-
1
-
-
34547562166
-
-
A. Belouchrani, J.-F. Cardoso, A maximum likelihood source separation for discrete sources, in: Proceedings of EUSIPCO, vol. 2, 1994, pp. 768-771
-
-
-
-
2
-
-
0030676410
-
-
E. Moulines, J.-F. Cardoso, E. Gassiat, Maximum likelihood for blind separation and deconvolution of noisy signals using mixture models, in: Proceedings of the ICA Conference, 1997
-
-
-
-
3
-
-
0002741125
-
Ensemble learning for blind source separation
-
Roberts S., and Everson R. (Eds), Cambridge Univ. Press, Cambridge
-
Miskin J.W., and McKay D. Ensemble learning for blind source separation. In: Roberts S., and Everson R. (Eds). Independent Component Analysis: Principles and Practice (2001), Cambridge Univ. Press, Cambridge
-
(2001)
Independent Component Analysis: Principles and Practice
-
-
Miskin, J.W.1
McKay, D.2
-
4
-
-
0001387715
-
Mean-field approaches to independent component analysis
-
Hojen-Sorensen P., Winther O., and Hansen L.K. Mean-field approaches to independent component analysis. Neural Comput. 14 (2002) 889-918
-
(2002)
Neural Comput.
, vol.14
, pp. 889-918
-
-
Hojen-Sorensen, P.1
Winther, O.2
Hansen, L.K.3
-
5
-
-
34547560866
-
-
O. Bermond, J.-F. Cardoso, Approximate likelihood for noisy mixtures, in: Proceedings of the ICA Conference, 1999
-
-
-
-
7
-
-
1942452250
-
-
R. Salakhutdinov, S. Roweis, Adaptive overrelaxed bound optimization methods, in: Proceedings of International Conference on Machine Learning, ICML, 2003
-
-
-
-
8
-
-
34247192555
-
State-space models-From the EM algorithm to a gradient approach
-
Olsson R.K., Petersen K.B., and Lehn-Schioeler T. State-space models-From the EM algorithm to a gradient approach. Neural Comput. 19 4 (2007)
-
(2007)
Neural Comput.
, vol.19
, Issue.4
-
-
Olsson, R.K.1
Petersen, K.B.2
Lehn-Schioeler, T.3
-
9
-
-
0033592606
-
Learning the parts of objects by non-negative matrix factorization
-
Lee D., and Seung H. Learning the parts of objects by non-negative matrix factorization. Nature 401 (1999) 788-791
-
(1999)
Nature
, vol.401
, pp. 788-791
-
-
Lee, D.1
Seung, H.2
-
10
-
-
84898964201
-
Algorithms for non-negative matrix factorization
-
Leen T.K., Dietterich T.G., and Tresp V. (Eds)
-
Lee D.D., and Seung H.S. Algorithms for non-negative matrix factorization. In: Leen T.K., Dietterich T.G., and Tresp V. (Eds). Advances in Neural Information Processing Systems (NIPS) vol. 13 (2001) 556-562
-
(2001)
Advances in Neural Information Processing Systems (NIPS)
, vol.13
, pp. 556-562
-
-
Lee, D.D.1
Seung, H.S.2
-
11
-
-
84898964031
-
A variational Bayesian framework for graphical models
-
Leen T., Dietterich T.G., and Tresp V. (Eds), MIT Press, Cambridge
-
Attias H. A variational Bayesian framework for graphical models. In: Leen T., Dietterich T.G., and Tresp V. (Eds). Advances in Neural Information Processing Systems vol. 12 (2000), MIT Press, Cambridge 209-215
-
(2000)
Advances in Neural Information Processing Systems
, vol.12
, pp. 209-215
-
-
Attias, H.1
-
13
-
-
29244438430
-
Expectation consistent approximate inference
-
Opper M., and Winther O. Expectation consistent approximate inference. J. Mach. Learn. Res. 6 (2005) 2177-2204
-
(2005)
J. Mach. Learn. Res.
, vol.6
, pp. 2177-2204
-
-
Opper, M.1
Winther, O.2
-
14
-
-
35648952111
-
-
O. Winther, K.B. Petersen, Flexible and efficient implementations of Bayesian independent component analysis, Neurocomputing (2007), submitted for publication
-
-
-
-
15
-
-
0034320350
-
Gaussian processes for classification: Mean field algorithms
-
Opper M., and Winther O. Gaussian processes for classification: Mean field algorithms. Neural Comput. 12 (2000) 2655-2684
-
(2000)
Neural Comput.
, vol.12
, pp. 2655-2684
-
-
Opper, M.1
Winther, O.2
-
16
-
-
0035509916
-
Adaptive and self-averaging Thouless-Anderson-Palmer mean field theory for probabilistic modeling
-
Opper M., and Winther O. Adaptive and self-averaging Thouless-Anderson-Palmer mean field theory for probabilistic modeling. Phys. Rev. E 64 (2001) 056131
-
(2001)
Phys. Rev. E
, vol.64
, pp. 056131
-
-
Opper, M.1
Winther, O.2
-
17
-
-
34547556902
-
-
T. Minka, Expectation Propagation for Approximate Bayesian Inference, Doctoral dissertation, MIT Media Lab., 2001
-
-
-
-
18
-
-
34547570383
-
-
T.P. Minka, Divergence measures and message passing, Microsoft Tech. Report, 2005
-
-
-
-
19
-
-
27644454397
-
Condition monitoring with mean field independent components analysis
-
Pontoppidan N.H., Sigurdsson S., and Larsen J. Condition monitoring with mean field independent components analysis. Mech. Syst. Signal Process. 19 6 (2005) 1337-1347
-
(2005)
Mech. Syst. Signal Process.
, vol.19
, Issue.6
, pp. 1337-1347
-
-
Pontoppidan, N.H.1
Sigurdsson, S.2
Larsen, J.3
-
20
-
-
33745805403
-
A fast learning algorithm for deep belief networks
-
Hinton G.E., Osindero S., and Teh Y.W. A fast learning algorithm for deep belief networks. Neural Comput. 18 (2006) 1527-1554
-
(2006)
Neural Comput.
, vol.18
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.W.3
|