메뉴 건너뛰기




Volumn 80, Issue 1-2, 2015, Pages 101-116

Correction to: Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation (Nonlinear Dynamics, (2015), 80, 1-2, (101-116), 10.1007/s11071-014-1854-7);Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation

Author keywords

Collocation method; Jacobi polynomials; One dimensional cable equation; Operational matrix of fractional derivative; Two dimensional variable order nonlinear cable equation; Variable order derivative

Indexed keywords

CABLES; ELECTROPHYSIOLOGY; JACOBIAN MATRICES; NUMERICAL METHODS; NUMERICAL MODELS; PARTIAL DIFFERENTIAL EQUATIONS; POLYNOMIALS;

EID: 84925537827     PISSN: 0924090X     EISSN: 1573269X     Source Type: Journal    
DOI: 10.1007/s11071-018-4366-z     Document Type: Erratum
Times cited : (250)

References (60)
  • 1
    • 0026124343 scopus 로고
    • Fractional order state equations for the control of visco-elastically damped structures
    • Bagley, R., Calico, R.: Fractional order state equations for the control of visco-elastically damped structures. J. Guid. Control Dyn. 14, 304–311 (1991)
    • (1991) J. Guid. Control Dyn. , vol.14 , pp. 304-311
    • Bagley, R.1    Calico, R.2
  • 4
    • 44649172155 scopus 로고    scopus 로고
    • On fractional Euler–Lagrange and Hamilton equations and the fractional generalization of total time derivative
    • Baleanu, D., Muslih, S.I., Rabei, E.M.: On fractional Euler–Lagrange and Hamilton equations and the fractional generalization of total time derivative. Nonlinear Dyn. 53, 67–74 (2008)
    • (2008) Nonlinear Dyn. , vol.53 , pp. 67-74
    • Baleanu, D.1    Muslih, S.I.2    Rabei, E.M.3
  • 6
    • 0000415309 scopus 로고    scopus 로고
    • Fractional quantum mechanics and Levy path integrals
    • Laskin, N.: Fractional quantum mechanics and Levy path integrals. Phys. Lett. A 298, 298–305 (2000)
    • (2000) Phys. Lett. A , vol.298 , pp. 298-305
    • Laskin, N.1
  • 7
    • 33748296360 scopus 로고    scopus 로고
    • Some physical applications of fractional Schrödinger equation
    • Guo, X., Xu, M.: Some physical applications of fractional Schrödinger equation. J. Math. Phys. 47, 82104 (2006)
    • (2006) J. Math. Phys. , vol.47 , pp. 82104
    • Guo, X.1    Xu, M.2
  • 8
    • 52349114093 scopus 로고    scopus 로고
    • Analog fractional order controller in temperature and motor control applications
    • Bohannan, G.: Analog fractional order controller in temperature and motor control applications. J. Vibr. Control 14, 1487–1498 (2008)
    • (2008) J. Vibr. Control , vol.14 , pp. 1487-1498
    • Bohannan, G.1
  • 10
    • 84866046515 scopus 로고    scopus 로고
    • The operational matrix of fractional integration for shifted Chebyshev polynomials
    • Bhrawy, A.H., Alofi, A.S.: The operational matrix of fractional integration for shifted Chebyshev polynomials. Appl. Math. Lett. 26, 25–31 (2013)
    • (2013) Appl. Math. Lett. , vol.26 , pp. 25-31
    • Bhrawy, A.H.1    Alofi, A.S.2
  • 11
    • 84939877561 scopus 로고    scopus 로고
    • Numerical calculation of the left and right fractional derivatives. J. Comput
    • Machado, J.A.T.: Numerical calculation of the left and right fractional derivatives. J. Comput. Phys. (2014). doi:10.1016/j.jcp.2014.05.029
    • (2014) Phys
    • Machado, J.A.T.1
  • 12
    • 52549095901 scopus 로고    scopus 로고
    • Fractional control of heat diffusion systems
    • Jesus, I.S., Machado, J.A.T.: Fractional control of heat diffusion systems. Nonlinear Dyn. 54, 263–282 (2008)
    • (2008) Nonlinear Dyn. , vol.54 , pp. 263-282
    • Jesus, I.S.1    Machado, J.A.T.2
  • 13
    • 84900530625 scopus 로고    scopus 로고
    • An efficient algorithm for solving higher-order fractional SturmLiouville eigenvalue problems
