-
3
-
-
78651329401
-
Bayesian PCA
-
Michael J. Kearns, Sara A. Solla, and David A. Cohn, editors, Cambridge, MA, 1999. MIT Press
-
Christopher M. Bishop. Bayesian PCA. In Michael J. Kearns, Sara A. Solla, and David A. Cohn, editors, Advances in Neural Information Processing Systems, volume 11, pages 482-388, Cambridge, MA, 1999. MIT Press.
-
Advances in Neural Information Processing Systems
, vol.11
, pp. 482-1388
-
-
Bishop, C.M.1
-
4
-
-
0027574219
-
Analysis of multiphase flows using dual-energy gamma densitometry and neural networks
-
Christopher M. Bishop and Gwilym D. James. Analysis of multiphase flows using dual-energy gamma densitometry and neural networks. Nuclear Instruments and Methods in Physics Research, A327:580-593, 1993.
-
(1993)
Nuclear Instruments and Methods in Physics Research
, vol.A327
, pp. 580-593
-
-
Bishop, C.M.1
James, G.D.2
-
5
-
-
85156220082
-
A fast em algorithm for latent variable density models
-
D. S. Touretzky, Michael C. Mozer, and M. E. Hasselmo, editors, MIT Press
-
Christopher M. Bishop, Marcus Svensén, and Christopher K. I. Williams. A fast EM algorithm for latent variable density models. In D. S. Touretzky, Michael C. Mozer, and M. E. Hasselmo, editors, Advances in Neural Information Processing Systems, volume 8, pages 465-471. MIT Press, 1996.
-
(1996)
Advances in Neural Information Processing Systems
, vol.8
, pp. 465-471
-
-
Bishop, C.M.1
Svensén, M.2
Williams, C.K.I.3
-
6
-
-
0000479287
-
GTM: A principled alternative to the Self-Organizing Map
-
MIT Press
-
Christopher M. Bishop, Marcus Svensén, and Christopher K. I. Williams. GTM: a principled alternative to the Self-Organizing Map. In Advances in Neural Information Processing Systems, volume 9, pages 354-360. MIT Press, 1997.
-
(1997)
Advances in Neural Information Processing Systems
, vol.9
, pp. 354-360
-
-
Bishop, C.M.1
Svensén, M.2
Williams, C.K.I.3
-
7
-
-
0347963789
-
GTM: The generative topographic mapping
-
Christopher M. Bishop, Marcus Svensén, and Christopher K. I. Williams. GTM: the Generative Topographic Mapping. Neural Computation, 10(1):215-234, 1998.
-
(1998)
Neural Computation
, vol.10
, Issue.1
, pp. 215-234
-
-
Bishop, C.M.1
Svensén, M.2
Williams, C.K.I.3
-
10
-
-
0029652445
-
The wake-sleep algorithm for unsupervised neural networks
-
Geoffrey E. Hinton, Peter Dayan, Brendan J. Frey, and Radford M. Neal. The wake-sleep algorithm for unsupervised neural networks. Science, 268:1158-1161, 1995.
-
(1995)
Science
, vol.268
, pp. 1158-1161
-
-
Hinton, G.E.1
Dayan, P.2
Frey, B.J.3
Neal, R.M.4
-
11
-
-
84898964829
-
Stochastic neighbor embedding
-
Sue Becker, Sebastian Thrun, and Klaus Obermayer, editors, Cambridge, MA, MIT Press
-
Geoffrey E. Hinton and Sam T. Roweis. Stochastic neighbor embedding. In Sue Becker, Sebastian Thrun, and Klaus Obermayer, editors, Advances in Neural Information Processing Systems, volume 15, pages 857-864, Cambridge, MA, 2003. MIT Press.
-
(2003)
Advances in Neural Information Processing Systems
, vol.15
, pp. 857-864
-
-
Hinton, G.E.1
Roweis, S.T.2
-
12
-
-
27844480834
-
Unsupervised variational Bayesian learning of nonlinear models
-
Lawrence Saul, Yair Weiss, and Léon Bouttou, editors, Cambridge, MA, MIT Press
-
Antti Honkela and Harri Valpola. Unsupervised variational Bayesian learning of nonlinear models. In Lawrence Saul, Yair Weiss, and Léon Bouttou, editors, Advances in Neural Information Processing Systems, volume 17, pages 593-600, Cambridge, MA, 2005. MIT Press.
-
(2005)
Advances in Neural Information Processing Systems
, vol.17
, pp. 593-600
-
-
Honkela, A.1
Valpola, H.2
-
13
-
-
0025489075
-
The self-organizing map
-
Teuvo Kohonen. The self-organizing map. Proceedings of the IEEE, 78(9):1464-1480, 1990.
