메뉴 건너뛰기




Volumn 39, Issue 11, 2000, Pages 1-21

A unifying information-theoretic framework for independent component analysis

Author keywords

Blind source separation; Entropy; ICA; Information maximization; Maximum likelihood estimation

Indexed keywords

APPROXIMATION THEORY; ASYMPTOTIC STABILITY; CONVERGENCE OF NUMERICAL METHODS; INFORMATION THEORY; ITERATIVE METHODS; LEARNING ALGORITHMS; LEARNING SYSTEMS; MATRIX ALGEBRA; PROBABILITY DENSITY FUNCTION;

EID: 0034207888     PISSN: 08981221     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0898-1221(00)00101-2     Document Type: Article
Times cited : (264)

References (91)
  • 1
    • 0002327756 scopus 로고    scopus 로고
    • A context-sensitive generalization of ICA
    • B. Pearlmutter and L. Parra, A context-sensitive generalization of ICA, In ICONIP'96, pp. 151-157, (1996).
    • (1996) ICONIP'96 , pp. 151-157
    • Pearlmutter, B.1    Parra, L.2
  • 2
    • 0031122399 scopus 로고    scopus 로고
    • Infomax and maximum likelihood for blind source separation
    • J.-F. Cardoso, Infomax and maximum likelihood for blind source separation, IEEE Signal Processing Letters 4, 109-111 (1997).
    • (1997) IEEE Signal Processing Letters , vol.4 , pp. 109-111
    • Cardoso, J.-F.1
  • 3
    • 0029411030 scopus 로고
    • An information maximization approach to blind separation and blind deconvolution
    • A.J. Bell and T.J. Sejnowski, An information maximization approach to blind separation and blind deconvolution, Neural Computation 7, 1129-1159 (1995).
    • (1995) Neural Computation , vol.7 , pp. 1129-1159
    • Bell, A.J.1    Sejnowski, T.J.2
  • 4
    • 85037478985 scopus 로고    scopus 로고
    • Stochastic ICA contrast maximization using Oja's nonlinear PCA algorithm
    • to appear
    • M. Girolami and C. Fyfe, Stochastic ICA contrast maximization using Oja's nonlinear PCA algorithm, International Journal of Neural Systems (to appear).
    • International Journal of Neural Systems
    • Girolami, M.1    Fyfe, C.2
  • 5
    • 0028272776 scopus 로고
    • Representation and separation of signals using nonlinear PCA type learning
    • J. Karhunen and J. Joutsensalo, Representation and separation of signals using nonlinear PCA type learning, Neural Networks 7, 113-127 (1994).
    • (1994) Neural Networks , vol.7 , pp. 113-127
    • Karhunen, J.1    Joutsensalo, J.2
  • 6
    • 0343416807 scopus 로고    scopus 로고
    • The nonlinear PCA learning rule in independent component analysis
    • E. Oja, The nonlinear PCA learning rule in independent component analysis, Neurocomputing 17, 25-45 (1997).
    • (1997) Neurocomputing , vol.17 , pp. 25-45
    • Oja, E.1
  • 7
    • 0028416938 scopus 로고
    • Independent component analysis - A new concept?
    • P. Comon, Independent component analysis - A new concept?, Signal Processing 36 (3), 287-314 (1994).
    • (1994) Signal Processing , vol.36 , Issue.3 , pp. 287-314
    • Comon, P.1
  • 9
    • 0001183650 scopus 로고
    • Space or time adaptive signal processing by neural network models
    • Edited by J.S. Denker, American Institute for Physics, New York
    • J. Herault and J. Jutten, Space or time adaptive signal processing by neural network models, In Neural Networks for Computing: AIP Conference Proceedings 151, (Edited by J.S. Denker), American Institute for Physics, New York, (1986).
    • (1986) Neural Networks for Computing: AIP Conference Proceedings , vol.151
    • Herault, J.1    Jutten, J.2
  • 10
    • 0026191274 scopus 로고
    • Blind separation of sources, Part I: An adaptive algorithm based on neuromimetic architecture
    • C. Jutten and J. Herault, Blind separation of sources, Part I: An adaptive algorithm based on neuromimetic architecture, Signal Processing 24, 1-10 (1991).
