hall, P.1    Li, K.-C.2
  • 117
    • 20744451888 scopus 로고    scopus 로고
    • Geometric representation of high dimension low sample size data
    • Hall, P., J. S. Marron and A. Neeman (2005). Geometric representation of high dimension low sample size data. J. R. Stat. Soc. B (JRSS-B) 67, 427-444.
    • (2005) J. R. Stat. Soc. B (JRSS-B) , vol.67 , pp. 427-444
    • Hall, P.1    Marron, J.S.2    Neeman, A.3
  • 118
    • 33745886270 scopus 로고    scopus 로고
    • Classifier technology and the illusion of progress
    • Hand, D. J. (2006). Classifier technology and the illusion of progress. Stat. Sci. 21, 1-14.
    • (2006) Stat. Sci , vol.21 , pp. 1-14
    • Hand, D.J.1
  • 119
    • 0017947982 scopus 로고
    • Hedonic prices and the demand for clean air
    • Harrison, D., and D. L. Rubinfeld (1978). Hedonic prices and the demand for clean air. J. Environ. Econ. Manage. 5, 81-102. (http://lib.stat.cmu.edu/datasets/boston).
    • (1978) J. Environ. Econ. Manage , vol.5 , pp. 81-102
    • Harrison, D.1    Rubinfeld, D.L.2
  • 121
    • 0001412975 scopus 로고
    • Representation of similarity matrices by trees
    • Hartigan, J. A. (1967). Representation of similarity matrices by trees. J. Am. Stat. Assoc. 62, 1140-1158.
    • (1967) J. Am. Stat. Assoc , vol.62 , pp. 1140-1158
    • Hartigan, J.A.1
  • 126
    • 84946280337 scopus 로고
    • On the structure of partial least squares regression
    • Helland, I. S. (1988). On the structure of partial least squares regression. Commun. Stat. Simul. Comput. 17, 581-607.
    • (1988) Commun. Stat. Simul. Comput , vol.17 , pp. 581-607
    • Helland, I.S.1
  • 127
    • 0000656711 scopus 로고
    • Partial least squares regression and statistical models
    • Helland, I. S. (1990). Partial least squares regression and statistical models. Scand. J. Stat. 17, 97-114.
    • (1990) Scand. J. Stat , vol.17 , pp. 97-114
    • Helland, I.S.1
  • 128
    • 0021751506 scopus 로고
    • Circuits neuronaux `a synapses modifiables: Décodage de messages composites par apprentissage non supervisé
    • Hérault, J., and B. Ans (1984). Circuits neuronaux `a synapses modifiables: décodage de messages composites par apprentissage non supervisé. Comp. Rendus Acad. Sci. 299, 525-528.
    • (1984) Comp. Rendus Acad. Sci , vol.299 , pp. 525-528
    • Hérault, J.1    Ans, B.2
  • 129
    • 0001877182 scopus 로고
    • Détection de grandeurs primitives dans un message composite par une architecture de calcul neuromimétique en apprentissage non supervisé
    • Nice, France
    • Hérault, J., C. Jutten and B. Ans (1985). Détection de grandeurs primitives dans un message composite par une architecture de calcul neuromimétique en apprentissage non supervisé. In Actes de Xéme colloque GRETSI, pp. 1017-1022, Nice, France.
    • (1985) Actes De Xéme Colloque GRETSI , pp. 1017-1022
    • Hérault, J.1    Jutten, C.2    Ans, B.3
  • 131
    • 58149421595 scopus 로고
    • Analysis of a complex of statistical variables into principal components
    • Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. J. Educ. Psych. 24, 417-441 and 498-520.
    • (1933) J. Educ. Psych , vol.24
    • Hotelling, H.1
  • 132
    • 0001523230 scopus 로고
    • The most predictable criterion
    • Hotelling, H. (1935). The most predictable criterion. J. Exp. Psychol. 26, 139-142.
    • (1935) J. Exp. Psychol , vol.26 , pp. 139-142
    • Hotelling, H.1
  • 133
    • 0000107975 scopus 로고
    • Relations between two sets of variates
    • Hotelling, H. (1936). Relations between two sets of variates. Biometrika 28, 321-377.
    • (1936) Biometrika , vol.28 , pp. 321-377
    • Hotelling, H.1
  • 134
    • 0000263797 scopus 로고
    • Projection pursuit
    • Huber, P. J. (1985). Projection pursuit. Ann. Stat. 13, 435-475.
    • (1985) Ann. Stat , vol.13 , pp. 435-475
    • Huber, P.J.1
  • 135
    • 0032629347 scopus 로고    scopus 로고
    • Fast and robust fixed-point algorithm for independent component analysis
    • Hyv¨arinen, A
    • Hyv¨arinen, A. (1999). Fast and robust fixed-point algorithm for independent component analysis. IEEE Trans. Neural Networks 10, 626-634.
    • (1999) IEEE Trans. Neural Networks , vol.10 , pp. 626-634
  • 137
    • 84926094564 scopus 로고    scopus 로고
    • ICA Central (1999). available at://www.tsi.enst.fr/icacentral/.
    • (1999)
  • 138
    • 28444464348 scopus 로고
    • The plane with parallel coordinates
    • Inselberg, A. (1985). The plane with parallel coordinates. Visual Computer 1, 69-91.
    • (1985) Visual Computer , vol.1 , pp. 69-91
    • Inselberg, A.1
  • 140
    • 0000118166 scopus 로고
    • Two case studies in the application of principal components
    • Jeffers, J. (1967). Two case studies in the application of principal components. Appl. Stat. 16, 225-236.
