-
1
-
-
0026124343
-
Fractional order state equations for the control of visco-elastically damped structures
-
Bagley, R., Calico, R.: Fractional order state equations for the control of visco-elastically damped structures. J. Guid. Control Dyn. 14, 304–311 (1991)
-
(1991)
J. Guid. Control Dyn.
, vol.14
, pp. 304-311
-
-
Bagley, R.1
Calico, R.2
-
4
-
-
44649172155
-
On fractional Euler–Lagrange and Hamilton equations and the fractional generalization of total time derivative
-
Baleanu, D., Muslih, S.I., Rabei, E.M.: On fractional Euler–Lagrange and Hamilton equations and the fractional generalization of total time derivative. Nonlinear Dyn. 53, 67–74 (2008)
-
(2008)
Nonlinear Dyn.
, vol.53
, pp. 67-74
-
-
Baleanu, D.1
Muslih, S.I.2
Rabei, E.M.3
-
5
-
-
84885052662
-
Fractional calculus: a survey of useful formulas
-
Valerio, D., Trujillo, J.J., Rivero, M., Tenreiro Machado, J.A., Baleanu, D.: Fractional calculus: a survey of useful formulas. Eur. Phys. J. Spec. Top. 222, 1827–1846 (2013)
-
(2013)
Eur. Phys. J. Spec. Top.
, vol.222
, pp. 1827-1846
-
-
Valerio, D.1
Trujillo, J.J.2
Rivero, M.3
Tenreiro Machado, J.A.4
Baleanu, D.5
-
6
-
-
0000415309
-
Fractional quantum mechanics and Levy path integrals
-
Laskin, N.: Fractional quantum mechanics and Levy path integrals. Phys. Lett. A 298, 298–305 (2000)
-
(2000)
Phys. Lett. A
, vol.298
, pp. 298-305
-
-
Laskin, N.1
-
7
-
-
33748296360
-
Some physical applications of fractional Schrödinger equation
-
Guo, X., Xu, M.: Some physical applications of fractional Schrödinger equation. J. Math. Phys. 47, 82104 (2006)
-
(2006)
J. Math. Phys.
, vol.47
, pp. 82104
-
-
Guo, X.1
Xu, M.2
-
8
-
-
52349114093
-
Analog fractional order controller in temperature and motor control applications
-
Bohannan, G.: Analog fractional order controller in temperature and motor control applications. J. Vibr. Control 14, 1487–1498 (2008)
-
(2008)
J. Vibr. Control
, vol.14
, pp. 1487-1498
-
-
Bohannan, G.1
-
10
-
-
84866046515
-
The operational matrix of fractional integration for shifted Chebyshev polynomials
-
Bhrawy, A.H., Alofi, A.S.: The operational matrix of fractional integration for shifted Chebyshev polynomials. Appl. Math. Lett. 26, 25–31 (2013)
-
(2013)
Appl. Math. Lett.
, vol.26
, pp. 25-31
-
-
Bhrawy, A.H.1
Alofi, A.S.2
-
11
-
-
84939877561
-
Numerical calculation of the left and right fractional derivatives. J. Comput
-
Machado, J.A.T.: Numerical calculation of the left and right fractional derivatives. J. Comput. Phys. (2014). doi:10.1016/j.jcp.2014.05.029
-
(2014)
Phys
-
-
Machado, J.A.T.1
-
12
-
-
52549095901
-
Fractional control of heat diffusion systems
-
Jesus, I.S., Machado, J.A.T.: Fractional control of heat diffusion systems. Nonlinear Dyn. 54, 263–282 (2008)
-
(2008)
Nonlinear Dyn.