    • (1991) Signal Processing , vol.24 , pp. 1-10
    • Jutten, C.1    Herault, J.2
  • 11
    • 0028498103 scopus 로고
    • Robust learning algorithm for blind separation of signals
    • A. Cichocki, R. Unbehauen and E. Rummert, Robust learning algorithm for blind separation of signals, Electronics Letters 30 (17), 1386-1387 (1994).
    • (1994) Electronics Letters , vol.30 , Issue.17 , pp. 1386-1387
    • Cichocki, A.1    Unbehauen, R.2    Rummert, E.3
  • 12
    • 0001525549 scopus 로고
    • Local synaptic learning rules suffice to maximize mutual information in a linear network
    • R. Linsker, Local synaptic learning rules suffice to maximize mutual information in a linear network, Neural Computation 4, 691-702 (1992).
    • (1992) Neural Computation , vol.4 , pp. 691-702
    • Linsker, R.1
  • 13
    • 0002014402 scopus 로고
    • Possible principles underlying the transformation of sensory messages
    • Edited by W.A. Rosenblith, MIT Press
    • H.B. Barlow, Possible principles underlying the transformation of sensory messages, In Sensory Communication, (Edited by W.A. Rosenblith), MIT Press, (1961).
    • (1961) Sensory Communication
    • Barlow, H.B.1
  • 14
    • 34548281969 scopus 로고
    • Could information theory provide an ecological theory of sensory processing?
    • J.J. Atick, Could information theory provide an ecological theory of sensory processing?, Networks 3, 213-251 (1992).
    • (1992) Networks , vol.3 , pp. 213-251
    • Atick, J.J.1
  • 15
    • 0000772267 scopus 로고
    • Non-linear neurons in the low-noise limit: A factorial code maximizes information transfer
    • J.P. Nadal and N. Parga, Non-linear neurons in the low-noise limit: A factorial code maximizes information transfer, Network 4, 295-312 (1994).
    • (1994) Network , vol.4 , pp. 295-312
    • Nadal, J.P.1    Parga, N.2
  • 16
    • 0030241786 scopus 로고    scopus 로고
    • Multidimensional density shaping by sigmoids
    • Z. Roth and Y. Baram, Multidimensional density shaping by sigmoids, IEEE Trans. on Neural Networks 7 (5), 1291-1298 (1996).
    • (1996) IEEE Trans. on Neural Networks , vol.7 , Issue.5 , pp. 1291-1298
    • Roth, Z.1    Baram, Y.2
  • 18
    • 0000179296 scopus 로고
    • Sources separation without a priori knowledge: The maximum likelihood solution
    • Barcelona
    • M. Gaeta and J. Lacoume, Sources separation without a priori knowledge: The maximum likelihood solution, Eusipco 90, Barcelona, pp. 621-624 (1990).
    • (1990) Eusipco , vol.90 , pp. 621-624
    • Gaeta, M.1    Lacoume, J.2
  • 19
    • 0030674678 scopus 로고    scopus 로고
    • Generalised independent component analysis through unsupervised learning with emergent Bussgang properties
    • Houston, TX
    • M. Girolami and C. Fyfe, Generalised independent component analysis through unsupervised learning with emergent Bussgang properties, In Proc. International Conference on Neural Networks, Houston, TX, pp. 1788-1891, (1997).
    • (1997) Proc. International Conference on Neural Networks , pp. 1788-1891
    • Girolami, M.1    Fyfe, C.2
  • 20
    • 0031251223 scopus 로고    scopus 로고
    • Extraction of independent signal sources using a deflationary exploratory projection pursuit network with lateral inhibition
    • M. Girolami and C. Fyfe, Extraction of independent signal sources using a deflationary exploratory projection pursuit network with lateral inhibition, I.E.E. Proceedings on Vision, Image and Signal Processing Journal 14 (5), 299-306 (1997).