-
(1990)
Proceedings of the IEEE
, vol.78
, Issue.9
, pp. 1464-1480
-
-
Kohonen, T.1
-
14
-
-
0041654220
-
Multidimensional scaling by optimizing goodness-of-fit to a nonmetric hypothesis
-
Joseph B. Kruskal. Multidimensional scaling by optimizing goodness-of-fit to a nonmetric hypothesis. Psychometrika, 29(1):1-28, 1964.
-
(1964)
Psychometrika
, vol.29
, Issue.1
, pp. 1-28
-
-
Kruskal, J.B.1
-
16
-
-
84898980901
-
Gaussian process models for visualisation of high dimensional data
-
Sebastian Thrun, Lawrence Saul, and Bernhard Schölkopf, editors, Cambridge, MA, . MIT Press
-
Neil D. Lawrence. Gaussian process models for visualisation of high dimensional data. In Sebastian Thrun, Lawrence Saul, and Bernhard Schölkopf, editors, Advances in Neural Information Processing Systems, volume 16, pages 329-336, Cambridge, MA, 2004. MIT Press.
-
(2004)
Advances in Neural Information Processing Systems
, vol.16
, pp. 329-336
-
-
Lawrence, N.D.1
-
17
-
-
80053225881
-
Fast sparse Gaussian process methods: The informative vector machine
-
Sue Becker, Sebastian Thrun, and Klaus Obermayer, editors, Cambridge, MA, . MIT Press
-
Neil D. Lawrence, Matthias Seeger, and Ralf Herbrich. Fast sparse Gaussian process methods: The informative vector machine. In Sue Becker, Sebastian Thrun, and Klaus Obermayer, editors, Advances in Neural Information Processing Systems, volume 15, pages 625-632, Cambridge, MA, 2003. MIT Press.
-
(2003)
Advances in Neural Information Processing Systems
, vol.15
, pp. 625-632
-
-
Lawrence, N.D.1
Seeger, M.2
Herbrich, R.3
-
18
-
-
0030556435
-
Feed-forward neural networks and topographic mappings for exploratory data analysis
-
David Lowe and Michael E. Tipping. Feed-forward neural networks and topographic mappings for exploratory data analysis. Neural Computing and Applications, 4(83), 1996.
-
(1996)
Neural Computing and Applications
, vol.4
, Issue.83
-
-
Lowe, D.1
Tipping, M.E.2
-
19
-
-
0001098485
-
A probabilistic model for the multidimensional scaling of proximity and preference data
-
David B. MacKay and J. L. Zinnes. A probabilistic model for the multidimensional scaling of proximity and preference data. Marketing Sciences, 5:325-334, 1986.
-
(1986)
Marketing Sciences
, vol.5
, pp. 325-334
-
-
MacKay, D.B.1
Zinnes, J.L.2
-
23
-
-
0003819947
-
-
Stochastic Models, Estimation and Control, Volume 1, Academic Press, New York, NY, . ISBN 0-12-4807011
-
Peter S. Maybeck. Stochastic Models, Estimation and Control, Volume 1, volume 141 of Mathematics in Science and Engineering. Academic Press, New York, NY, 1979. ISBN 0-12-4807011.
-
(1979)
Mathematics in Science and Engineering
, vol.141
-
-
Maybeck, P.S.1
-
25
-
-
0027205884
-
A scaled conjugate gradient algorithm for fast supervised learning
-
Martin F. Møller. A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks, 6(4):525-533, 1993.
-
(1993)
Neural Networks
, vol.6
, Issue.4
, pp. 525-533
-
-
Møller, M.F.1
-
27
-
-
0001136395
-
Some Bayesian numerical analysis
-
José M. Bernardo, James O. Berger, A. Phillip Dawid, and Adrian F. M. Smith, editors, Valencia, . Oxford University Press
-
Anthony O'Hagan. Some Bayesian numerical analysis. In José M. Bernardo, James O. Berger, A. Phillip Dawid, and Adrian F. M. Smith, editors, Bayesian Statistics 4, pages 345-363, Valencia, 1992. Oxford University Press.
-
(1992)
Bayesian Statistics
, vol.4
, pp. 345-363
-
-
O'Hagan, A.1
-
28
-
-
0034704222
-
Nonlinear dimensionality reduction by locally linear embedding
-
Sam T. Roweis and Lawrence K. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500):2323-2326, 2000.
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2323-2326
-
-
Roweis, S.T.1
Saul, L.K.2
-
29
-
-
84887006810
-
A nonlinear mapping for data structure analysis
-
John W. Sammon. A nonlinear mapping for data structure analysis. IEEE Transactions on Computers, C-18(5):401-409, 1969.