    • (1967) Appl. Stat , vol.16 , pp. 225-236
    • Jeffers, J.1
  • 141
    • 84857035947 scopus 로고    scopus 로고
    • Polynomial histograms for multivariate density and mode estimation
    • Jing, J., I. Koch and K. Naito (2012). Polynomial histograms for multivariate density and mode estimation. Scand. J. Stat. 39, 75-96.
    • (2012) Scand. J. Stat , vol.39 , pp. 75-96
    • Jing, J.1    Koch, I.2    Naito, K.3
  • 142
    • 0041611613 scopus 로고
    • Some optimal multivariate tests
    • John, S. (1971). Some optimal multivariate tests. Biometrika 58, 123-127.
    • (1971) Biometrika , vol.58 , pp. 123-127
    • John, S.1
  • 143
    • 0042613506 scopus 로고
    • The distribution of a statistic used for testing sphericity of normal distributions
    • John, S. (1972). The distribution of a statistic used for testing sphericity of normal distributions. Biometrika 59, 169-173.
    • (1972) Biometrika , vol.59 , pp. 169-173
    • John, S.1
  • 144
    • 0035641726 scopus 로고    scopus 로고
    • On the distribution of the largest principal component
    • Johnstone, I. M. (2001). On the distribution of the largest principal component. Ann. Stat. 29, 295-327.
    • (2001) Ann. Stat , vol.29 , pp. 295-327
    • Johnstone, I.M.1
  • 145
    • 66549088006 scopus 로고    scopus 로고
    • On consistency and sparsity for principal components analysis in high dimensions
    • Johnstone, I. M., and A. Y. Lu (2009). On consistency and sparsity for principal components analysis in high dimensions. J. Am. Stat. Assoc. 104, 682-693.
    • (2009) J. Am. Stat. Assoc , vol.104 , pp. 682-693
    • Johnstone, I.M.1    Lu, A.Y.2
  • 146
    • 0000281948 scopus 로고
    • Rotation of ill-defined principal components
    • Jolliffe, I. T. (1989). Rotation of ill-defined principal components. Appl. Stat. 38, 139-147.
    • (1989) Appl. Stat , vol.38 , pp. 139-147
    • Jolliffe, I.T.1
  • 147
    • 0002226018 scopus 로고
    • Rotation of principal components: Choice of normalization constraints
    • Jolliffe, I. T. (1995). Rotation of principal components: Choice of normalization constraints. J. Appl. Stat. 22, 29-35.
    • (1995) J. Appl. Stat , vol.22 , pp. 29-35
    • Jolliffe, I.T.1
  • 148
    • 0141941674 scopus 로고    scopus 로고
    • A modified principal component technique based on the lasso
    • Jolliffe, I. T., N. T. Trendafilov and M. Uddin (2003). A modified principal component technique based on the LASSO. J. Comput. Graph. Stat. 12, 531-547.
    • (2003) J. Comput. Graph. Stat , vol.12 , pp. 531-547
    • Jolliffe, I.T.1    Trendafilov, N.T.2    Uddin, M.3
  • 151
    • 0002548788 scopus 로고
    • A general method for estimating a linear structural equation system
    • A. S. Goldberger and O. D. Duncan, San Francisco: Jossey-Bass
    • Jöreskog, K. G. (1973). A general method for estimating a linear structural equation system. In A. S. Goldberger and O. D. Duncan (eds.), Structural Equation Models in the Social Sciences, pp. 85-112. San Francisco: Jossey-Bass.
    • (1973) Structural Equation Models in the Social Sciences , pp. 85-112
    • Jöreskog, K.G.1
  • 152
    • 70249103304 scopus 로고    scopus 로고
    • Pca consistency in high dimension low sample size context
    • Jung, S., and J. S. Marron (2009). PCA consistency in high dimension low sample size context. Ann. Stat. 37, 4104-4130.
    • (2009) Ann. Stat , vol.37 , pp. 4104-4130
    • Jung, S.1    Marron, J.S.2
  • 153
    • 84860446130 scopus 로고    scopus 로고
    • Boundary behavior in high dimension, low sample size asymptotics of pca
    • Jung, S., A. Sen, and J. S. Marron (2012). Boundary behavior in high dimension, low sample size asymptotics of pca. J. Multivar. Anal. 109, 190-203.
    • (2012) J. Multivar. Anal , vol.109 , pp. 190-203
    • Jung, S.1    Sen, A.2    Marron, J.S.3
  • 154
    • 34250922831 scopus 로고
    • The varimax criterion for analytic rotation in factor analysis
    • Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika 23, 187-200.
    • (1958) Psychometrika , vol.23 , pp. 187-200
    • Kaiser, H.F.1
  • 156
    • 62649102229 scopus 로고    scopus 로고
    • Independent component analysis: Comparison of algorithms for the inverstigation of surface electrical brain activity
    • Klemm, M., J. Haueisen and G. Ivanova (2009). Independent component analysis: Comparison of algorithms for the inverstigation of surface electrical brain activity. Med. Biol. Eng. Comput. 47, 413-423.
    • (2009) Med. Biol. Eng. Comput , vol.47 , pp. 413-423
    • Klemm, M.1    Haueisen, J.2    Ivanova, G.3
  • 158
    • 33847272567 scopus 로고    scopus 로고
    • Dimension selection for feature selection and dimension reduction with principal and independent component analysis
    • Koch, I., and K. Naito (2007). Dimension selection for feature selection and dimension reduction with principal and independent component analysis. Neural Comput. 19, 513-545.