    • (1997) I.E.E. Proceedings on Vision, Image and Signal Processing Journal , vol.14 , Issue.5 , pp. 299-306
    • Girolami, M.1    Fyfe, C.2
  • 22
    • 0027206958 scopus 로고
    • Least MSE reconstruction: A principle for self organizing nets
    • L. Xu, Least MSE reconstruction: A principle for self organizing nets, Neural Networks 6, 627-648 (1993).
    • (1993) Neural Networks , vol.6 , pp. 627-648
    • Xu, L.1
  • 23
    • 33847741535 scopus 로고    scopus 로고
    • Independent component analysis using an extended infomax algorithm for mixed sub-Gaussian and super-Gaussian sources
    • submitted
    • T.-W. Lee, M. Girolami. and T. Sejnowski, Independent component analysis using an extended infomax algorithm for mixed sub-Gaussian and super-Gaussian sources, Neural Computation (submitted).
    • Neural Computation
    • Lee, T.-W.1    Girolami, M.2    Sejnowski, T.3
  • 24
    • 0344612221 scopus 로고    scopus 로고
    • Natural gradient works efficiently in learning
    • to appear
    • S. Amari, Natural gradient works efficiently in learning, Neural Computation (to appear).
    • Neural Computation
    • Amari, S.1
  • 25
    • 0000302959 scopus 로고
    • Separation of independent signals using time-delayed correlations
    • L. Molgedey and H. Schuster, Separation of independent signals using time-delayed correlations. Physical Review Letters 72 (23), 3634-3637 (1994).
    • (1994) Physical Review Letters , vol.72 , Issue.23 , pp. 3634-3637
    • Molgedey, L.1    Schuster, H.2
  • 27
    • 0031271273 scopus 로고    scopus 로고
    • Blind source separation - Semiparametric statistical approach
    • S. Amari and J.-F. Cardoso, Blind source separation - Semiparametric statistical approach, IEEE Trans. on Signal Processing 45, 2692-2700 (1997).
    • (1997) IEEE Trans. on Signal Processing , vol.45 , pp. 2692-2700
    • Amari, S.1    Cardoso, J.-F.2
  • 29
    • 0007153658 scopus 로고    scopus 로고
    • An alternative perspective on adaptive independent component analysis algorithms
    • Computing and Information Systems, Paisley University, Scotland, ISSN
    • M. Girolami, An alternative perspective on adaptive independent component analysis algorithms, Technical Report, Computing and Information Systems, Paisley University, Scotland, ISSN 1461-6122, (1997).
    • (1997) Technical Report , pp. 1461-6122
    • Girolami, M.1
  • 30
    • 0032187518 scopus 로고    scopus 로고
    • Blind signal processing: Statistical principles
    • J.-F. Cardoso, Blind signal processing: Statistical principles, In Proceedings of the IEEE, 86, pp. 2009-2025, (1998).
    • (1998) Proceedings of the IEEE , vol.86 , pp. 2009-2025
    • Cardoso, J.-F.1
  • 31
    • 85037475003 scopus 로고    scopus 로고
    • Chapter "Entropic contrasts for source separation", (Edited by S. Haykin), First presented at the NIPS*96 on 'Blind Signal Processing' organized by A. Cichocki
    • J.-F. Cardoso, Unsupervised Adaptive Filtering, Chapter "Entropic contrasts for source separation", (Edited by S. Haykin), First presented at the NIPS*96 on 'Blind Signal Processing' organized by A. Cichocki, (1998).
    • (1998) Unsupervised Adaptive Filtering
    • Cardoso, J.-F.1
  • 37
  • 40
    • 0343416807 scopus 로고    scopus 로고
    • The nonlinear PCA learning rule in independent component analysis
    • E. Oja, The nonlinear PCA learning rule in independent component analysis, Neurocomputing 17, 25-45 (1997).
