메뉴 건너뛰기




Volumn 94, Issue 3, 2007, Pages 760-766

The high-dimension, low-sample-size geometric representation holds under mild conditions

Author keywords

High dimension; Large p small n; Linear discrimination; Low sample size; Sample covariance matrix

Indexed keywords


EID: 34548536094     PISSN: 00063444     EISSN: 14643510     Source Type: Journal    
DOI: 10.1093/biomet/asm050     Document Type: Article
Times cited : (126)

References (12)
  • 1
    • 22044453079 scopus 로고    scopus 로고
    • No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices
    • BAI, Z. D. & SILVERSTEIN, J. W. (1998). No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices. Ann. Prob. 26, 316-45.
    • (1998) Ann. Prob , vol.26 , pp. 316-345
    • BAI, Z.D.1    SILVERSTEIN, J.W.2
  • 2
    • 27644476898 scopus 로고    scopus 로고
    • Phase transition of the largest eigenvalue for non-null complex covariance matrices
    • BAIK, J, BEN AROUS, G. & PÉCHÉ, S. (2005). Phase transition of the largest eigenvalue for non-null complex covariance matrices. Ann. Prob. 33, 1643-97.
    • (2005) Ann. Prob , vol.33 , pp. 1643-1697
    • BAIK, J.1    BEN AROUS, G.2    PÉCHÉ, S.3
  • 3
    • 33646507506 scopus 로고    scopus 로고
    • Eigenvalues of large sample covariance matrices of spiked population models
    • BAIK, J. & SILVERSTEIN, J. W. (2006). Eigenvalues of large sample covariance matrices of spiked population models. J. Mult. Anal. 97, 1382-408.
    • (2006) J. Mult. Anal , vol.97 , pp. 1382-1408
    • BAIK, J.1    SILVERSTEIN, J.W.2
  • 5
    • 33745156863 scopus 로고    scopus 로고
    • Some theory for Fisher's linear discriminant function, "naive Bayes", and some alternatives when there are many more variables than observations
    • BICKEL, P. & LEVINA, E. (2004). Some theory for Fisher's linear discriminant function, "naive Bayes", and some alternatives when there are many more variables than observations. Bernoulli 10, 989-1010.
    • (2004) Bernoulli , vol.10 , pp. 989-1010
    • BICKEL, P.1    LEVINA, E.2
  • 7
    • 22144471532 scopus 로고    scopus 로고
    • Neighborliness of randomly-projected simplices in high dimensions
    • DONOHO, D. L. & TANNER, J. (2005). Neighborliness of randomly-projected simplices in high dimensions. Proc. Nat. Acad. Sci. 102, 9452-7.
    • (2005) Proc. Nat. Acad. Sci , vol.102 , pp. 9452-9457
    • DONOHO, D.L.1    TANNER, J.2
  • 8
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • FUREY, T. S., CHRISTIANINI, N., DUFFY, N., BEDNARSKI, D. W., SCHUMMER, M. & HAUSSLER, D. (2000). Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16, 906-14.
    • (2000) Bioinformatics , vol.16 , pp. 906-914
    • FUREY, T.S.1    CHRISTIANINI, N.2    DUFFY, N.3    BEDNARSKI, D.W.4    SCHUMMER, M.5    HAUSSLER, D.6
  • 10
    • 20744451888 scopus 로고    scopus 로고
    • Geometric representation of high dimension, low sample size data
    • HALL, P., MARRON, J. S. & NEEMAN, A. (2005). Geometric representation of high dimension, low sample size data. J. R. Statist. Soc. B 67, 427-44.
    • (2005) J. R. Statist. Soc. B , vol.67 , pp. 427-444
    • HALL, P.1    MARRON, J.S.2    NEEMAN, A.3
  • 11
    • 0042613506 scopus 로고
    • The distribution of a statistic used for testing sphericity of normal distributions
    • JOHN, S. (1972). The distribution of a statistic used for testing sphericity of normal distributions. Biometrika 59, 169-73.
    • (1972) Biometrika , vol.59 , pp. 169-173
    • JOHN, S.1
  • 12
    • 0035641726 scopus 로고    scopus 로고
    • On the distribution of the largest eigenvalue in principal components analysis
    • JOHNSTONE, I. M. (2001). On the distribution of the largest eigenvalue in principal components analysis. Ann. Statist. 29, 295-327.
    • (2001) Ann. Statist , vol.29 , pp. 295-327
    • JOHNSTONE, I.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.