    • (2007) Neural Comput , vol.19 , pp. 513-545
    • Koch, I.1    Naito, K.2
  • 159
    • 77949568746 scopus 로고    scopus 로고
    • Prediction of multivariate responses with a selected number of principal components
    • Koch, I., and K. Naito (2010). Prediction of multivariate responses with a selected number of principal components. Comput. Stat. Data Anal. 54, 1791-1807.
    • (2010) Comput. Stat. Data Anal , vol.54 , pp. 1791-1807
    • Koch, I.1    Naito, K.2
  • 160
    • 0041654220 scopus 로고
    • Multidimensional scaling by optimizing goodness-of-fit to a nonmetric hypothesis
    • Kruskal, J. B. (1964a). Multidimensional scaling by optimizing goodness-of-fit to a nonmetric hypothesis. Psychometrika 29, 1-27.
    • (1964) Psychometrika , vol.29 , pp. 1-27
    • Kruskal, J.B.1
  • 161
    • 24944533365 scopus 로고
    • Nonmetric multidimensional scaling: A numerical method
    • Kruskal, J. B. (1964b). Nonmetric multidimensional scaling: A numerical method. Psychometrika 29, 115-129.
    • (1964) Psychometrika , vol.29 , pp. 115-129
    • Kruskal, J.B.1
  • 162
    • 0002975747 scopus 로고
    • Toward a practical method which helps uncover the structure of a set of multivariate observations by fining the linear transformation which optimizes a new ‘index of condensation’
    • R. C. Milton and J. A. Nelder, New York: Academic Press
    • Kruskal, J. B. (1969). Toward a practical method which helps uncover the structure of a set of multivariate observations by fining the linear transformation which optimizes a new ‘index of condensation’. In R. C. Milton and J. A. Nelder (eds.), Statistical Computation, pp. 427-440. New York: Academic Press.
    • (1969) Statistical Computation , pp. 427-440
    • Kruskal, J.B.1
  • 163
    • 40649095632 scopus 로고
    • Linear transformation of multivariate data to reveal clustering
    • R. N. Shepard, A. K. Rommey and S. B. Nerlove, London: Seminar Press
    • Kruskal, J. B. (1972). Linear transformation of multivariate data to reveal clustering. In R. N. Shepard, A. K. Rommey and S. B. Nerlove (eds.), Multidimensional Scaling: Theory and Applications in the Behavioural Sciences, Vol. I, pp. 179-191. London: Seminar Press.
    • (1972) Multidimensional Scaling: Theory and Applications in the Behavioural Sciences , vol.1 , pp. 179-191
    • Kruskal, J.B.1
  • 165
    • 0023905024 scopus 로고
    • A criterion for determining the number of groups in a data set using sum of squares clustering
    • Krzanowski, W. J., and Y. T. Lai (1988). A criterion for determining the number of groups in a data set using sum of squares clustering. Biometrics 44, 23-34.
    • (1988) Biometrics , vol.44 , pp. 23-34
    • Krzanowski, W.J.1    Lai, Y.T.2
  • 167
    • 0039607518 scopus 로고
    • Probability densities with given marginals
    • Kullback, S. (1968). Probability densities with given marginals. Ann. Math. Stat. 39, 1236-1243.
    • (1968) Ann. Math. Stat , vol.39 , pp. 1236-1243
    • Kullback, S.1
  • 168
    • 0003130097 scopus 로고
    • The estimation of factor loadings by the method of maximum likelihood
    • Lawley, D. N. (1940). The estimation of factor loadings by the method of maximum likelihood. Proc. R. Soc. Edinburgh A 60, 64-82.
    • (1940) Proc. R. Soc. Edinburgh A , vol.60 , pp. 64-82
    • Lawley, D.N.1
  • 169
    • 0039239781 scopus 로고    scopus 로고
    • A modified method of estimation in factor analysis and some large sample results
    • Uppsala, Sweden: Almqvist and Wiksell
    • Lawley, D. N. (1953). A modified method of estimation in factor analysis and some large sample results. In Uppsala Symposium on Psychlogical Factor Analysis, Vol. 17(19). Uppsala, Sweden: Almqvist and Wiksell, pp. 34-42.
    • Uppsala Symposium on Psychlogical Factor Analysis , vol.17 , Issue.19 , pp. 34-42
    • Lawley, D.N.1
  • 171
    • 27844605876 scopus 로고    scopus 로고
    • Probabilistic non-linear principal component analysis with gaussian process latent variable models
    • Lawrence, N. (2005). Probabilistic non-linear principal component analysis with gaussian process latent variable models. J. Machine Learning Res. 6, 1783-1816.
    • (2005) J. Machine Learning Res , vol.6 , pp. 1783-1816
    • Lawrence, N.1
  • 174
    • 78650152868 scopus 로고    scopus 로고
    • Convergence and prediction of principal component scores in high-dimensional settings
    • Lee, S., F. Zou and F. A. Wright (2010). Convergence and prediction of principal component scores in high-dimensional settings. Ann. Stat. 38, 3605-3629.
    • (2010) Ann. Stat , vol.38 , pp. 3605-3629
    • Lee, S.1    Zou, F.2    Wright, F.A.3
  • 176
    • 0034207888 scopus 로고    scopus 로고
    • A unifying information-theoretic framework for independen component analysis
    • Lee, T.-W., M. Girolami, A. J. Bell and T. J. Sejnowski (2000). A unifying information-theoretic framework for independen component analysis. Comput. Math. Appl. 39, 1-21.