    • (1997) Neurocomputing , vol.17 , pp. 25-45
    • Oja, E.1
  • 42
    • 0005001064 scopus 로고
    • Signal separation by nonlinear Hebbian learning
    • E. Oja and J. Karhunen, Signal separation by nonlinear Hebbian learning, In Proceedings IEEE ICNN 95, pp. 83-87, (1995).
    • (1995) Proceedings IEEE ICNN , vol.95 , pp. 83-87
    • Oja, E.1    Karhunen, J.2
  • 43
    • 0029521611 scopus 로고
    • Nonlinear PCA type approach for source separation and independent component analysis, in
    • Perth, Australia
    • J. Karhunen, L. Wang and R. Vigario, Nonlinear PCA type approach for source separation and independent component analysis, In Proc. ICNN, Perth, Australia, pp. 995-1000, (1995).
    • (1995) Proc. ICNN , pp. 995-1000
    • Karhunen, J.1    Wang, L.2    Vigario, R.3
  • 45
    • 0030676894 scopus 로고    scopus 로고
    • Blind separation of multiple speakers in a multipath environment
    • Munich, Germany, April 21-26
    • R. Lambert and A. Bell, Blind separation of multiple speakers in a multipath environment, In ICASSP, Munich, Germany, April 21-26, pp. 423-426, (1997).
    • (1997) ICASSP , pp. 423-426
    • Lambert, R.1    Bell, A.2
  • 46
    • 0030658281 scopus 로고    scopus 로고
    • Blind source separation of real-world signals
    • Houston, TX
    • T.-W. Lee, A. J. Bell and R. Orglmeister, Blind source separation of real-world signals, IEEE Proc. ICNN, Houston, TX, pp. 2129-2135 (1997).
    • (1997) IEEE Proc. ICNN , pp. 2129-2135
    • Lee, T.-W.1    Bell, A.J.2    Orglmeister, R.3
  • 47
    • 0002960595 scopus 로고
    • Bussgang techniques for blind deconvolution and equalization
    • (Edited by S. Haykin), Prentice Hall
    • S. Bellini, Bussgang techniques for blind deconvolution and equalization, In Blind Deconvolution, (Edited by S. Haykin), Prentice Hall, (1994).
    • (1994) Blind Deconvolution
    • Bellini, S.1
  • 48
    • 0030676410 scopus 로고    scopus 로고
    • Maximum likelihood for blind separation and deconvolution of noisy signals using mixture models
    • Munich
    • E. Moulines, J.-F. Cardoso and E. Gassiat, Maximum likelihood for blind separation and deconvolution of noisy signals using mixture models, Proc. ICASSP'97, Munich, (5), pp. 3617-3620, (1997).
    • (1997) Proc. ICASSP'97 , Issue.5 , pp. 3617-3620
    • Moulines, E.1    Cardoso, J.-F.2    Gassiat, E.3
  • 49
    • 0030706830 scopus 로고    scopus 로고
    • Maximum equalization by entropy maximization and mixture of cumulative distribution functions
    • Houston, TX
    • L. Xu, C. Cheung, H. Yang and S. Amari, Maximum equalization by entropy maximization and mixture of cumulative distribution functions, IEEE Proc. ICNN, Houston, TX, pp. 1821-1826, (1997).
    • (1997) IEEE Proc. ICNN , pp. 1821-1826
    • Xu, L.1    Cheung, C.2    Yang, H.3    Amari, S.4
  • 51
    • 0000056917 scopus 로고    scopus 로고
    • Adaptive on-line learning algorithms for blind separation - Maximum entropy and minimum mutual information
    • H. Yang and S. Amari, Adaptive on-line learning algorithms for blind separation - Maximum entropy and minimum mutual information, Neural Computation 9, 1457-1482 (1997).
    • (1997) Neural Computation , vol.9 , pp. 1457-1482
    • Yang, H.1    Amari, S.2
  • 52
    • 0031191456 scopus 로고    scopus 로고
    • Blind separation of mixture of independent sources through a quasi-maximum likelihood approach
    • D.T. Pham and P. Garrat, Blind separation of mixture of independent sources through a quasi-maximum likelihood approach, IEEE Trans. on Signal Proc. 45, 1712-1725 (1997).