    • Hajji, M.A., Al-Mdallal, Q.M., Allan, F.M.: An efficient algorithm for solving higher-order fractional SturmLiouville eigenvalue problems. J. Comput. Phys. 272, 550–558 (2014)
    • (2014) J. Comput. Phys. , vol.272 , pp. 550-558
    • Hajji, M.A.1    Al-Mdallal, Q.M.2    Allan, F.M.3
  • 14
    • 84876534192 scopus 로고    scopus 로고
    • The time-fractional coupled-Korteweg–de-Vries equations. Abst. Appl. Anal
    • Atangana, A., Secer, A., The time-fractional coupled-Korteweg–de-Vries equations. Abst. Appl. Anal. Article ID 947986, 8 (2013)
    • (2013) Article ID , pp. 8
    • Atangana, A.1    Secer, A.2
  • 15
    • 84989184462 scopus 로고    scopus 로고
    • New spectral techniques for systems of fractional differential equations using fractional-order generalized Laguerre orthogonal functions
    • Bhrawy, A.H., Alhamed, Y.A., Baleanu, D., Al-Zahrani, A.A.: New spectral techniques for systems of fractional differential equations using fractional-order generalized Laguerre orthogonal functions. Fract. Calc. Appl. Anal. 17, 1137–1157 (2014)
    • (2014) Fract. Calc. Appl. Anal. , vol.17 , pp. 1137-1157
    • Bhrawy, A.H.1    Alhamed, Y.A.2    Baleanu, D.3    Al-Zahrani, A.A.4
  • 16
    • 84903939649 scopus 로고    scopus 로고
    • A mixed finite element method for a time-fractional fourth-order partial differential equation
    • Liu, Y., Fang, Z., Li, H., He, S.: A mixed finite element method for a time-fractional fourth-order partial differential equation. Appl. Math. Comput. 243, 703–717 (2014)
    • (2014) Appl. Math. Comput. , vol.243 , pp. 703-717
    • Liu, Y.1    Fang, Z.2    Li, H.3    He, S.4
  • 17
    • 84986922240 scopus 로고    scopus 로고
    • Discontinuous spectral element methods for time- and space-fractional advection equations
    • Zayernouri, M., Karniadakis, G.E.: Discontinuous spectral element methods for time- and space-fractional advection equations. SIAM J. Sci. Comput. 36, B684–B707 (2014)
    • (2014) SIAM J. Sci. Comput. , vol.36 , pp. 684-707
    • Zayernouri, M.1    Karniadakis, G.E.2
  • 18
    • 84898537327 scopus 로고    scopus 로고
    • A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations
    • Bhrawy, A.H., Doha, E.H., Baleanu, D., Ezz-Eldien, S.S.: A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations. J. Comput. Phys. (2014). doi:10.1016/j.jcp.2014.03.039
    • (2014) J. Comput. Phys.
    • Bhrawy, A.H.1    Doha, E.H.2    Baleanu, D.3    Ezz-Eldien, S.S.4
  • 19
    • 84948882036 scopus 로고
    • Integration and differentiation to a variable fractional order
    • Samko, S.G., Ross, B.: Integration and differentiation to a variable fractional order. Integral Transform Spec. Funct. 1, 277–300 (1993)
    • (1993) Integral Transform Spec. Funct. , vol.1 , pp. 277-300
    • Samko, S.G.1    Ross, B.2
  • 20
    • 0010073424 scopus 로고
    • Fractional integration and differentiation of variable order
    • Samko, S.G.: Fractional integration and differentiation of variable order. Anal. Math. 21, 213–236 (1995)
    • (1995) Anal. Math. , vol.21 , pp. 213-236
    • Samko, S.G.1
  • 21
    • 84881547849 scopus 로고    scopus 로고
    • Fractional integration and differentiation of variable order: an overview
    • Samko, S.: Fractional integration and differentiation of variable order: an overview. Nonlinear Dyn. 71, 653–662 (2013)
    • (2013) Nonlinear Dyn. , vol.71 , pp. 653-662
    • Samko, S.1
  • 22
    • 52349084738 scopus 로고    scopus 로고
    • Variable order modeling of diffusive-convective effects on the oscillatory flow past a sphere
    • Pedro, H.T.C., Kobayashi, M.H., Pereira, J.M.C., Coimbra, C.F.M.: Variable order modeling of diffusive-convective effects on the oscillatory flow past a sphere. J. Vib. Control 14, 1659–1672 (2008)
    • (2008) J. Vib. Control , vol.14 , pp. 1659-1672