    • (2000) Comput. Math. Appl , vol.39 , pp. 1-21
    • Lee, T.-W.1    Girolami, M.2    Bell, A.J.3    Sejnowski, T.J.4
  • 177
    • 0033556834 scopus 로고    scopus 로고
    • Independent component analysis using an extended infomax algorithm for mixed subgaussian and super-gaussian sources
    • Lee, T.-W., M. Girolami and T. J. Sejnowski (1999). Independent component analysis using an extended infomax algorithm for mixed subgaussian and super-Gaussian sources. Neural Comput. 11, 417-441.
    • (1999) Neural Comput , vol.11 , pp. 417-441
    • Lee, T.-W.1    Girolami, M.2    Sejnowski, T.J.3
  • 178
    • 84865032272 scopus 로고    scopus 로고
    • Principal component analysis in very high-dimensional spaces
    • Lee, Y. K., E. R. Lee, and B. U. Park (2012). Principal component analysis in very high-dimensional spaces. Stat. Sinica 22, 933-956.
    • (2012) Stat. Sinica , vol.22 , pp. 933-956
    • Lee, Y.K.1    Lee, E.R.2    Park, B.U.3
  • 179
    • 57449095644 scopus 로고    scopus 로고
    • Estrogen-induced gene expression in bone marrow c-kit+ stem cells and stromal cells: Identification of specific biological processes involved in the functional organization of the stem cell niche
    • Lemieux, C., I. Cloutier and J.-F. Tanguay (2008). Estrogen-induced gene expression in bone marrow c-kit+ stem cells and stromal cells: Identification of specific biological processes involved in the functional organization of the stem cell niche. Stem Cells Dev. 17, 1153-1164.
    • (2008) Stem Cells Dev , vol.17 , pp. 1153-1164
    • Lemieux, C.1    Cloutier, I.2    Tanguay, J.-F.3
  • 180
  • 181
    • 84950441056 scopus 로고
    • On principal hessian directions for data visualization and dimension reduction: Another application of stein’s lemma
    • Li, K.-C. (1992). On principal Hessian directions for data visualization and dimension reduction: Another application of Stein’s lemma. J. Am. Stat. Assoc. 87, 1025-1039.
    • (1992) J. Am. Stat. Assoc , vol.87 , pp. 1025-1039
    • Li, K.-C.1
  • 183
    • 84877623616 scopus 로고    scopus 로고
    • Sparse principal component analysis and iterative thresholding
    • Ma, Z. (2013). Sparse principal component analysis and iterative thresholding. Ann. Stat. 41, 772-801.
    • (2013) Ann. Stat , vol.41 , pp. 772-801
    • Ma, Z.1
  • 184
    • 57049106953 scopus 로고
    • On tests for multivariate normality
    • Malkovich, J. F., and A. A. Afifi (1973). On tests for multivariate normality. J. Am. Stat. Assoc. 68, 176-179.
    • (1973) J. Am. Stat. Assoc , vol.68 , pp. 176-179
    • Malkovich, J.F.1    Afifi, A.A.2
  • 186
    • 0000905404 scopus 로고
    • Some asymptotics for multimodality tests based on kernel density estimates
    • Mammen, E., J. S. Marron and N. I. Fisher (1991). Some asymptotics for multimodality tests based on kernel density estimates. Prob. Theory Relat. Fields 91, 115-132.
    • (1991) Prob. Theory Relat. Fields , vol.91 , pp. 115-132
    • Mammen, E.1    Marron, J.S.2    Fisher, N.I.3
  • 187
    • 0000263239 scopus 로고
    • Distribution of eigenvalues of some sets of random matrices
    • Marcenko, V. A., and L. A. Pastur (1967). Distribution of eigenvalues of some sets of random matrices. Math. USSR-Sb 1, 507-536.
    • (1967) Math. Ussr-Sb , vol.1 , pp. 507-536
    • Marcenko, V.A.1    Pastur, L.A.2
  • 189
    • 0012924985 scopus 로고    scopus 로고
    • pcaSM.mand curvdatSM.m
    • Marron, J. S. (2008). Matlab software. pcaSM.mand curvdatSM.m available at: www.stat.unc.edu/postscript/papers/marron/Matlab7Software/General/.
    • (2008) Matlab Software
    • Marron, J.S.1
  • 190
    • 38349049321 scopus 로고    scopus 로고
    • Distance-weighted discrimination
    • Marron, J. S., M. J. Todd and J. Ahn (2007). Distance-weighted discrimination. J. Am. Stat. Assoc. 102(480), 1267-1271.
    • (2007) J. Am. Stat. Assoc , vol.102 , Issue.480 , pp. 1267-1271
    • Marron, J.S.1    Todd, M.J.2    Ahn, J.3
  • 196
    • 21144473513 scopus 로고
    • The integration of multidimensional scaling and multivariate analysis with optimal transformations
    • Meulman, J. J. (1992). The integration of multidimensional scaling and multivariate analysis with optimal transformations. Psychometrika 57, 530-565.