, vol.54
, pp. 263-282
-
-
Jesus, I.S.1
Machado, J.A.T.2
-
13
-
-
84900530625
-
An efficient algorithm for solving higher-order fractional SturmLiouville eigenvalue problems
-
Hajji, M.A., Al-Mdallal, Q.M., Allan, F.M.: An efficient algorithm for solving higher-order fractional SturmLiouville eigenvalue problems. J. Comput. Phys. 272, 550–558 (2014)
-
(2014)
J. Comput. Phys.
, vol.272
, pp. 550-558
-
-
Hajji, M.A.1
Al-Mdallal, Q.M.2
Allan, F.M.3
-
14
-
-
84876534192
-
The time-fractional coupled-Korteweg–de-Vries equations. Abst. Appl. Anal
-
Atangana, A., Secer, A., The time-fractional coupled-Korteweg–de-Vries equations. Abst. Appl. Anal. Article ID 947986, 8 (2013)
-
(2013)
Article ID
, pp. 8
-
-
Atangana, A.1
Secer, A.2
-
15
-
-
84989184462
-
New spectral techniques for systems of fractional differential equations using fractional-order generalized Laguerre orthogonal functions
-
Bhrawy, A.H., Alhamed, Y.A., Baleanu, D., Al-Zahrani, A.A.: New spectral techniques for systems of fractional differential equations using fractional-order generalized Laguerre orthogonal functions. Fract. Calc. Appl. Anal. 17, 1137–1157 (2014)
-
(2014)
Fract. Calc. Appl. Anal.
, vol.17
, pp. 1137-1157
-
-
Bhrawy, A.H.1
Alhamed, Y.A.2
Baleanu, D.3
Al-Zahrani, A.A.4
-
16
-
-
84903939649
-
A mixed finite element method for a time-fractional fourth-order partial differential equation
-
Liu, Y., Fang, Z., Li, H., He, S.: A mixed finite element method for a time-fractional fourth-order partial differential equation. Appl. Math. Comput. 243, 703–717 (2014)
-
(2014)
Appl. Math. Comput.
, vol.243
, pp. 703-717
-
-
Liu, Y.1
Fang, Z.2
Li, H.3
He, S.4
-
17
-
-
84986922240
-
Discontinuous spectral element methods for time- and space-fractional advection equations
-
Zayernouri, M., Karniadakis, G.E.: Discontinuous spectral element methods for time- and space-fractional advection equations. SIAM J. Sci. Comput. 36, B684–B707 (2014)
-
(2014)
SIAM J. Sci. Comput.
, vol.36
, pp. 684-707
-
-
Zayernouri, M.1
Karniadakis, G.E.2
-
18
-
-
84898537327
-
A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations
-
Bhrawy, A.H., Doha, E.H., Baleanu, D., Ezz-Eldien, S.S.: A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations. J. Comput. Phys. (2014). doi:10.1016/j.jcp.2014.03.039
-
(2014)
J. Comput. Phys.
-
-
Bhrawy, A.H.1
Doha, E.H.2
Baleanu, D.3
Ezz-Eldien, S.S.4
-
19
-
-
84948882036
-
Integration and differentiation to a variable fractional order
-
Samko, S.G., Ross, B.: Integration and differentiation to a variable fractional order. Integral Transform Spec. Funct. 1, 277–300 (1993)
-
(1993)
Integral Transform Spec. Funct.
, vol.1
, pp. 277-300
-
-
Samko, S.G.1
Ross, B.2
-
20
-
-
0010073424
-
Fractional integration and differentiation of variable order
-
Samko, S.G.: Fractional integration and differentiation of variable order. Anal. Math. 21, 213–236 (1995)
-
(1995)
Anal. Math.
, vol.21
, pp. 213-236
-
-
Samko, S.G.1
-
21
-
-
84881547849
-
Fractional integration and differentiation of variable order: an overview
-
Samko, S.: Fractional integration and differentiation of variable order: an overview. Nonlinear Dyn. 71, 653–662 (2013)
-
(2013)
Nonlinear Dyn.
, vol.71
, pp. 653-662
-
-
Samko, S.1
-
22
-
-
52349084738
-
Variable order modeling of diffusive-convective effects on the oscillatory flow past a sphere
-
Pedro, H.T.C., Kobayashi, M.H., Pereira, J.M.C., Coimbra, C.F.M.: Variable order modeling of diffusive-convective effects on the oscillatory flow past a sphere. J. Vib. Control 14, 1659–1672 (2008)
-
(2008)
J. Vib. Control
, vol.14
, pp. 1659-1672
-
-
Pedro, H.T.C.1
Kobayashi, M.H.2
Pereira, J.M.C.3
Coimbra, C.F.M.4
-
24
-
-
61449262957
-
Nonlinear dynamics and control of a variable order oscillator with application to the vander Pol equation
-
Diaz, G., Coimbra, C.F.M.: Nonlinear dynamics and control of a variable order oscillator with application to the vander Pol equation. Nonlinear Dyn. 56, 145–157 (2009)
-
(2009)
Nonlinear Dyn.