    • Pedro, H.T.C.1    Kobayashi, M.H.2    Pereira, J.M.C.3    Coimbra, C.F.M.4
  • 24
    • 61449262957 scopus 로고    scopus 로고
    • Nonlinear dynamics and control of a variable order oscillator with application to the vander Pol equation
    • Diaz, G., Coimbra, C.F.M.: Nonlinear dynamics and control of a variable order oscillator with application to the vander Pol equation. Nonlinear Dyn. 56, 145–157 (2009)
    • (2009) Nonlinear Dyn. , vol.56 , pp. 145-157
    • Diaz, G.1    Coimbra, C.F.M.2
  • 25
    • 84890868046 scopus 로고    scopus 로고
    • An expansion formula for fractional derivatives of variable order
    • Atanackovic, T.M., Janev, M., Pilipovic, S., Zorica, D.: An expansion formula for fractional derivatives of variable order. Cent. Eur. J. Phys. 11(10), 1350–1360 (2013)
    • (2013) Cent. Eur. J. Phys. , vol.11 , Issue.10 , pp. 1350-1360
    • Atanackovic, T.M.1    Janev, M.2    Pilipovic, S.3    Zorica, D.4
  • 26
    • 0346897985 scopus 로고    scopus 로고
    • Mechanics with variable-order differential operators
    • Coimbra, C.F.M.: Mechanics with variable-order differential operators. Ann. Phys. 12, 692–703 (2003)
    • (2003) Ann. Phys. , vol.12 , pp. 692-703
    • Coimbra, C.F.M.1
  • 27
    • 25444483399 scopus 로고    scopus 로고
    • The variable viscoelasticity oscillator
    • Soon, C.M., Coimbra, F.M., Kobayashi, M.H.: The variable viscoelasticity oscillator. Ann. Phys. 14(6), 378–389 (2005)
    • (2005) Ann. Phys. , vol.14 , Issue.6 , pp. 378-389
    • Soon, C.M.1    Coimbra, F.M.2    Kobayashi, M.H.3
  • 28
    • 34547624283 scopus 로고    scopus 로고
    • Variable order constitutive relation for viscoelasticity
    • Ramirez, L.E.S., Coimbra, C.F.M.: Variable order constitutive relation for viscoelasticity. Ann. Phys. 16, 543–552 (2007)
    • (2007) Ann. Phys. , vol.16 , pp. 543-552
    • Ramirez, L.E.S.1    Coimbra, C.F.M.2
  • 29
    • 84878689420 scopus 로고    scopus 로고
    • Stability and convergence of the space fractional variable-order Schr ödinger equation
    • Atangana, A., Cloot, A.H.: Stability and convergence of the space fractional variable-order Schr ödinger equation. Adv. Differ. Equ. 1, 1–10 (2013)
    • (2013) Adv. Differ. Equ. , vol.1 , pp. 1-10
    • Atangana, A.1    Cloot, A.H.2
  • 30
    • 84890873973 scopus 로고    scopus 로고
    • Exact solution for the fractional cable equation with nonlocal boundary conditions
    • Bazhlekova, E.G., Dimovski, I.H.: Exact solution for the fractional cable equation with nonlocal boundary conditions. Cent. Eur. J. Phys. 11(10), 1304–1313 (2013)
    • (2013) Cent. Eur. J. Phys. , vol.11 , Issue.10 , pp. 1304-1313
    • Bazhlekova, E.G.1    Dimovski, I.H.2
  • 31
    • 79953686222 scopus 로고    scopus 로고
    • A Physical experimental study of variable-order fractional integrator and differentiator
    • Sheng, H., Sun, H.G., Coopmans, C., Chen, Y.Q., Bohannan, G.W.: A Physical experimental study of variable-order fractional integrator and differentiator. Eur. Phys. J. Spec. Top. 193, 93–104 (2011)
    • (2011) Eur. Phys. J. Spec. Top. , vol.193 , pp. 93-104
    • Sheng, H.1    Sun, H.G.2    Coopmans, C.3    Chen, Y.Q.4    Bohannan, G.W.5
  • 32
    • 68649098514 scopus 로고    scopus 로고
    • Variable order fractional differential operators in anomalous diffusion modeling
    • Sun, H.G., Chen, W., Chen, Y.Q.: Variable order fractional differential operators in anomalous diffusion modeling. Phys. A 388, 4586–4592 (2009)
    • (2009) Phys. A , vol.388 , pp. 4586-4592
    • Sun, H.G.1    Chen, W.2    Chen, Y.Q.3
  • 33
    • 79953691444 scopus 로고    scopus 로고
    • A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems
    • Sun, H.G., Chen, W., Wei, H., Chen, Y.Q.: A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems. Eur. Phys. J. Spec. Top. 193(1), 185–192 (2011)
    • (2011) Eur. Phys. J. Spec. Top. , vol.193 , Issue.1 , pp. 185-192
    • Sun, H.G.1    Chen, W.2    Wei, H.3    Chen, Y.Q.4
  • 34
    • 84855203375 scopus 로고    scopus 로고
    • Solution existence for non-autonomous variable-order fractional differential equations
    • Razminia, A., Dizaji, A.F., Majd, V.J.: Solution existence for non-autonomous variable-order fractional differential equations. Math. Comput. Modell. 55, 1106–1117 (2011)
    • (2011) Math. Comput. Modell. , vol.55 , pp. 1106-1117
    • Razminia, A.1    Dizaji, A.F.2    Majd, V.J.3
  • 35
    • 84925522036 scopus 로고    scopus 로고
    • Existence and uniqueness result of solutions to initial value problems of fractional differential equations of variable-order
    • Zhang, S.: Existence and uniqueness result of solutions to initial value problems of fractional differential equations of variable-order. J. Frac. Calc. Anal. 4(1), 82–98 (2013)
    • (2013) J. Frac. Calc. Anal. , vol.4 , Issue.1 , pp. 82-98
    • Zhang, S.1
  • 36
    • 84880045658 scopus 로고    scopus 로고
    • Existence result of solutions to differential equations of variable-order with nonlinear boundary value conditions
    • Zhang, S.: Existence result of solutions to differential equations of variable-order with nonlinear boundary value conditions. Commun. Nonlinear Sci. Numer. Simul. 18, 3289–3297 (2013)
    • (2013) Commun. Nonlinear Sci. Numer. Simul. , vol.18 , pp. 3289-3297
    • Zhang, S.1
  • 37
    • 67349098149 scopus 로고    scopus 로고
    • Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation
    • Lin, R., Liu, F., Anh, V., Turner, I.: Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation. Appl. Math. Comput. 212, 435–445 (2009)
    • (2009) Appl. Math. Comput. , vol.212 , pp. 435-445
    • Lin, R.1    Liu, F.2    Anh, V.3    Turner, I.4
  • 38
    • 84907893973 scopus 로고    scopus 로고
    • Numerical methods for the variable-order fractional advection–diffusion equation with a nonlinear source term
    • Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical methods for the variable-order fractional advection–diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 47, 1760–1781 (2009)
    • (2009) SIAM J. Numer. Anal. , vol.47 , pp. 1760-1781
    • Zhuang, P.1    Liu, F.2    Anh, V.3    Turner, I.4
  • 39
    • 77955704784 scopus 로고    scopus 로고
    • Numerical schemes with high spatial accuracy for a variable-order anomalous sub-diffusion equation
    • Chen, C.M., Liu, F., Anh, V., Turner, I.: Numerical schemes with high spatial accuracy for a variable-order anomalous sub-diffusion equation. SIAM J. Sci. Comput. 32(4), 1740–1760 (2010)
    • (2010) SIAM J. Sci. Comput. , vol.32 , Issue.4 , pp. 1740-1760
    • Chen, C.M.1    Liu, F.2    Anh, V.3    Turner, I.4
  • 40
    • 79551635060 scopus 로고    scopus 로고
    • Numerical simulation for the variable-order Galilei invariant advection diffusion equation with a nonlinear source term
    • Chen, C.M., Liu, F., Anh, V., Turner, I.: Numerical simulation for the variable-order Galilei invariant advection diffusion equation with a nonlinear source term. Appl. Math. Comput. 217, 5729–5742 (2011)
    • (2011) Appl. Math. Comput. , vol.217 , pp. 5729-5742
    • Chen, C.M.1    Liu, F.2    Anh, V.3    Turner, I.4
  • 41
    • 85027918128 scopus 로고    scopus 로고
    • Karniadakis, Second-order approximations for variable order fractional derivatives: algorithms and applications. J. Comput
    • Zhao, X., Sun, Z.-Z., Em, G.: Karniadakis, Second-order approximations for variable order fractional derivatives: algorithms and applications. J. Comput. Phys. (2014). doi:10.1016/j.jcp.2014.08.015
    • (2014) Phys
