-
1
-
-
77954459409
-
Homotopy analysis method for multiple solutions of the fractional Sturm-Liouville problems
-
Abbasbandy S., Shirzadi A. Homotopy analysis method for multiple solutions of the fractional Sturm-Liouville problems. Numer. Algorithms 2010, 54(4):521-532.
-
(2010)
Numer. Algorithms
, vol.54
, Issue.4
, pp. 521-532
-
-
Abbasbandy, S.1
Shirzadi, A.2
-
3
-
-
64549120203
-
An efficient method for solving fractional Sturm-Liouville problems
-
Al-Mdallal Q.M. An efficient method for solving fractional Sturm-Liouville problems. Chaos Solitons Fractals 2009, 40(1):183-189.
-
(2009)
Chaos Solitons Fractals
, vol.40
, Issue.1
, pp. 183-189
-
-
Al-Mdallal, Q.M.1
-
4
-
-
77957977302
-
On the numerical solution of fractional Sturm-Liouville problems
-
Al-Mdallal Q.M. On the numerical solution of fractional Sturm-Liouville problems. Int. J. Comput. Math. 2010, 87(12):2837-2845.
-
(2010)
Int. J. Comput. Math.
, vol.87
, Issue.12
, pp. 2837-2845
-
-
Al-Mdallal, Q.M.1
-
7
-
-
79953319191
-
Computing eigenelements of Sturm-Liouville Problems of fractional order via fractional differential transform method
-
Ertürk V.S. Computing eigenelements of Sturm-Liouville Problems of fractional order via fractional differential transform method. Math. Comput. Appl. 2011, 16(3):712.
-
(2011)
Math. Comput. Appl.
, vol.16
, Issue.3
, pp. 712
-
-
Ertürk, V.S.1
-
9
-
-
84876665789
-
A simple approach for determining the eigenvalues of the fourth-order Sturm-Liouville problem with variable coefficients
-
Hang Y., Chen J., Luo Q.Z. A simple approach for determining the eigenvalues of the fourth-order Sturm-Liouville problem with variable coefficients. Appl. Math. Lett. 2013, 26(7):729-734.
-
(2013)
Appl. Math. Lett.
, vol.26
, Issue.7
, pp. 729-734
-
-
Hang, Y.1
Chen, J.2
Luo, Q.Z.3
-
11
-
-
84881479259
-
Fractional Sturm-Liouville problem
-
Klimek M., Agrawal O.P. Fractional Sturm-Liouville problem. Comput. Math. Appl. 2013, 66(5):795-812.
-
(2013)
Comput. Math. Appl.
, vol.66
, Issue.5
, pp. 795-812
-
-
Klimek, M.1
Agrawal, O.P.2
-
13
-
-
84861201332
-
Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation
-
Luchko Y. Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation. Fract. Calc. Appl. Anal. 2012, 15(1):141-160.
-
(2012)
Fract. Calc. Appl. Anal.
, vol.15
, Issue.1
, pp. 141-160
-
-
Luchko, Y.1
-
16
-
-
84864266273
-
Introducing an iterative method for solving a special FDE
-
Neamaty A., Darzi R., Dabbaghian A., Golipoor J. Introducing an iterative method for solving a special FDE. Int. Math. Forum 2009, 4(30):1449-1456.
-
(2009)
Int. Math. Forum
, vol.4
, Issue.30
, pp. 1449-1456
-
-
Neamaty, A.1
Darzi, R.2
Dabbaghian, A.3
Golipoor, J.4
-
20
-
-
84861330577
-
Application of Haar wavelet method to eigenvalue problems of higher order
-
Shi Z., Cao Y.Y. Application of Haar wavelet method to eigenvalue problems of higher order. Appl. Math. Model. 2012, 36(9):4020-4026.
-
(2012)
Appl. Math. Model.
, vol.36
, Issue.9
, pp. 4020-4026
-
-
Shi, Z.1
Cao, Y.Y.2
-
21
-
-
84880661301
-
Fractional Sturm-Liouville eigen-problems: theory and numerical approximation
-
Zayernouri M., Karniadakis G.E. Fractional Sturm-Liouville eigen-problems: theory and numerical approximation. J. Comput. Phys. 2013, 252:495-517.
-
(2013)
J. Comput. Phys.
, vol.252
, pp. 495-517
-
-
Zayernouri, M.1
Karniadakis, G.E.2
-
22
-
-
84886791142
-
Exponentially accurate spectral and spectral element methods for fractional ODEs
-
Zayernouri M., Karniadakis G.E. Exponentially accurate spectral and spectral element methods for fractional ODEs. J. Comput. Phys. 2014, 257:460-480.
-
(2014)
J. Comput. Phys.
, vol.257
, pp. 460-480
-
-
Zayernouri, M.1
Karniadakis, G.E.2
|