, vol.56
, pp. 145-157
-
-
Diaz, G.1
Coimbra, C.F.M.2
-
25
-
-
84890868046
-
An expansion formula for fractional derivatives of variable order
-
Atanackovic, T.M., Janev, M., Pilipovic, S., Zorica, D.: An expansion formula for fractional derivatives of variable order. Cent. Eur. J. Phys. 11(10), 1350–1360 (2013)
-
(2013)
Cent. Eur. J. Phys.
, vol.11
, Issue.10
, pp. 1350-1360
-
-
Atanackovic, T.M.1
Janev, M.2
Pilipovic, S.3
Zorica, D.4
-
26
-
-
0346897985
-
Mechanics with variable-order differential operators
-
Coimbra, C.F.M.: Mechanics with variable-order differential operators. Ann. Phys. 12, 692–703 (2003)
-
(2003)
Ann. Phys.
, vol.12
, pp. 692-703
-
-
Coimbra, C.F.M.1
-
27
-
-
25444483399
-
The variable viscoelasticity oscillator
-
Soon, C.M., Coimbra, F.M., Kobayashi, M.H.: The variable viscoelasticity oscillator. Ann. Phys. 14(6), 378–389 (2005)
-
(2005)
Ann. Phys.
, vol.14
, Issue.6
, pp. 378-389
-
-
Soon, C.M.1
Coimbra, F.M.2
Kobayashi, M.H.3
-
28
-
-
34547624283
-
Variable order constitutive relation for viscoelasticity
-
Ramirez, L.E.S., Coimbra, C.F.M.: Variable order constitutive relation for viscoelasticity. Ann. Phys. 16, 543–552 (2007)
-
(2007)
Ann. Phys.
, vol.16
, pp. 543-552
-
-
Ramirez, L.E.S.1
Coimbra, C.F.M.2
-
29
-
-
84878689420
-
Stability and convergence of the space fractional variable-order Schr ödinger equation
-
Atangana, A., Cloot, A.H.: Stability and convergence of the space fractional variable-order Schr ödinger equation. Adv. Differ. Equ. 1, 1–10 (2013)
-
(2013)
Adv. Differ. Equ.
, vol.1
, pp. 1-10
-
-
Atangana, A.1
Cloot, A.H.2
-
30
-
-
84890873973
-
Exact solution for the fractional cable equation with nonlocal boundary conditions
-
Bazhlekova, E.G., Dimovski, I.H.: Exact solution for the fractional cable equation with nonlocal boundary conditions. Cent. Eur. J. Phys. 11(10), 1304–1313 (2013)
-
(2013)
Cent. Eur. J. Phys.
, vol.11
, Issue.10
, pp. 1304-1313
-
-
Bazhlekova, E.G.1
Dimovski, I.H.2
-
31
-
-
79953686222
-
A Physical experimental study of variable-order fractional integrator and differentiator
-
Sheng, H., Sun, H.G., Coopmans, C., Chen, Y.Q., Bohannan, G.W.: A Physical experimental study of variable-order fractional integrator and differentiator. Eur. Phys. J. Spec. Top. 193, 93–104 (2011)
-
(2011)
Eur. Phys. J. Spec. Top.
, vol.193
, pp. 93-104
-
-
Sheng, H.1
Sun, H.G.2
Coopmans, C.3
Chen, Y.Q.4
Bohannan, G.W.5
-
32
-
-
68649098514
-
Variable order fractional differential operators in anomalous diffusion modeling
-
Sun, H.G., Chen, W., Chen, Y.Q.: Variable order fractional differential operators in anomalous diffusion modeling. Phys. A 388, 4586–4592 (2009)
-
(2009)
Phys. A
, vol.388
, pp. 4586-4592
-
-
Sun, H.G.1
Chen, W.2
Chen, Y.Q.3
-
33
-
-
79953691444
-
A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems
-
Sun, H.G., Chen, W., Wei, H., Chen, Y.Q.: A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems. Eur. Phys. J. Spec. Top. 193(1), 185–192 (2011)
-
(2011)
Eur. Phys. J. Spec. Top.