    • Zhao, X.1    Sun, Z.-Z.2    Em, G.3
  • 42
    • 80052706414 scopus 로고    scopus 로고
    • Fractional cable equation models for anomalous electrodiffusion in nerve cells: finite domain solutions
    • Langlands, T.A.M., Henry, B.I., Wearne, S.L.: Fractional cable equation models for anomalous electrodiffusion in nerve cells: finite domain solutions. SIAM. J. Appl. Math. 71, 1168–1203 (2011)
    • (2011) SIAM. J. Appl. Math. , vol.71 , pp. 1168-1203
    • Langlands, T.A.M.1    Henry, B.I.2    Wearne, S.L.3
  • 43
    • 41549083671 scopus 로고    scopus 로고
    • Fractional cable models for spiny neuronal dendrites
    • Henry, B., Langlands, T., Wearne, S.L.: Fractional cable models for spiny neuronal dendrites. Phys. Rev. Lett. 100, 128103–128106 (2008)
    • (2008) Phys. Rev. Lett. , vol.100 , pp. 128103-128106
    • Henry, B.1    Langlands, T.2    Wearne, S.L.3
  • 44
    • 70350663279 scopus 로고    scopus 로고
    • Fractional Cable equation models for anomalous electrodiffusion in nerve cells: infinite domain solutions
    • Langlands, T., Henry, B., Wearne, S.L.: Fractional Cable equation models for anomalous electrodiffusion in nerve cells: infinite domain solutions. J. Math. Biol. 59(6), 761–808 (2009)
    • (2009) J. Math. Biol. , vol.59 , Issue.6 , pp. 761-808
    • Langlands, T.1    Henry, B.2    Wearne, S.L.3
  • 45
    • 77953717639 scopus 로고    scopus 로고
    • Solution of a fractional cable equation: finite case. Applied Mathematics Report AMR05/33
    • Langlands, T., Henry, B., Wearne, S.L.: Solution of a fractional cable equation: finite case. Applied Mathematics Report AMR05/33, University of New South Wales (2005)
    • (2005) University of New South Wales
    • Langlands, T.1    Henry, B.2    Wearne, S.L.3
  • 46
    • 82155173242 scopus 로고    scopus 로고
    • Stability and convergence of two new implicit numerical methods for fractional cable equation
    • International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, IDETC/CIE, San Diego, California, USA:
    • Liu, F., Yang, Q., Turner, I.: Stability and convergence of two new implicit numerical methods for fractional cable equation. In: Proceeding of the ASME 2009 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, IDETC/CIE, San Diego, California, USA (2009)
    • (2009) Proceeding of the ASME , pp. 2009
    • Liu, F.1    Yang, Q.2    Turner, I.3
  • 47
    • 84861338331 scopus 로고    scopus 로고
    • Implicit compact difference schemes for the fractional cable equation
    • Hu, X., Zhang, L.: Implicit compact difference schemes for the fractional cable equation. Appl. Math. Model. 36, 4027–4043 (2012)
    • (2012) Appl. Math. Model. , vol.36 , pp. 4027-4043
    • Hu, X.1    Zhang, L.2
  • 48
    • 84900301142 scopus 로고    scopus 로고
    • An approximate solution of fractional cable equation by homotopy analysis method
    • Cavlak, M.E., Bayram, M.: An approximate solution of fractional cable equation by homotopy analysis method. Bound. Value Problems 2014(1), 58 (2014)
    • (2014) Bound. Value Problems , vol.2014 , Issue.1 , pp. 58
    • Cavlak, M.E.1    Bayram, M.2
  • 49
    • 80051548248 scopus 로고    scopus 로고
    • Numerical analysis for a variable-order nonlinear cable equation
    • Chen, C.M., Liu, F., Burrage, K.: Numerical analysis for a variable-order nonlinear cable equation. J. Comput. Appl. Math. 236, 209–224 (2011)
    • (2011) J. Comput. Appl. Math. , vol.236 , pp. 209-224
    • Chen, C.M.1    Liu, F.2    Burrage, K.3
  • 50
    • 84899798846 scopus 로고    scopus 로고
    • Numerical solution for the variable order linear cable equation with Bernstein polynomials
    • Chen, Y., Liu, L., Li, B., Sun, Y.: Numerical solution for the variable order linear cable equation with Bernstein polynomials. Appl. Math. Comput. 238, 329–341 (2014)