    • (1992) Psychometrika , vol.57 , pp. 530-565
    • Meulman, J.J.1
  • 197
    • 85004829930 scopus 로고
    • Principal coordinates analysis with optimal transformation of the variables- minimising the sum of squares of the smallest eigenvalues
    • Meulman, J. J. (1993). Principal coordinates analysis with optimal transformation of the variables- minimising the sum of squares of the smallest eigenvalues. Br. J. Math. Stat. Psychol. 46, 287-300.
    • (1993) Br. J. Math. Stat. Psychol , vol.46 , pp. 287-300
    • Meulman, J.J.1
  • 198
    • 0030369415 scopus 로고    scopus 로고
    • Fitting a distance model to homogeneous subsets of variables: Points of view analysis of categorical data
    • Meulman, J. J. (1996). Fitting a distance model to homogeneous subsets of variables: Points of view analysis of categorical data. J. Classification 13, 249-266.
    • (1996) J. Classification , vol.13 , pp. 249-266
    • Meulman, J.J.1
  • 200
    • 34250115918 scopus 로고
    • An examination of procedures for determining the number of clusters in a data set
    • Milligan, G. W., and M. C. Cooper (1985). An examination of procedures for determining the number of clusters in a data set. Psychometrika 50, 159-179.
    • (1985) Psychometrika , vol.50 , pp. 159-179
    • Milligan, G.W.1    Cooper, M.C.2
  • 202
    • 0031510027 scopus 로고    scopus 로고
    • Nonparametric testing of the existence of modes
    • Minotte, M. C. (1997). Nonparametric testing of the existence of modes. Ann. Stat. 25, 1646-1660.
    • (1997) Ann. Stat , vol.25 , pp. 1646-1660
    • Minotte, M.C.1
  • 203
    • 62349121558 scopus 로고    scopus 로고
    • Finite sample approximation results for principal component analysis: A matrix perturbation approach
    • Nadler, B. (2008). Finite sample approximation results for principal component analysis: A matrix perturbation approach. Ann. Stat. 36, 2791-2817.
    • (2008) Ann. Stat , vol.36 , pp. 2791-2817
    • Nadler, B.1
  • 204
    • 4243224126 scopus 로고
    • Three-dimensional projection pursuit
    • Nason, G. (1995). Three-dimensional projection pursuit. Appl. Stat. 44, 411-430.
    • (1995) Appl. Stat , vol.44 , pp. 411-430
    • Nason, G.1
  • 205
    • 0034345726 scopus 로고    scopus 로고
    • Some relationships between factors and components
    • Ogasawara, H. (2000). Some relationships between factors and components. Psychometrika 65, 167-185.
    • (2000) Psychometrika , vol.65 , pp. 167-185
    • Ogasawara, H.1
  • 206
    • 34548140245 scopus 로고    scopus 로고
    • Scatter matrices and independent component analysis
    • Oja, H., S. Sirkiä and J. Eriksson (2006). Scatter matrices and independent component analysis. Aust. J. Stat. 35, 175-189.
    • (2006) Aust. J. Stat , vol.35 , pp. 175-189
    • Oja, H.1    Sirkiä, S.2    Eriksson, J.3
  • 208
    • 38549175880 scopus 로고    scopus 로고
    • Asymptotics of sample eigenstructure for a large dimensional spiked covariance model
    • Paul, D. (2007). Asymptotics of sample eigenstructure for a large dimensional spiked covariance model. Stat. Sinica 17, 1617-1642.
    • (2007) Stat. Sinica , vol.17 , pp. 1617-1642
    • Paul, D.1
  • 209
    • 0000325341 scopus 로고
    • On lines and planes of closest fit to systems of points in space
    • Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. Philos.Mag. 2, 559-572.
    • (1901) Philos.Mag , vol.2 , pp. 559-572
    • Pearson, K.1
  • 212
    • 33845801750 scopus 로고    scopus 로고
    • Nearest neighbor discriminant analysis
    • Qiu, X., and L. Wu (2006). Nearest neighbor discriminant analysis. Int. J. Pattern Recog. Artif. Intell. 20, 1245-1259.
    • (2006) Int. J. Pattern Recog. Artif. Intell , vol.20 , pp. 1245-1259
    • Qiu, X.1    Wu, L.2
  • 213
    • 84925711202 scopus 로고    scopus 로고
    • Distributional scaling: An algorithm for structure-preserving embedding of metric and nonmetric spaces
    • Quist, M., and G. Yona (2004). Distributional scaling: An algorithm for structure-preserving embedding of metric and nonmetric spaces. J. Machine Learning Res. 5, 399-420.
    • (2004) J. Machine Learning Res , vol.5 , pp. 399-420
    • Quist, M.1    Yona, G.2
  • 214
  • 215
    • 1542680891 scopus 로고    scopus 로고
    • Source distribution models for blind source separation
    • Rai, C. S., and Y. Singh (2004). Source distribution models for blind source separation. Neurocomputing 57, 501-505.
    • (2004) Neurocomputing , vol.57 , pp. 501-505
    • Rai, C.S.1    Singh, Y.2
  • 218
    • 0000421364 scopus 로고
    • Some statistical approaches to multidimensional scaling data
    • Ramsay, J. O. (1982). Some statistical approaches to multidimensional scaling data. J. R. Stat. Soc. A (JRSSA) 145, 285-312.
    • (1982) J. R. Stat. Soc. a (JRSSA) , vol.145 , pp. 285-312
    • Ramsay, J.O.1
  • 219
    • 0002553181 scopus 로고
    • Estimation and tests of significance in factor analysis
    • Rao, C. (1955). Estimation and tests of significance in factor analysis. Psychometrika 20, 93-111.