, vol.193
, Issue.1
, pp. 185-192
-
-
Sun, H.G.1
Chen, W.2
Wei, H.3
Chen, Y.Q.4
-
34
-
-
84855203375
-
Solution existence for non-autonomous variable-order fractional differential equations
-
Razminia, A., Dizaji, A.F., Majd, V.J.: Solution existence for non-autonomous variable-order fractional differential equations. Math. Comput. Modell. 55, 1106–1117 (2011)
-
(2011)
Math. Comput. Modell.
, vol.55
, pp. 1106-1117
-
-
Razminia, A.1
Dizaji, A.F.2
Majd, V.J.3
-
35
-
-
84925522036
-
Existence and uniqueness result of solutions to initial value problems of fractional differential equations of variable-order
-
Zhang, S.: Existence and uniqueness result of solutions to initial value problems of fractional differential equations of variable-order. J. Frac. Calc. Anal. 4(1), 82–98 (2013)
-
(2013)
J. Frac. Calc. Anal.
, vol.4
, Issue.1
, pp. 82-98
-
-
Zhang, S.1
-
36
-
-
84880045658
-
Existence result of solutions to differential equations of variable-order with nonlinear boundary value conditions
-
Zhang, S.: Existence result of solutions to differential equations of variable-order with nonlinear boundary value conditions. Commun. Nonlinear Sci. Numer. Simul. 18, 3289–3297 (2013)
-
(2013)
Commun. Nonlinear Sci. Numer. Simul.
, vol.18
, pp. 3289-3297
-
-
Zhang, S.1
-
37
-
-
67349098149
-
Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation
-
Lin, R., Liu, F., Anh, V., Turner, I.: Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation. Appl. Math. Comput. 212, 435–445 (2009)
-
(2009)
Appl. Math. Comput.
, vol.212
, pp. 435-445
-
-
Lin, R.1
Liu, F.2
Anh, V.3
Turner, I.4
-
38
-
-
84907893973
-
Numerical methods for the variable-order fractional advection–diffusion equation with a nonlinear source term
-
Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical methods for the variable-order fractional advection–diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 47, 1760–1781 (2009)
-
(2009)
SIAM J. Numer. Anal.
, vol.47
, pp. 1760-1781
-
-
Zhuang, P.1
Liu, F.2
Anh, V.3
Turner, I.4
-
39
-
-
77955704784
-
Numerical schemes with high spatial accuracy for a variable-order anomalous sub-diffusion equation
-
Chen, C.M., Liu, F., Anh, V., Turner, I.: Numerical schemes with high spatial accuracy for a variable-order anomalous sub-diffusion equation. SIAM J. Sci. Comput. 32(4), 1740–1760 (2010)
-
(2010)
SIAM J. Sci. Comput.
, vol.32
, Issue.4
, pp. 1740-1760
-
-
Chen, C.M.1
Liu, F.2
Anh, V.3
Turner, I.4
-
40
-
-
79551635060
-
Numerical simulation for the variable-order Galilei invariant advection diffusion equation with a nonlinear source term
-
Chen, C.M., Liu, F., Anh, V., Turner, I.: Numerical simulation for the variable-order Galilei invariant advection diffusion equation with a nonlinear source term. Appl. Math. Comput. 217, 5729–5742 (2011)
-
(2011)
Appl. Math. Comput.
, vol.217
, pp. 5729-5742
-
-
Chen, C.M.1
Liu, F.2
Anh, V.3
Turner, I.4
-
41
-
-
85027918128
-
Karniadakis, Second-order approximations for variable order fractional derivatives: algorithms and applications. J. Comput
-
Zhao, X., Sun, Z.-Z., Em, G.: Karniadakis, Second-order approximations for variable order fractional derivatives: algorithms and applications. J. Comput. Phys. (2014). doi:10.1016/j.jcp.2014.08.015
-
(2014)
Phys
-
-
Zhao, X.1
Sun, Z.-Z.2
Em, G.3
-
42
-
-
80052706414
-
Fractional cable equation models for anomalous electrodiffusion in nerve cells: finite domain solutions
-
Langlands, T.A.M., Henry, B.I., Wearne, S.L.: Fractional cable equation models for anomalous electrodiffusion in nerve cells: finite domain solutions. SIAM. J. Appl. Math. 71, 1168–1203 (2011)
-
(2011)
SIAM. J. Appl. Math.
