-
1
-
-
0024367526
-
An electro-diffusion model for computing membrane potentials and ionic concentrations in branching dendrites, spines and axons
-
DOI 10.1007/BF00217656
-
Qian, N., and Sejnowski, T., 1989. An electro-diffusion model for computing membrane potentials and ionic concentrations in branching dendrites, spines and axons. Biol. Cybern., 62, pp. 1-15. (Pubitemid 20003987)
-
(1989)
Biological Cybernetics
, vol.62
, Issue.1
, pp. 1-15
-
-
Qian, N.1
Sejnowski, T.J.2
-
2
-
-
0034805503
-
Anomalous subdiffusion in fluorescence photobleaching recovery: A Monte Carlo study
-
Saxton, M., 2001. Anomalous subdiffusion in fluorescence photobleaching recovery: A monte carlo study. Biophys. J., 81, pp. 2226-2240. (Pubitemid 32917171)
-
(2001)
Biophysical Journal
, vol.81
, Issue.4
, pp. 2226-2240
-
-
Saxton, M.J.1
-
5
-
-
33751019968
-
Anomalous diffusion in purkinje cell dendrites caused by spines
-
DOI 10.1016/j.neuron.2006.10.025, PII S0896627306008245
-
Santamaria, F., Wils, S., De Schutter, E., and Augustine, G.J., 2006. Anomalous Diffusion in Purkinje Cell Dendrites Caused by Spines. Neuron, 52, pp. 635-648. (Pubitemid 44750568)
-
(2006)
Neuron
, vol.52
, Issue.4
, pp. 635-648
-
-
Santamaria, F.1
Wils, S.2
De Schutter, E.3
Augustine, G.J.4
-
6
-
-
41549083671
-
Fractional cable models for spiny neuronal dendrites
-
Henry, B.I., Langlands, T.A.M., and Wearne, S.L., 2008. Fractional Cable Models for Spiny Neuronal Dendrites. Phys. Rev. Lett., 100, pp. 128103.
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 128103
-
-
Henry, B.I.1
Langlands, T.A.M.2
Wearne, S.L.3
-
7
-
-
1542425102
-
Numerical solution of the space fractional Fokker-Planck equation
-
DOI 10.1016/j.cam.2003.09.028, PII S0377042703008616
-
Liu, F., Anh, V., and Turner, I., 2004. Numerical Solution of the Space Fractional Fokker-Planck Equation. J. Comp. Appl. Math., 166, pp. 209-219. (Pubitemid 38342127)
-
(2004)
Journal of Computational and Applied Mathematics
, vol.166
, Issue.1
, pp. 209-219
-
-
Liu, F.1
Anh, V.2
Turner, I.3
-
8
-
-
4444368867
-
Finite difference approximations for fractional advection-dispersion flow equations
-
DOI 10.1016/j.cam.2004.01.033, PII S0377042704000986
-
Meerschaert, M., and Tadjeran, C., 2004. Finite difference approximations for fractional advection-dispersion flow equations. J. Comp. Appl. Math., 172, pp. 65-77. (Pubitemid 39204390)
-
(2004)
Journal of Computational and Applied Mathematics
, vol.172
, Issue.1
, pp. 65-77
-
-
Meerschaert, M.M.1
Tadjeran, C.2
-
10
-
-
33751545053
-
Fractional high order methods for the nonlinear fractional ordinary differential equation
-
DOI 10.1016/j.na.2005.12.027, PII S0362546X05010503
-
Lin, R., and Liu, F., 2007. Fractional high order methods for the nonlinear fractional ordinary differential equation. Nonlinear Analysis, 66, pp. 856-869. (Pubitemid 44839109)
-
(2007)
Nonlinear Analysis, Theory, Methods and Applications
, vol.66
, Issue.4
, pp. 856-869
-
-
Lin, R.1
Liu, F.2
-
11
-
-
33846798041
-
Approximation of the levy-feller advection-dispersion process by random walk and finite difference method
-
Liu, Q., Liu, F., Turner, I., and Anh, V., 2007. Approximation of the Levy-Feller advection-dispersion process by random walk and finite difference method. J. Phys. Comp., 222, pp. 57-70.
-
(2007)
J. Phys. Comp.
, vol.222
, pp. 57-70
-
-
Liu, Q.1
Liu, F.2
Turner, I.3
Anh, V.4
-
12
-
-
84907893973
-
Numerical methods for the variable-order fractional advection-diffusiion with a nonlinear source term
-
in press, (doi: 10.1137/080730597)
-
Zhuang, P., Liu, F., Anh V., and Turner, I., 2009. Numerical methods for the variable-order fractional advection-diffusiion with a nonlinear source term, SIAM J. on Numerical Analysis, in press, (doi: 10.1137/080730597).
