메뉴 건너뛰기




Volumn 101, Issue 473, 2006, Pages 119-137

Prediction by supervised principal components

Author keywords

Gene expression; Microarray; Regression; Survival analysis

Indexed keywords


EID: 33645527646     PISSN: 01621459     EISSN: None     Source Type: Journal    
DOI: 10.1198/016214505000000628     Document Type: Article
Times cited : (615)

References (40)
  • 1
    • 0034730140 scopus 로고    scopus 로고
    • Singular value decomposition for genome-wide expression data processing and modeling
    • Alter, O., Brown, P., and Botstein, D. (2000), "Singular Value Decomposition for Genome-Wide Expression Data Processing and Modeling," Proceedings of the National Academy of Sciences USA, 97, 10101-10106.
    • (2000) Proceedings of the National Academy of Sciences USA , vol.97 , pp. 10101-10106
    • Alter, O.1    Brown, P.2    Botstein, D.3
  • 2
    • 0037461021 scopus 로고    scopus 로고
    • Effective dimension reduction methods for tumor classification using gene expression data
    • Antoniadis, A., Lambert-Lacroix, S., and Leblanc, F. (2003), "Effective Dimension Reduction Methods for Tumor Classification Using Gene Expression Data," Bioinformatics, 19, 563-570.
    • (2003) Bioinformatics , vol.19 , pp. 563-570
    • Antoniadis, A.1    Lambert-Lacroix, S.2    Leblanc, F.3
  • 4
    • 19344375744 scopus 로고    scopus 로고
    • Semi-supervised methods to predict patient survival from gene expression data
    • Bair, E., and Tibshirani, R. (2004), "Semi-Supervised Methods to Predict Patient Survival From Gene Expression Data," PLoS Biology, 2, 511-522.
    • (2004) PLoS Biology , vol.2 , pp. 511-522
    • Bair, E.1    Tibshirani, R.2
  • 7
    • 0038494601 scopus 로고    scopus 로고
    • Graphical methods for class prediction using dimension reduction techniques on dna microarray data
    • Bura, E., and Pfeiffer, R. M. (2003), "Graphical Methods for Class Prediction Using Dimension Reduction Techniques on DNA Microarray Data," Bioinformatics, 19, 1252-1258.
    • (2003) Bioinformatics , vol.19 , pp. 1252-1258
    • Bura, E.1    Pfeiffer, R.M.2
  • 9
    • 0036278223 scopus 로고    scopus 로고
    • Sufficient dimension reduction in regressions with categorical predictors
    • Chiaromonte, F., Cook, R., and Li, B. (2002), "Sufficient Dimension Reduction in Regressions With Categorical Predictors," The Annals of Statistics, 30, 475-497.
    • (2002) The Annals of Statistics , vol.30 , pp. 475-497
    • Chiaromonte, F.1    Cook, R.2    Li, B.3
  • 10
    • 0036128489 scopus 로고    scopus 로고
    • Dimension reduction strategies for analyzing global gene expression data with a response
    • Chiaromonte, F., and Martinelli, J. (2002), "Dimension Reduction Strategies for Analyzing Global Gene Expression Data With a Response," Mathematical Biosciences, 176, 123-144.
    • (2002) Mathematical Biosciences , vol.176 , pp. 123-144
    • Chiaromonte, F.1    Martinelli, J.2
  • 11
    • 15844416978 scopus 로고    scopus 로고
    • Testing predictor contributions in sufficient dimension reduction
    • Cook, R. (2004), "Testing Predictor Contributions in Sufficient Dimension Reduction," The Annals of Statistics, 32, 1062-1092.
    • (2004) The Annals of Statistics , vol.32 , pp. 1062-1092
    • Cook, R.1
  • 12
    • 0000975683 scopus 로고
    • Slicing regression: A link-free regression method
    • Duan, N., and Li, K.-C. (1991), "Slicing Regression: A Link-Free Regression Method," The Annals of Statistics, 19, 505-530.
    • (1991) The Annals of Statistics , vol.19 , pp. 505-530
    • Duan, N.1    Li, K.-C.2
  • 14
    • 84952149204 scopus 로고
    • A statistical view of some chemometrics regression tools
    • Frank, I., and Friedman, J. (1993), "A Statistical View of Some Chemometrics Regression Tools" (with discussion), Technometrics, 35, 109-148.
    • (1993) Technometrics , vol.35 , pp. 109-148
    • Frank, I.1    Friedman, J.2
  • 15
    • 0036364086 scopus 로고    scopus 로고
    • Singular value decomposition regression models for classification of tumors from microarray experiments
    • Ghosh, D. (2002), "Singular Value Decomposition Regression Models for Classification of Tumors From Microarray Experiments," Pacific Symposium on Biocomputing, 7, 18-29.
    • (2002) Pacific Symposium on Biocomputing , vol.7 , pp. 18-29
    • Ghosh, D.1
  • 16
    • 33645500629 scopus 로고    scopus 로고
    • Efficient quadratic regularization for expression arrays
    • Stanford University
    • Hastie, T., and Tibshirani, R. (2003), "Efficient Quadratic Regularization for Expression Arrays," technical report, Stanford University.