    • (1955) Psychometrika , vol.20 , pp. 93-111
    • Rao, C.1
  • 220
    • 0012672426 scopus 로고
    • Multidimensional psychophysics
    • Richardson, M. W. (1938). Multidimensional psychophysics. Psychol. Bull. 35, 650-660.
    • (1938) Psychol. Bull , vol.35 , pp. 650-660
    • Richardson, M.W.1
  • 222
    • 0038259120 scopus 로고    scopus 로고
    • Kernel partial least squares regression in reproducing kernel hilbert spaces
    • Rosipal, R., and L. J. Trejo (2001). Kernel partial least squares regression in reproducing kernel hilbert spaces. J. Machine Learning Res. 2, 97-123.
    • (2001) J. Machine Learning Res , vol.2 , pp. 97-123
    • Rosipal, R.1    Trejo, L.J.2
  • 225
    • 0033556862 scopus 로고    scopus 로고
    • A unifying review of linear gaussian models
    • Roweis, S., and Z. Ghahramani (1999). A unifying review of linear gaussian models. Neural Comput. 11, 305-345.
    • (1999) Neural Comput , vol.11 , pp. 305-345
    • Roweis, S.1    Ghahramani, Z.2
  • 226
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by local linear embedding
    • Roweis, S. T., and L. K. Saul (2000). Nonlinear dimensionality reduction by local linear embedding. Science 290, 2323-2326.
    • (2000) Science , vol.290 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 229
    • 29144464874 scopus 로고    scopus 로고
    • Nonparametric independent component analysis
    • Samarov, A., and A. Tsybakov (2004). Nonparametric independent component analysis. Bernoulli 10, 565-582.
    • (2004) Bernoulli , vol.10 , pp. 565-582
    • Samarov, A.1    Tsybakov, A.2
  • 230
    • 84887006810 scopus 로고
    • A nonlinear mapping for data structure analysis
    • Sammon, J. W. (1969). A nonlinear mapping for data structure analysis. IEEE Trans. Computers 18, 401-409.
    • (1969) IEEE Trans. Computers , vol.18 , pp. 401-409
    • Sammon, J.W.1
  • 231
    • 0000903067 scopus 로고
    • Factor analysis and principal components
    • Schneeweiss, H., and H. Mathes (1995). Factor analysis and principal components. J. Multivar. Anal. 55, 105-124.
    • (1995) J. Multivar. Anal , vol.55 , pp. 105-124
    • Schneeweiss, H.1    Mathes, H.2
  • 232
    • 0001203499 scopus 로고
    • Remarks to maurice fréchets article ‘sur la définition axiomatique d’une classe d’espaces distanciés vectoriellement applicable sur l’espaces de hilbert.’
    • Schoenberg, I. J. (1935). ‘Remarks to Maurice Fréchet’s article ‘Sur la définition axiomatique d’une classe d’espaces distanciés vectoriellement applicable sur l’espaces de Hilbert.’. Ann. Math. 38, 724-732.
    • (1935) Ann. Math , vol.38 , pp. 724-732
    • Schoenberg, I.J.1
  • 234
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Schölkopf, B., A. Smola and K.-R. Müller (1998). Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10, 1299-1319.
    • (1998) Neural Comput , vol.10 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.2    Müller, K.-R.3
  • 239
    • 84908648329 scopus 로고    scopus 로고
    • A general framework for consistency of principal component analysis
    • Shen, D., H. Shen, and J. S. Marron (2012). A general framework for consistency of principal component analysis. arXiv:1211.2671.
    • (2012) Arxiv , vol.1211 , pp. 2671
    • Shen, D.1    Shen, H.2    Marron, J.S.3
  • 240
    • 84869784137 scopus 로고    scopus 로고
    • Consistency of sparse pca in high dimension, low sample size
    • Shen, D., H. Shen, and J. S. Marron (2013). Consistency of sparse PCA in high dimension, low sample size. J. Multivar. Anal. 115, 317-333.
    • (2013) J. Multivar. Anal , vol.115 , pp. 317-333
    • Shen, D.1    Shen, H.2    Marron, J.S.3
  • 241
    • 84926105404 scopus 로고    scopus 로고
    • High dimensional principal component scores and data visualization
    • Shen, D., H. Shen, H. Zhu, and J. S. Marron (2012). High dimensional principal component scores and data visualization. arXiv:1211.2679.
    • (2012) Arxiv , vol.1211 , pp. 2679
    • Shen, D.1    Shen, H.2    Zhu, H.3    Marron, J.S.4
  • 242
    • 43049086717 scopus 로고    scopus 로고
    • Sparse principal component analysis via regularized low rank matrix approximation
    • Shen, H., and J. Huang (2008). Sparse principal component analysis via regularized low rank matrix approximation. J. Multivar. Anal. 99, 1015-1034.
    • (2008) J. Multivar. Anal , vol.99 , pp. 1015-1034
    • Shen, H.1    Huang, J.2
  • 243
    • 34250920725 scopus 로고
    • The analysis of proximities: Multidimensional scaling with an unknown distance function i
    • Shepard, R. N. (1962a). The analysis of proximities: Multidimensional scaling with an unknown distance function I. Psychometrika 27, 125-140.
    • (1962) Psychometrika , vol.27 , pp. 125-140
    • Shepard, R.N.1
  • 244
    • 34250920725 scopus 로고
    • The analysis of proximities: Multidimensional scaling with an unknown distance function ii
    • Shepard, R. N. (1962b). The analysis of proximities: Multidimensional scaling with an unknown distance function II. Psychometrika 27, 219-246.