    • (1997) IEEE Trans. on Signal Proc. , vol.45 , pp. 1712-1725
    • Pham, D.T.1    Garrat, P.2
  • 53
    • 0031277419 scopus 로고    scopus 로고
    • Stability analysis of adaptive blind source separation
    • S. Amari, T.-P. Chen and A. Cichocki, Stability analysis of adaptive blind source separation, Neural Networks 10 (8), 1345-1352 (1997).
    • (1997) Neural Networks , vol.10 , Issue.8 , pp. 1345-1352
    • Amari, S.1    Chen, T.-P.2    Cichocki, A.3
  • 57
    • 0029723365 scopus 로고    scopus 로고
    • Blind separation of convolved sources based on information maximization
    • Kyoto, Japan
    • K. Torkkola, Blind separation of convolved sources based on information maximization, In IEEE Workshop on Neural Networks for Signal Processing, Kyoto, Japan, pp. 423-432, (1996).
    • (1996) IEEE Workshop on Neural Networks for Signal Processing , pp. 423-432
    • Torkkola, K.1
  • 58
    • 0029769893 scopus 로고    scopus 로고
    • Multichannel signal separation: Methods and analysis
    • D. Yellin and E. Weinstein, Multichannel signal separation: Methods and analysis, IEEE Transactions on Signal Processing 44 (1), 106-118 (1996).
    • (1996) IEEE Transactions on Signal Processing , vol.44 , Issue.1 , pp. 106-118
    • Yellin, D.1    Weinstein, E.2
  • 59
    • 0031251223 scopus 로고    scopus 로고
    • Extraction of independent signal sources using a deflationary exploratory projection pursuit network with lateral inhibition
    • M. Girolami and C. Fyfe, Extraction of independent signal sources using a deflationary exploratory projection pursuit network with lateral inhibition, I.E.E. Proceedings on Vision, Image and Signal Processing Journal 14 (5), 299-306 (1997).
    • (1997) I.E.E. Proceedings on Vision, Image and Signal Processing Journal , vol.14 , Issue.5 , pp. 299-306
    • Girolami, M.1    Fyfe, C.2
  • 60
    • 0031220524 scopus 로고    scopus 로고
    • Neural network models for blind separation of time delayed and convolved signals
    • A. Cichocki, S. Amari and J. Cao, Neural network models for blind separation of time delayed and convolved signals, IECE Trans. Fundamentals E82-A (1997).
    • (1997) IECE Trans. Fundamentals , vol.E82-A
    • Cichocki S Amari, A.1    Cao, J.2
  • 61
    • 0029354468 scopus 로고    scopus 로고
    • Blind source separation for convolutive mixtures
    • H.-L. Nguyen Thi and C. Jutten, Blind source separation for convolutive mixtures, Signal Processing 45 (2) (1995).
    • Signal Processing , vol.45 , Issue.2 , pp. 1995
    • Nguyen Thi, H.-L.1    Jutten, C.2
  • 62
    • 0029185402 scopus 로고
    • Adaptive separation of mixed broadband sound sources with delays by a beam-forming Herault-Jutten network
    • S. Li and T.J. Sejnowski, Adaptive separation of mixed broadband sound sources with delays by a beam-forming Herault-Jutten network, IEEE Journal of Oceanic Engineering 20 (1), 73-79 (1994).
    • (1994) IEEE Journal of Oceanic Engineering , vol.20 , Issue.1 , pp. 73-79
    • Li, S.1    Sejnowski, T.J.2
  • 63
    • 0026954957 scopus 로고
    • A non-linear neural algorithm
    • G. Burel, A non-linear neural algorithm, Neural Networks 5, 937-947 (1992).
    • (1992) Neural Networks , vol.5 , pp. 937-947
    • Burel, G.1
  • 64
    • 0030658715 scopus 로고    scopus 로고
    • Information back-propagation for blind separation of sources from non-Mor-linear mixtures
    • Houston, TX
    • H. Yang, S. Amari and A. Cichocki, Information back-propagation for blind separation of sources from non-Mor-linear mixtures, Proc. of ICNN'97, Houston, TX, pp. 2141-2146, (1997).