, vol.71
, pp. 1168-1203
-
-
Langlands, T.A.M.1
Henry, B.I.2
Wearne, S.L.3
-
43
-
-
41549083671
-
Fractional cable models for spiny neuronal dendrites
-
Henry, B., Langlands, T., Wearne, S.L.: Fractional cable models for spiny neuronal dendrites. Phys. Rev. Lett. 100, 128103–128106 (2008)
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 128103-128106
-
-
Henry, B.1
Langlands, T.2
Wearne, S.L.3
-
44
-
-
70350663279
-
Fractional Cable equation models for anomalous electrodiffusion in nerve cells: infinite domain solutions
-
Langlands, T., Henry, B., Wearne, S.L.: Fractional Cable equation models for anomalous electrodiffusion in nerve cells: infinite domain solutions. J. Math. Biol. 59(6), 761–808 (2009)
-
(2009)
J. Math. Biol.
, vol.59
, Issue.6
, pp. 761-808
-
-
Langlands, T.1
Henry, B.2
Wearne, S.L.3
-
45
-
-
77953717639
-
Solution of a fractional cable equation: finite case. Applied Mathematics Report AMR05/33
-
Langlands, T., Henry, B., Wearne, S.L.: Solution of a fractional cable equation: finite case. Applied Mathematics Report AMR05/33, University of New South Wales (2005)
-
(2005)
University of New South Wales
-
-
Langlands, T.1
Henry, B.2
Wearne, S.L.3
-
46
-
-
82155173242
-
Stability and convergence of two new implicit numerical methods for fractional cable equation
-
International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, IDETC/CIE, San Diego, California, USA:
-
Liu, F., Yang, Q., Turner, I.: Stability and convergence of two new implicit numerical methods for fractional cable equation. In: Proceeding of the ASME 2009 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, IDETC/CIE, San Diego, California, USA (2009)
-
(2009)
Proceeding of the ASME
, pp. 2009
-
-
Liu, F.1
Yang, Q.2
Turner, I.3
-
47
-
-
84861338331
-
Implicit compact difference schemes for the fractional cable equation
-
Hu, X., Zhang, L.: Implicit compact difference schemes for the fractional cable equation. Appl. Math. Model. 36, 4027–4043 (2012)
-
(2012)
Appl. Math. Model.
, vol.36
, pp. 4027-4043
-
-
Hu, X.1
Zhang, L.2
-
48
-
-
84900301142
-
An approximate solution of fractional cable equation by homotopy analysis method
-
Cavlak, M.E., Bayram, M.: An approximate solution of fractional cable equation by homotopy analysis method. Bound. Value Problems 2014(1), 58 (2014)
-
(2014)
Bound. Value Problems
, vol.2014
, Issue.1
, pp. 58
-
-
Cavlak, M.E.1
Bayram, M.2
-
49
-
-
80051548248
-
Numerical analysis for a variable-order nonlinear cable equation
-
Chen, C.M., Liu, F., Burrage, K.: Numerical analysis for a variable-order nonlinear cable equation. J. Comput. Appl. Math. 236, 209–224 (2011)
-
(2011)
J. Comput. Appl. Math.
, vol.236
, pp. 209-224
-
-
Chen, C.M.1
Liu, F.2
Burrage, K.3
-
50
-
-
84899798846
-
Numerical solution for the variable order linear cable equation with Bernstein polynomials
-
Chen, Y., Liu, L., Li, B., Sun, Y.: Numerical solution for the variable order linear cable equation with Bernstein polynomials. Appl. Math. Comput. 238, 329–341 (2014)
-
(2014)
Appl. Math. Comput.