    • (2014) Appl. Math. Comput. , vol.238 , pp. 329-341
    • Chen, Y.1    Liu, L.2    Li, B.3    Sun, Y.4
  • 51
    • 0036650957 scopus 로고    scopus 로고
    • Variable order and distributed order fractional operators
    • Lorenzo, C.F., Hartley, T.T.: Variable order and distributed order fractional operators. Nonlinear Dyn. 29, 57–98 (2002)
    • (2002) Nonlinear Dyn. , vol.29 , pp. 57-98
    • Lorenzo, C.F.1    Hartley, T.T.2
  • 52
    • 84901191174 scopus 로고    scopus 로고
    • A new method based on Legendre polynomials for solutions of the fractional two-dimensional heat conduction equation
    • Khalil, H., Khan, R.A.: A new method based on Legendre polynomials for solutions of the fractional two-dimensional heat conduction equation. Comput. Math. Appl. 67(10), 1938–1953 (2014)
    • (2014) Comput. Math. Appl. , vol.67 , Issue.10 , pp. 1938-1953
    • Khalil, H.1    Khan, R.A.2
  • 53
    • 84882382834 scopus 로고    scopus 로고
    • A Jacobi–Gauss–Lobatto collocation method for solving generalized Fitzhugh–Nagumo equation with time-dependent coefficients
    • Bhrawy, A.H.: A Jacobi–Gauss–Lobatto collocation method for solving generalized Fitzhugh–Nagumo equation with time-dependent coefficients. Appl. Math. Comput. 222, 255–264 (2013)
    • (2013) Appl. Math. Comput. , vol.222 , pp. 255-264
    • Bhrawy, A.H.1
  • 54
    • 84893984926 scopus 로고    scopus 로고
    • A Jacobi collocation approximation for nonlinear coupled viscous Burgers’ equation
    • Doha, E.H., Bhrawy, A.H., Abdelkawy, M.A., Hafez, R.M.: A Jacobi collocation approximation for nonlinear coupled viscous Burgers’ equation. Cent. Eur. J. Phys. 12, 111–122 (2014)
    • (2014) Cent. Eur. J. Phys. , vol.12 , pp. 111-122
    • Doha, E.H.1    Bhrawy, A.H.2    Abdelkawy, M.A.3    Hafez, R.M.4
  • 55
    • 84901822925 scopus 로고    scopus 로고
    • A Chebyshev spectral method for solving Riemann–Liouville fractional boundary value problems
    • Graef, J.R., Kong, L., Wang, M.: A Chebyshev spectral method for solving Riemann–Liouville fractional boundary value problems. Appl. Math. Comput. 241, 140–150 (2014)
    • (2014) Appl. Math. Comput. , vol.241 , pp. 140-150
    • Graef, J.R.1    Kong, L.2    Wang, M.3
  • 56
    • 84893626620 scopus 로고    scopus 로고
    • A spectral Legendre–Gauss–Lobatto collocation method for a space-fractional advection diffusion equations with variable coefficients
    • Bhrawy, A.H., Baleanu, D.: A spectral Legendre–Gauss–Lobatto collocation method for a space-fractional advection diffusion equations with variable coefficients. Rep. Math. Phys. 72, 219–233 (2013)
    • (2013) Rep. Math. Phys , vol.72 , pp. 219-233
    • Bhrawy, A.H.1    Baleanu, D.2
  • 57
    • 84888631283 scopus 로고    scopus 로고
    • A new Jacobi rational–Gauss collocation method for numerical solution of generalized pantograph equations
    • Doha, E.H., Bhrawy, A.H., Baleanu, D., Hafez, R.M.: A new Jacobi rational–Gauss collocation method for numerical solution of generalized pantograph equations. Appl. Numer. Math. 77, 43–54 (2014)
    • (2014) Appl. Numer. Math. , vol.77 , pp. 43-54
    • Doha, E.H.1    Bhrawy, A.H.2    Baleanu, D.3    Hafez, R.M.4
  • 58
    • 84892836298 scopus 로고    scopus 로고
    • Jacobi–Gauss–Lobatto collocation method for the numerical solution of nonlinear Schrodinger equations
    • Doha, E.H., Bhrawy, A.H., Abdelkawy, M.A., Van Gorder, R.A.: Jacobi–Gauss–Lobatto collocation method for the numerical solution of nonlinear Schrodinger equations. J. Comput. Phys. 261, 244–255 (2014)
    • (2014) J. Comput. Phys. , vol.261 , pp. 244-255
    • Doha, E.H.1    Bhrawy, A.H.2    Abdelkawy, M.A.3    Van Gorder, R.A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.