-
(2009)
SIAM J. on Numerical Analysis
-
-
Zhuang, P.1
Liu, F.2
Anh, V.3
Turner, I.4
-
13
-
-
67349098149
-
Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation
-
in press, (doi:10.1016/j.amc.2009.02.047)
-
Lin, R., Liu, F., Anh, V., and Turner, I., 2009. Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation, Applied and Computational Mathematics, in press, (doi:10.1016/j.amc.2009.02.047).
-
(2009)
Applied and Computational Mathematics
-
-
Lin, R.1
Liu, F.2
Anh, V.3
Turner, I.4
-
14
-
-
41449094744
-
Solving linear and non-linear space-time fractional reaction-diffusion equations by the adomian decomposition method
-
DOI 10.1002/nme.2165
-
Yu, Q., Liu, F., Anh, V., and Turner, I., 2008. Solving linear and nonlinear space-time fractional reaction-diffusion equations by Adomian decomposition method. International J. for Numer. Meth. In Eng., 74, pp. 138-158. (Pubitemid 351454823)
-
(2008)
International Journal for Numerical Methods in Engineering
, vol.74
, Issue.1
, pp. 138-158
-
-
Yu, Q.1
Liu, F.2
Anh, V.3
Turner, I.4
-
15
-
-
25444472344
-
An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations
-
DOI 10.1137/030602666
-
Yuste, S.B., and Acedo, L., 2005. An explicit finite difference method and a new Von Neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal., 42(5), pp. 1862-1874. (Pubitemid 41634613)
-
(2005)
SIAM Journal on Numerical Analysis
, vol.42
, Issue.5
, pp. 1862-1874
-
-
Yuste, S.B.1
Acedo, L.2
-
16
-
-
33646128485
-
Weighted average finite difference methods for fractional diffusion equations
-
DOI 10.1016/j.jcp.2005.12.006, PII S0021999105005516
-
Yuste, S.B., 2006. Weighted average finite difference methods for fractional diffusion equations. J. Comp. Phys., 216(1), pp. 264-274. (Pubitemid 43632555)
-
(2006)
Journal of Computational Physics
, vol.216
, Issue.1
, pp. 264-274
-
-
Yuste, S.B.1
-
17
-
-
17144427014
-
The accuracy and stability of an implicit solution method for the fractional diffusion equation
-
DOI 10.1016/j.jcp.2004.11.025, PII S0021999104004887
-
Langlands, T.A.M., and Henry, B.I., 2005. The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comp. Phys., 205, pp. 719-736. (Pubitemid 40518394)
-
(2005)
Journal of Computational Physics
, vol.205
, Issue.2
, pp. 719-736
-
-
Langlands, T.A.M.1
Henry, B.I.2
-
18
-
-
36149001420
-
Fourier method for the fractional diffusion equation describing subdiffusion
-
Chen, C., Liu, F., Turner, I., and Anh, V., 2007. Fourier method for the fractional diffusion equation describing subdiffusion. J. Comp. Phys., 227, pp. 886-897.
-
(2007)
J. Comp. Phys.
, vol.227
, pp. 886-897
-
-
Chen, C.1
Liu, F.2
Turner, I.3
Anh, V.4
-
19
-
-
56949093590
-
A fourier method and an extrapolation technique for stokes' first problem for a heated generalized second grade fluid with fractional derivative
-
(doi: 10.1016/j.cam.2008.03.01)
-
Chen, C., Liu F., and Anh, V., 2009. A Fourier method and an extrapolation technique for Stokes' first problem for a heated generalized second grade fluid with fractional derivative, J. Comp. Appl. Math., 223, pp.777-789, (doi: 10.1016/j.cam.2008.03.01).
-
(2009)
J. Comp. Appl. Math.
, vol.223
, pp. 777-789
-
-
Chen, C.1
Liu, F.2
Anh, V.3
-
20
-
-
55549107511
-
New solution and analytical techniques of the implicit numerical methods for the anomalous sub-diffusion equation
-
Zhuang, P., Liu, F., Anh, V., and Turner, I., 2008. New solution and analytical techniques of the implicit numerical methods for the anomalous sub-diffusion equation SIAM J. on Numerical Analysis, 46(2), pp. 1079-1095.
-
(2008)
SIAM J. on Numerical Analysis
, vol.46
, Issue.2
, pp. 1079-1095
-
-
Zhuang, P.1
Liu, F.2
Anh, V.3
Turner, I.4
-
21
-
-
67349231192
-
Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term
-
in press
-
Liu, F., Yang, C., and Burrage, K., 2009. Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term. Journal of Computational and Applied Mathematics, in press.
-
(2009)
Journal of Computational and Applied Mathematics
-
-
Liu, F.1
Yang, C.2
Burrage, K.3
|