    • (2003) Technical Report
    • Hastie, T.1    Tibshirani, R.2
  • 20
    • 33645511442 scopus 로고    scopus 로고
    • Partial cox regression analysis for high-dimensional microarray gene expression data
    • Hi, H., and Gui, J. (2004), "Partial Cox Regression Analysis for High-Dimensional Microarray Gene Expression Data," Bioinformatics, 5, 1208-1215.
    • (2004) Bioinformatics , vol.5 , pp. 1208-1215
    • Hi, H.1    Gui, J.2
  • 21
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • Hoerl, A. E., and Kennard, R. (1970), "Ridge Regression: Biased Estimation for Nonorthogonal Problems," Technometrics, 12, 55-67.
    • (1970) Technometrics , vol.12 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.2
  • 23
    • 13244289883 scopus 로고    scopus 로고
    • Joint analysis of two microarray gene-expression data sets to select lung adenocarcinoma marker genes
    • Jiang, H., Deng, Y., Chen, H.-S., Tao, L., Sha, Q., Chen, J., Tsai, C.-J., and Zhang, S. (2004), "Joint Analysis of Two Microarray Gene-Expression Data Sets to Select Lung Adenocarcinoma Marker Genes," BMC Bioinformatics, 5, 1-12.
    • (2004) BMC Bioinformatics , vol.5 , pp. 1-12
    • Jiang, H.1    Deng, Y.2    Chen, H.-S.3    Tao, L.4    Sha, Q.5    Chen, J.6    Tsai, C.-J.7    Zhang, S.8
  • 24
    • 0346810958 scopus 로고    scopus 로고
    • Chi-square oracle inequalities
    • eds. M. de Gunst, C. Klaassen, and A. van der Waart, Hayward, CA: IMS
    • Johnstone, I. (2001), "Chi-Square Oracle Inequalities," in Festschrift for William R. van Zwet, eds. M. de Gunst, C. Klaassen, and A. van der Waart, Hayward, CA: IMS, pp. 399-418.
    • (2001) Festschrift for William R. Van Zwet , pp. 399-418
    • Johnstone, I.1
  • 26
    • 1542678851 scopus 로고    scopus 로고
    • Inference for density families using functional principal component analysis
    • Kneip, A., and Utikal, K. J. (2001), "Inference for Density Families Using Functional Principal Component Analysis," Journal of the American Statistical Association, 96, 519-542.
    • (2001) Journal of the American Statistical Association , vol.96 , pp. 519-542
    • Kneip, A.1    Utikal, K.J.2
  • 27
    • 84945116550 scopus 로고
    • Sliced inverse regression for dimension reduction
    • Li, K.-C. (1992), "Sliced Inverse Regression for Dimension Reduction" (with discussion), Journal of the American Statistical Association, 86, 316-342.
    • (1992) Journal of the American Statistical Association , vol.86 , pp. 316-342
    • Li, K.-C.1
  • 28
    • 33645507942 scopus 로고    scopus 로고
    • Sparse principal components analysis for functional data
    • Stanford University
    • Lu, A. Y. (2002), "Sparse Principal Components Analysis for Functional Data," technical report, Stanford University.
    • (2002) Technical Report
    • Lu, A.Y.1
  • 31
    • 0036956225 scopus 로고    scopus 로고
    • Partial least squares proportional hazard regression for application to DNA microarrays
    • Nguyen, D., and Rocke, D. (2002), "Partial Least Squares Proportional Hazard Regression for Application to DNA Microarrays," Bioinformatics, 18, 1625-1632.
    • (2002) Bioinformatics , vol.18 , pp. 1625-1632
    • Nguyen, D.1    Rocke, D.2
  • 35
    • 0031015557 scopus 로고    scopus 로고
    • The lasso method for variable selection in the cox model
    • _ (1997), "The Lasso Method for Variable Selection in the Cox Model," Statistics in Medicine, 16, 385-395.
    • (1997) Statistics in Medicine , vol.16 , pp. 385-395
  • 38
    • 84858570492 scopus 로고    scopus 로고
    • A compression approach to support vector model selection
    • Max-Planck-Institut für Biologische Kybernetik
    • von Luxburg, U., Bousquet, O., and Schölkopf, B. (2002), "A Compression Approach to Support Vector Model Selection," technical report, Max-Planck-Institut für Biologische Kybernetik.
    • (2002) Technical Report
    • Von Luxburg, U.1    Bousquet, O.2    Schölkopf, B.3
  • 39
    • 0002692783 scopus 로고
    • Soft modelling by latent variables: The Nonlinear Iterative Partial Least Squares (NIPALS) approach
    • Honor of M. S. Bartlett, ed. J. Gani
    • Wold, H. (1975), "Soft Modelling by Latent Variables: The Nonlinear Iterative Partial Least Squares (NIPALS) Approach," in Perspectives in Probability and Statistics, in Honor of M. S. Bartlett, ed. J. Gani, pp. 117-144.
    • (1975) Perspectives in Probability and Statistics , pp. 117-144
    • Wold, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.