    • (1997) Proc. of ICNN'97 , pp. 2141-2146
    • Yang, H.1    Amari, S.2    Cichocki, A.3
  • 65
    • 0002109212 scopus 로고    scopus 로고
    • Nonlinear source separation: The post-non linear mixtures
    • A. Taleb and C. Jutten, Nonlinear source separation: The post-non linear mixtures, ESANN'97, pp. 279-284, (1997).
    • (1997) ESANN'97 , pp. 279-284
    • Taleb, A.1    Jutten, C.2
  • 66
    • 0031360247 scopus 로고    scopus 로고
    • Blind source separation of nonlinear mixing models
    • Florida
    • T.-W. Lee, B. Köhler and R. Orglmeister, Blind source separation of nonlinear mixing models, IEEE Proc. NNSP, Florida, pp. 406-415, (1997).
    • (1997) IEEE Proc. NNSP , pp. 406-415
    • Lee, T.-W.1    Köhler, B.2    Orglmeister, R.3
  • 68
    • 0000620924 scopus 로고    scopus 로고
    • Faithful representation of separable input distributions
    • J. Lin and J. Cowan, Faithful representation of separable input distributions, Neural Computation 9 (6), 1305-1320 (1997).
    • (1997) Neural Computation , vol.9 , Issue.6 , pp. 1305-1320
    • Lin, J.1    Cowan, J.2
  • 69
    • 0007210210 scopus 로고
    • Source separation: Really blind?
    • C. Jutten and J.-F. Cardoso, Source separation: Really blind?, In Proc. NOLTA, pp. 79-84, (1995).
    • (1995) Proc. NOLTA , pp. 79-84
    • Jutten, C.1    Cardoso, J.-F.2
  • 71
    • 0031590130 scopus 로고    scopus 로고
    • Generative models for discovering sparse distributed representations
    • G. Hinton and Z. Ghahramani, Generative models for discovering sparse distributed representations, Philosophical Transactions Royal Society B 352, 1177-1190 (1997).
    • (1997) Philosophical Transactions Royal Society B , vol.352 , pp. 1177-1190
    • Hinton, G.1    Ghahramani, Z.2
  • 72
    • 0001210842 scopus 로고    scopus 로고
    • Redundancy reduction and independent component analysis: Conditions on cumulants and adaptive approaches
    • J.P. Nadal and N. Parga, Redundancy reduction and independent component analysis: Conditions on cumulants and adaptive approaches, Neural Computation 9, 1421-1456 (1997).
    • (1997) Neural Computation , vol.9 , pp. 1421-1456
    • Nadal, J.P.1    Parga, N.2
  • 74
    • 0026003099 scopus 로고
    • Olfactory computation and object perception
    • J. Hopfield, Olfactory computation and object perception, Proc. Natl. Acad. Sci. USA 88, 6462-6466 (1991).
    • (1991) Proc. Natl. Acad. Sci. USA , vol.88 , pp. 6462-6466
    • Hopfield, J.1
  • 75
    • 85037466106 scopus 로고    scopus 로고
    • personal communication
    • Kauer and White, personal communication.
    • Kauer1    White2
  • 77
  • 78
    • 0007151183 scopus 로고    scopus 로고
    • A common neural network model for exploratory data analysis and independent component analysis
    • bip-97-001, Brain Information Processing Group, RIKEN, Japan
    • M. Girolami, A. Cichocki and S. Amari, A common neural network model for exploratory data analysis and independent component analysis, Technical Report, bip-97-001, Brain Information Processing Group, RIKEN, Japan, (1997).
    • (1997) Technical Report
    • Girolami, M.1    Cichocki, A.2    Amari, S.3
  • 79
    • 0000578525 scopus 로고    scopus 로고
    • A local learning rule that enables information maximization for arbitrary input distributions
    • R. Linsker, A local learning rule that enables information maximization for arbitrary input distributions, Neural Computation 9, 1661-1665 (1997).