-
(1969)
IEEE Transactions on Computers
, vol.C-18
, Issue.5
, pp. 401-409
-
-
Sammon, J.W.1
-
30
-
-
0347243182
-
Nonlinear component analysis as a kernel eigenvalue problem
-
Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10:1299-1319, 1998.
-
(1998)
Neural Computation
, vol.10
, pp. 1299-1319
-
-
Schölkopf, B.1
Smola, A.2
Müller, K.-R.3
-
33
-
-
0034704229
-
A global geometric framework for nonlinear dimensionality reduction
-
Joshua B. Tenenbaum, Virginia de Silva, and John C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500):2319-2323, 2000.
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2319-2323
-
-
Tenenbaum, J.B.1
De Silva, V.2
Langford, J.C.3
-
34
-
-
0013375977
-
-
PhD thesis, Aston University, Aston Street, Birmingham B4 7ET, U.K.
-
Michael E. Tipping. Topographic Mappings and Feed-Forward Neural Networks. PhD thesis, Aston University, Aston Street, Birmingham B4 7ET, U.K., 1996.
-
(1996)
Topographic Mappings and Feed-forward Neural Networks
-
-
Tipping, M.E.1
-
35
-
-
84899007505
-
Probabilistic visualisation of high-dimensional binary data
-
Michael J. Kearns, Sara A. Solla, and David A. Cohn, editors, Cambridge, MA, . MIT Press
-
Michael E. Tipping. Probabilistic visualisation of high-dimensional binary data. In Michael J. Kearns, Sara A. Solla, and David A. Cohn, editors, Advances in Neural Information Processing Systems, volume 11, pages 592-598, Cambridge, MA, 1999. MIT Press.
-
(1999)
Advances in Neural Information Processing Systems
, vol.11
, pp. 592-598
-
-
Tipping, M.E.1
-
36
-
-
84898942701
-
Sparse kernel principal component analysis
-
Todd K. Leen, Thomas G. Dietterich, and Volker Tresp, editors, Cambridge, MA, MIT Press
-
Michael E. Tipping. Sparse kernel principal component analysis. In Todd K. Leen, Thomas G. Dietterich, and Volker Tresp, editors, Advances in Neural Information Processing Systems, volume 13, pages 633-639, Cambridge, MA, 2001. MIT Press.
-
(2001)
Advances in Neural Information Processing Systems
, vol.13
, pp. 633-639
-
-
Tipping, M.E.1
-
38
-
-
84950351930
-
Multidimensional scaling: I. theory and method
-
Warren S. Torgerson. Multidimensional scaling: I. theory and method. Psychometrika, 17:401-419, 1952.
-
(1952)
Psychometrika
, vol.17
, pp. 401-419
-
-
Torgerson, W.S.1
-
39
-
-
84898974226
-
Computing with infinite networks
-
Michael C. Mozer, Michael I. Jordan, and Thomas Petsche, editors, Cambridge, MA, . MIT Press
-
Christopher K. I. Williams. Computing with infinite networks. In Michael C. Mozer, Michael I. Jordan, and Thomas Petsche, editors, Advances in Neural Information Processing Systems, volume 9, Cambridge, MA, 1997. MIT Press.
-
(1997)
Advances in Neural Information Processing Systems
, vol.9
-
-
Williams, C.K.I.1
-
40
-
-
0003017575
-
Prediction with Gaussian processes: From linear regression to linear prediction and beyond
-
Michael I. Jordan, editor, Learning in Graphical Models, Dordrecht, The Netherlands, Kluwer
-
Christopher K. I. Williams. Prediction with Gaussian processes: From linear regression to linear prediction and beyond. In Michael I. Jordan, editor, Learning in Graphical Models, volume 89 of Series D: Behavioural and Social Sciences, Dordrecht, The Netherlands, 1998. Kluwer.
-
(1998)
Series D: Behavioural and Social Sciences
, vol.89
-
-
Williams, C.K.I.1
-
41
-
-
84898939890
-
On a connection between kernel PCA and metric multidimensional scaling
-
Todd K. Leen, Thomas G. Dietterich, and Volker Tresp, editors, Cambridge, MA, . MIT Press
-
Christopher K. I. Williams. On a connection between kernel PCA and metric multidimensional scaling. In Todd K. Leen, Thomas G. Dietterich, and Volker Tresp, editors, Advances in Neural Information Processing Systems, volume 13, pages 675-681, Cambridge, MA, 2001. MIT Press.
-
(2001)
Advances in Neural Information Processing Systems
, vol.13
, pp. 675-681
-
-
Williams, C.K.I.1
|