메뉴 건너뛰기




Volumn 17, Issue 5, 2007, Pages 858-872

Bayesian independent component analysis: Variational methods and non-negative decompositions

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER SOFTWARE; MATRIX ALGEBRA; OPTIMIZATION; PARAMETER ESTIMATION; SENSORS;

EID: 34547601456     PISSN: 10512004     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.dsp.2007.01.003     Document Type: Article
Times cited : (11)

References (20)
  • 1
    • 34547562166 scopus 로고    scopus 로고
    • A. Belouchrani, J.-F. Cardoso, A maximum likelihood source separation for discrete sources, in: Proceedings of EUSIPCO, vol. 2, 1994, pp. 768-771
  • 2
    • 0030676410 scopus 로고    scopus 로고
    • E. Moulines, J.-F. Cardoso, E. Gassiat, Maximum likelihood for blind separation and deconvolution of noisy signals using mixture models, in: Proceedings of the ICA Conference, 1997
  • 3
    • 0002741125 scopus 로고    scopus 로고
    • Ensemble learning for blind source separation
    • Roberts S., and Everson R. (Eds), Cambridge Univ. Press, Cambridge
    • Miskin J.W., and McKay D. Ensemble learning for blind source separation. In: Roberts S., and Everson R. (Eds). Independent Component Analysis: Principles and Practice (2001), Cambridge Univ. Press, Cambridge
    • (2001) Independent Component Analysis: Principles and Practice
    • Miskin, J.W.1    McKay, D.2
  • 4
    • 0001387715 scopus 로고    scopus 로고
    • Mean-field approaches to independent component analysis
    • Hojen-Sorensen P., Winther O., and Hansen L.K. Mean-field approaches to independent component analysis. Neural Comput. 14 (2002) 889-918
    • (2002) Neural Comput. , vol.14 , pp. 889-918
    • Hojen-Sorensen, P.1    Winther, O.2    Hansen, L.K.3
  • 5
    • 34547560866 scopus 로고    scopus 로고
    • O. Bermond, J.-F. Cardoso, Approximate likelihood for noisy mixtures, in: Proceedings of the ICA Conference, 1999
  • 7
    • 1942452250 scopus 로고    scopus 로고
    • R. Salakhutdinov, S. Roweis, Adaptive overrelaxed bound optimization methods, in: Proceedings of International Conference on Machine Learning, ICML, 2003
  • 8
    • 34247192555 scopus 로고    scopus 로고
    • State-space models-From the EM algorithm to a gradient approach
    • Olsson R.K., Petersen K.B., and Lehn-Schioeler T. State-space models-From the EM algorithm to a gradient approach. Neural Comput. 19 4 (2007)
    • (2007) Neural Comput. , vol.19 , Issue.4
    • Olsson, R.K.1    Petersen, K.B.2    Lehn-Schioeler, T.3
  • 9
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • Lee D., and Seung H. Learning the parts of objects by non-negative matrix factorization. Nature 401 (1999) 788-791
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.1    Seung, H.2
  • 10
    • 84898964201 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • Leen T.K., Dietterich T.G., and Tresp V. (Eds)
    • Lee D.D., and Seung H.S. Algorithms for non-negative matrix factorization. In: Leen T.K., Dietterich T.G., and Tresp V. (Eds). Advances in Neural Information Processing Systems (NIPS) vol. 13 (2001) 556-562
    • (2001) Advances in Neural Information Processing Systems (NIPS) , vol.13 , pp. 556-562
    • Lee, D.D.1    Seung, H.S.2
  • 11
    • 84898964031 scopus 로고    scopus 로고
    • A variational Bayesian framework for graphical models
    • Leen T., Dietterich T.G., and Tresp V. (Eds), MIT Press, Cambridge
    • Attias H. A variational Bayesian framework for graphical models. In: Leen T., Dietterich T.G., and Tresp V. (Eds). Advances in Neural Information Processing Systems vol. 12 (2000), MIT Press, Cambridge 209-215
    • (2000) Advances in Neural Information Processing Systems , vol.12 , pp. 209-215
    • Attias, H.1
  • 12
    • 0033225865 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • Jordan M.I., Ghahramani Z., Jaakkola T.S., and Saul L.K. An introduction to variational methods for graphical models. Mach. Learn. 37 (1999) 183-233
    • (1999) Mach. Learn. , vol.37 , pp. 183-233
    • Jordan, M.I.1    Ghahramani, Z.2    Jaakkola, T.S.3    Saul, L.K.4
  • 13
    • 29244438430 scopus 로고    scopus 로고
    • Expectation consistent approximate inference
    • Opper M., and Winther O. Expectation consistent approximate inference. J. Mach. Learn. Res. 6 (2005) 2177-2204
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 2177-2204
    • Opper, M.1    Winther, O.2
  • 14
    • 35648952111 scopus 로고    scopus 로고
    • O. Winther, K.B. Petersen, Flexible and efficient implementations of Bayesian independent component analysis, Neurocomputing (2007), submitted for publication
  • 15
    • 0034320350 scopus 로고    scopus 로고
    • Gaussian processes for classification: Mean field algorithms
    • Opper M., and Winther O. Gaussian processes for classification: Mean field algorithms. Neural Comput. 12 (2000) 2655-2684
    • (2000) Neural Comput. , vol.12 , pp. 2655-2684
    • Opper, M.1    Winther, O.2
  • 16
    • 0035509916 scopus 로고    scopus 로고
    • Adaptive and self-averaging Thouless-Anderson-Palmer mean field theory for probabilistic modeling
    • Opper M., and Winther O. Adaptive and self-averaging Thouless-Anderson-Palmer mean field theory for probabilistic modeling. Phys. Rev. E 64 (2001) 056131
    • (2001) Phys. Rev. E , vol.64 , pp. 056131
    • Opper, M.1    Winther, O.2
  • 17
    • 34547556902 scopus 로고    scopus 로고
    • T. Minka, Expectation Propagation for Approximate Bayesian Inference, Doctoral dissertation, MIT Media Lab., 2001
  • 18
    • 34547570383 scopus 로고    scopus 로고
    • T.P. Minka, Divergence measures and message passing, Microsoft Tech. Report, 2005
  • 19
    • 27644454397 scopus 로고    scopus 로고
    • Condition monitoring with mean field independent components analysis
    • Pontoppidan N.H., Sigurdsson S., and Larsen J. Condition monitoring with mean field independent components analysis. Mech. Syst. Signal Process. 19 6 (2005) 1337-1347
    • (2005) Mech. Syst. Signal Process. , vol.19 , Issue.6 , pp. 1337-1347
    • Pontoppidan, N.H.1    Sigurdsson, S.2    Larsen, J.3
  • 20
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief networks
    • Hinton G.E., Osindero S., and Teh Y.W. A fast learning algorithm for deep belief networks. Neural Comput. 18 (2006) 1527-1554
    • (2006) Neural Comput. , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.