    • (1997) Neural Computation , vol.9 , pp. 1661-1665
    • Linsker, R.1
  • 80
    • 0030362060 scopus 로고    scopus 로고
    • A temporal model of linear anti-Hebbian learning
    • M. Girolami and C. Fyfe, A temporal model of linear anti-Hebbian learning, Neural Processing Letters Journal 4 (3), 1-10 (1997).
    • (1997) Neural Processing Letters Journal , vol.4 , Issue.3 , pp. 1-10
    • Girolami, M.1    Fyfe, C.2
  • 81
    • 0000929221 scopus 로고
    • What is the goal of sensory coding?
    • F. Field, What is the goal of sensory coding?, Neural Computation 6, 559-601 (1994).
    • (1994) Neural Computation , vol.6 , pp. 559-601
    • Field, F.1
  • 82
    • 0030832881 scopus 로고    scopus 로고
    • The 'independent components' of natural scenes are edge filters
    • A.J. Bell and T.J. Sejnowski, The 'independent components' of natural scenes are edge filters, Vision Research 37 (23), 3327-3338 (1997).
    • (1997) Vision Research , vol.37 , Issue.23 , pp. 3327-3338
    • Bell, A.J.1    Sejnowski, T.J.2
  • 83
    • 84898956124 scopus 로고    scopus 로고
    • Viewpoint invariant face recognition using independent component analysis and attractor networks
    • MIT Press
    • M. Bartlett and T.J. Sejnowski, Viewpoint invariant face recognition using independent component analysis and attractor networks, In Advances in Neural Information Processing Systems 9, pp. 817-823, MIT Press, (1997).
    • (1997) Advances in Neural Information Processing Systems , vol.9 , pp. 817-823
    • Bartlett, M.1    Sejnowski, T.J.2
  • 84
    • 0026866246 scopus 로고
    • Current-mode subthreshold MOS implementation of the Herault-Jutten autoadaptive network
    • M.H. Cohen and A.G. Andreou, Current-mode subthreshold MOS implementation of the Herault-Jutten autoadaptive network, IEEE J. Solid-State Circuits 27 (5), 714-727 (1992).
    • (1992) IEEE J. Solid-State Circuits , vol.27 , Issue.5 , pp. 714-727
    • Cohen, M.H.1    Andreou, A.G.2
  • 86
    • 0346307721 scopus 로고    scopus 로고
    • A fast fixed-point algorithm for independent component analysis
    • A. Hyvärinen and E. Oja, A fast fixed-point algorithm for independent component analysis, Neural Computation 9, 1483-1492 (1997).
    • (1997) Neural Computation , vol.9 , pp. 1483-1492
    • Hyvärinen, A.1    Oja, E.2
  • 88
    • 0030659997 scopus 로고    scopus 로고
    • Blind source separation of binary sources with less sensors than sources
    • Houston, TX
    • P. Pajunen, Blind source separation of binary sources with less sensors than sources, Proc. of ICNN'97, Houston, TX, pp. 1994-1997, (1997).
    • (1997) Proc. of ICNN'97 , pp. 1994-1997
    • Pajunen, P.1
  • 89
    • 0002049291 scopus 로고
    • Separation of a mixture of independent sources through a maximum likelihood approach
    • D.T. Pham, P. Garrat and C. Jutten, Separation of a mixture of independent sources through a maximum likelihood approach, Proc. EUSIPCO, pp. 771-774, (1992).
    • (1992) Proc. EUSIPCO , pp. 771-774
    • Pham, D.T.1    Garrat, P.2    Jutten, C.3
  • 90
    • 0030285552 scopus 로고    scopus 로고
    • Blind separation of instantaneous mixture of sources via an independent component analysis
    • D.T. Pham, Blind separation of instantaneous mixture of sources via an independent component analysis, IEEE Trans. on Signal Proc. 44 (11), 2768-2779 (1996).
    • (1996) IEEE Trans. on Signal Proc. , vol.44 , Issue.11 , pp. 2768-2779
    • Pham, D.T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.