    • (1962) Psychometrika , vol.27 , pp. 219-246
    • Shepard, R.N.1
  • 245
    • 0019610270 scopus 로고
    • Optimal distance measure for nearest neighbour classification
    • Short, R. D., and K. Fukunaga (1981). Optimal distance measure for nearest neighbour classification. IEEE Trans. Inform. Theory IT-27, 622-627.
    • (1981) IEEE Trans. Inform. Theory IT-27 , pp. 622-627
    • Short, R.D.1    Fukunaga, K.2
  • 246
    • 0002333325 scopus 로고
    • Using kernel density estimates to investigate multimodality
    • Silverman, B. W. (1981). Using kernel density estimates to investigate multimodality. J. R. Stat. Soc. B (JRSS-B) 43, 97-99.
    • (1981) J. R. Stat. Soc. B (JRSS-B) , vol.43 , pp. 97-99
    • Silverman, B.W.1
  • 250
    • 84863432342 scopus 로고    scopus 로고
    • Pattern recognition based on canonical correlations in a high dimension low sample size context
    • Tamatani, M., I. Koch and K. Naito (2012). Pattern recognition based on canonical correlations in a high dimension low sample size context. J. Multivar. Anal. 111, 350-367.
    • (2012) J. Multivar. Anal , vol.111 , pp. 350-367
    • Tamatani, M.1    Koch, I.2    Naito, K.3
  • 252
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum, J. B., V. de Silva and J. C. Langford (2000). A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319-2323.
    • (2000) Science , vol.290 , pp. 2319-2323
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3
  • 253
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B (JRSS-B) 58, 267-288.
    • (1996) J. R. Stat. Soc. B (JRSS-B) , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 254
    • 26644472430 scopus 로고    scopus 로고
    • Cluster validation by prediction strength
    • Tibshirani, R., and G. Walther (2005). Cluster validation by prediction strength. J. Comput. Graph. Stat. 14, 511-528.
    • (2005) J. Comput. Graph. Stat , vol.14 , pp. 511-528
    • Tibshirani, R.1    Walther, G.2
  • 255
    • 0035532141 scopus 로고    scopus 로고
    • Estimating the number of clusters in a dataset via the gap statistic
    • Tibshirani, R., G. Walther and T. Hastie (2001). Estimating the number of clusters in a dataset via the gap statistic. J. R. Stat. Soc. B (JRSS-B) 63, 411-423.
    • (2001) J. R. Stat. Soc. B (JRSS-B) , vol.63 , pp. 411-423
    • Tibshirani, R.1    Walther, G.2    Hastie, T.3
  • 256
  • 257
    • 84950351930 scopus 로고
    • Multidimensional scaling: 1. Theory and method
    • Torgerson, W. S. (1952). Multidimensional scaling: 1. Theory and method. Psychometrika 17, 401-419.
    • (1952) Psychometrika , vol.17 , pp. 401-419
    • Torgerson, W.S.1
  • 259
    • 58349094705 scopus 로고    scopus 로고
    • Towards theory of generic principal component analysis
    • Torokhti, A., and S. Friedland (2009). Towards theory of generic principal component analysis. J. Multivar. Anal. 100, 661-669.
    • (2009) J. Multivar. Anal , vol.100 , pp. 661-669
    • Torokhti, A.1    Friedland, S.2
  • 260
    • 0030545965 scopus 로고    scopus 로고
    • On orthogonal and symplectic matrix ensembles. Commun
    • Tracy, C. A., and H. Widom (1996). On orthogonal and symplectic matrix ensembles. Commun. Math. Phys. 177, 727-754.
    • (1996) Math. Phys , vol.177 , pp. 727-754
    • Tracy, C.A.1    Widom, H.2
  • 261
    • 0039990549 scopus 로고    scopus 로고
    • The distribution of the largest eigenvalue in the gaussian ensembles
    • J. van Diejen and L. Vinet, New York: Springer
    • Tracy, C. A., and H. Widom (2000). The distribution of the largest eigenvalue in the Gaussian ensembles. In J. van Diejen and L. Vinet (eds.), Cologero-Moser-Sutherland Models, pp. 461-472. New York: Springer.
    • (2000) Cologero-Moser-Sutherland Models , pp. 461-472
    • Tracy, C.A.1    Widom, H.2
  • 262
    • 0013028749 scopus 로고    scopus 로고
    • Computing distances between convex sets and subsets of the positive semidefinite matrices
    • Rice University
    • Trosset, M. W. (1997). Computing distances between convex sets and subsets of the positive semidefinite matrices. Technical Rep. 97-3, Rice University.
    • (1997) Technical Rep , pp. 97-103
    • Trosset, M.W.1
  • 263
    • 0032374991 scopus 로고    scopus 로고
    • A new formulation of the nonmetric strain problem in multidimensional scaling
    • Trosset, M. W. (1998). A new formulation of the nonmetric strain problem in multidimensional scaling. J. Classification 15, 15-35.
    • (1998) J. Classification , vol.15 , pp. 15-35
    • Trosset, M.W.1
  • 264
    • 0000830865 scopus 로고
    • An individual differences model for multidimensional scaling
    • Tucker, L. R., and S. Messick (1963). An individual differences model for multidimensional scaling. Psychometrika 28, 333-367.