, vol.238
, pp. 329-341
-
-
Chen, Y.1
Liu, L.2
Li, B.3
Sun, Y.4
-
51
-
-
0036650957
-
Variable order and distributed order fractional operators
-
Lorenzo, C.F., Hartley, T.T.: Variable order and distributed order fractional operators. Nonlinear Dyn. 29, 57–98 (2002)
-
(2002)
Nonlinear Dyn.
, vol.29
, pp. 57-98
-
-
Lorenzo, C.F.1
Hartley, T.T.2
-
52
-
-
84901191174
-
A new method based on Legendre polynomials for solutions of the fractional two-dimensional heat conduction equation
-
Khalil, H., Khan, R.A.: A new method based on Legendre polynomials for solutions of the fractional two-dimensional heat conduction equation. Comput. Math. Appl. 67(10), 1938–1953 (2014)
-
(2014)
Comput. Math. Appl.
, vol.67
, Issue.10
, pp. 1938-1953
-
-
Khalil, H.1
Khan, R.A.2
-
53
-
-
84882382834
-
A Jacobi–Gauss–Lobatto collocation method for solving generalized Fitzhugh–Nagumo equation with time-dependent coefficients
-
Bhrawy, A.H.: A Jacobi–Gauss–Lobatto collocation method for solving generalized Fitzhugh–Nagumo equation with time-dependent coefficients. Appl. Math. Comput. 222, 255–264 (2013)
-
(2013)
Appl. Math. Comput.
, vol.222
, pp. 255-264
-
-
Bhrawy, A.H.1
-
54
-
-
84893984926
-
A Jacobi collocation approximation for nonlinear coupled viscous Burgers’ equation
-
Doha, E.H., Bhrawy, A.H., Abdelkawy, M.A., Hafez, R.M.: A Jacobi collocation approximation for nonlinear coupled viscous Burgers’ equation. Cent. Eur. J. Phys. 12, 111–122 (2014)
-
(2014)
Cent. Eur. J. Phys.
, vol.12
, pp. 111-122
-
-
Doha, E.H.1
Bhrawy, A.H.2
Abdelkawy, M.A.3
Hafez, R.M.4
-
55
-
-
84901822925
-
A Chebyshev spectral method for solving Riemann–Liouville fractional boundary value problems
-
Graef, J.R., Kong, L., Wang, M.: A Chebyshev spectral method for solving Riemann–Liouville fractional boundary value problems. Appl. Math. Comput. 241, 140–150 (2014)
-
(2014)
Appl. Math. Comput.
, vol.241
, pp. 140-150
-
-
Graef, J.R.1
Kong, L.2
Wang, M.3
-
56
-
-
84893626620
-
A spectral Legendre–Gauss–Lobatto collocation method for a space-fractional advection diffusion equations with variable coefficients
-
Bhrawy, A.H., Baleanu, D.: A spectral Legendre–Gauss–Lobatto collocation method for a space-fractional advection diffusion equations with variable coefficients. Rep. Math. Phys. 72, 219–233 (2013)
-
(2013)
Rep. Math. Phys
, vol.72
, pp. 219-233
-
-
Bhrawy, A.H.1
Baleanu, D.2
-
57
-
-
84888631283
-
A new Jacobi rational–Gauss collocation method for numerical solution of generalized pantograph equations
-
Doha, E.H., Bhrawy, A.H., Baleanu, D., Hafez, R.M.: A new Jacobi rational–Gauss collocation method for numerical solution of generalized pantograph equations. Appl. Numer. Math. 77, 43–54 (2014)
-
(2014)
Appl. Numer. Math.
, vol.77
, pp. 43-54
-
-
Doha, E.H.1
Bhrawy, A.H.2
Baleanu, D.3
Hafez, R.M.4
-
58
-
-
84892836298
-
Jacobi–Gauss–Lobatto collocation method for the numerical solution of nonlinear Schrodinger equations
-
Doha, E.H., Bhrawy, A.H., Abdelkawy, M.A., Van Gorder, R.A.: Jacobi–Gauss–Lobatto collocation method for the numerical solution of nonlinear Schrodinger equations. J. Comput. Phys. 261, 244–255 (2014)
-
(2014)
J. Comput. Phys.
, vol.261
, pp. 244-255
-
-
Doha, E.H.1
Bhrawy, A.H.2
Abdelkawy, M.A.3
Van Gorder, R.A.4
|