    • (1963) Psychometrika , vol.28 , pp. 333-367
    • Tucker, L.R.1    Messick, S.2
  • 269
    • 0005071949 scopus 로고
    • Berlin: Akademie-Verlag (German translation from the original Russian, published in
    • Vapnik, V., and A. Chervonenkis (1979). Theorie der Zeichenerkennung. Berlin: Akademie-Verlag (German translation from the original Russian, published in 1974).
    • (1979) Theorie Der Zeichenerkennung , pp. 1974
    • Vapnik, V.1    Chervonenkis, A.2
  • 270
    • 0002260546 scopus 로고
    • A test for normality based on sample entropy
    • Vasicek, O. (1976). A test for normality based on sample entropy. J. R. Stat. Soc. B (JRSS-B) 38, 54-59.
    • (1976) J. R. Stat. Soc. B (JRSS-B) , vol.38 , pp. 54-59
    • Vasicek, O.1
  • 272
    • 0034354646 scopus 로고    scopus 로고
    • Simple principal components
    • Vines, S. K. (2000). Simple principal components. Appl. Stat. 49, 441-451.
    • (2000) Appl. Stat , vol.49 , pp. 441-451
    • Vines, S.K.1
  • 273
    • 0035330650 scopus 로고    scopus 로고
    • Efficient source adaptivity in independent component analysis
    • Vlassis, N., and Y. Motomura (2001). Efficient source adaptivity in independent component analysis. IEEE Trans. on Neural Networks 12, 559-565.
    • (2001) IEEE Trans. on Neural Networks , vol.12 , pp. 559-565
    • Vlassis, N.1    Motomura, Y.2
  • 276
    • 0007896967 scopus 로고
    • New York: Springer
    • Wegman, E. (1992). The grand tour in k-dimensions. In Computing Science and Statistics. New York: Springer, pp. 127-136.
    • (1992) The Grand Tour in K-Dimensions , pp. 127-136
    • Wegman, E.1
  • 278
    • 34547601456 scopus 로고    scopus 로고
    • Bayesian independent component analysis: Variational methods and non-negative decompositions
    • Winther, O., and K. B. Petersen (2007). Bayesian independent component analysis: Variational methods and non-negative decompositions. Digital Signal Processing 17, 858-872.
    • (2007) Digital Signal Processing , vol.17 , pp. 858-872
    • Winther, O.1    Petersen, K.B.2
  • 279
    • 77954603019 scopus 로고    scopus 로고
    • A framework for feature selection in clustering
    • Witten, D. M., and R. Tibshirani (2010). A framework for feature selection in clustering. J. Am. Stat. Assoc. 105, 713-726.
    • (2010) J. Am. Stat. Assoc , vol.105 , pp. 713-726
    • Witten, D.M.1    Tibshirani, R.2
  • 280
    • 70149096300 scopus 로고    scopus 로고
    • A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis
    • Witten, D. M., R. Tibshirani, and T. Hastie (2009). A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics 10, 515-534.
    • (2009) Biostatistics , vol.10 , pp. 515-534
    • Witten, D.M.1    Tibshirani, R.2    Hastie, T.3
  • 282
    • 0001098205 scopus 로고
    • Estimation of principal components and related models by iterative least squares
    • P. R. Krishnaiah, New York: Academic Press
    • Wold, H. (1966). Estimation of principal components and related models by iterative least squares. In P. R. Krishnaiah (ed.), Multivariate Analysis, pp. 391-420. New York: Academic Press.
    • (1966) Multivariate Analysis , pp. 391-420
    • Wold, H.1
  • 283
    • 16444383160 scopus 로고    scopus 로고
    • Survey of clustering algorithms
    • Xu, R., and D. Wunsch II (2005). Survey of clustering algorithms. IEEE Trans. Neural Networks 16, 645-678.
    • (2005) IEEE Trans. Neural Networks , vol.16 , pp. 645-678
    • Xu, R.1    Wunsch, D.2
  • 284
    • 0033727638 scopus 로고    scopus 로고
    • Blind source separation via the second characteristic function
    • Yeredor, A. (2000). Blind source separation via the second characteristic function. Signal Processing 80, 897-902.
    • (2000) Signal Processing , vol.80 , pp. 897-902
    • Yeredor, A.1
  • 285
    • 0002361037 scopus 로고
    • Discussion of a set of points in terms of their mutual distances
    • Young, G., and A. S. Householder (1938). Discussion of a set of points in terms of their mutual distances. Psychometrika 3, 19-22.
    • (1938) Psychometrika , vol.3 , pp. 19-22
    • Young, G.1    Householder, A.S.2
  • 286
    • 84864045468 scopus 로고    scopus 로고
    • Nonnegative sparse pca
    • B. Schölkopf, J. Platt, and T. Hofmann, Cambridge, MA: MIT Press
    • Zass, R., and A. Shashua (2007). Nonnegative sparse PCA. In Advances in Neural Information Processing Systems (NIPS-2006), Vol. 19, B. Schölkopf, J. Platt, and T. Hofmann, eds., p. 1561. Cambridge, MA: MIT Press.
    • (2007) Advances in Neural Information Processing Systems (NIPS-2006) , vol.19 , pp. 1561
    • Zass, R.1    Shashua, A.2
  • 288
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection with the elastic net
    • Zou, H., and T. Hastie (2005). Regularization and variable selection with the elastic net. J. R. Stat. Soc. B (JRSS-B) 67, 301-320.
    • (2005) J. R. Stat. Soc. B (JRSS-B) , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.